Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149049, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801856

RESUMO

Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.


Assuntos
Proteínas de Bactérias , Transferência de Energia , Ficobilissomas , Synechocystis , Ficobilissomas/metabolismo , Ficobilissomas/química , Synechocystis/metabolismo , Synechocystis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Peptídeos/metabolismo , Peptídeos/química
2.
Biochim Biophys Acta Bioenerg ; 1864(4): 148993, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321385

RESUMO

Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.


Assuntos
Anabaena , Cianobactérias , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Anabaena/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ficobilissomas/metabolismo , Ferro/metabolismo
3.
Metab Eng ; 77: 174-187, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030607

RESUMO

Efforts to stably over-express recombinant proteins in cyanobacteria are hindered due to cellular proteasome activity that efficiently degrades foreign proteins. Recent work from this lab showed that a variety of exogenous genes from plants, humans, and bacteria can be successfully and stably over-expressed in cyanobacteria, as fusion constructs with the abundant ß-subunit of phycocyanin (the cpcB gene product) in quantities up to 10-15% of the total cell protein. The CpcB*P fusion proteins did not simply accumulate in a soluble free-floating form in the cell but, rather, they assembled as functional (α,ß*P)3CpcG1 heterohexameric light-harvesting phycocyanin antenna discs, where α is the CpcA α-subunit of phycocyanin, ß*P is the CpcB*P fusion protein, the asterisk denoting fusion, and CpcG1 is the 28.9 kDa phycocyanin disc linker polypeptide (Hidalgo Martinez et al., 2022). The present work showed that the CpcA α-subunit of phycocyanin and the CpcG1 28.9 kDa phycocyanin disc linker polypeptide can also successfully serve as leading sequences in functional heterohexameric (α*P,ß)3CpcG1 and (α,ß)3CpcG1*P fusion constructs that permit stable recombinant protein over-expression and accumulation. These were shown to form a residual light-harvesting antenna and to contribute to photosystem-II photochemistry in the cyanobacterial cells. The work suggested that cyanobacterial cells need phycocyanin for light absorption, photosynthesis, and survival and, therefore, may tolerate the presence of heterologous recombinant proteins, when the latter are in a fusion construct configuration with essential cellular proteins, e.g., phycocyanin, thus allowing their substantial and stable accumulation.


Assuntos
Cianobactérias , Ficobilissomas , Humanos , Ficobilissomas/genética , Ficobilissomas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Plantas/genética
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982707

RESUMO

Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/genética , Ficobilissomas/metabolismo , Filogenia , Cianobactérias/genética , Cianobactérias/metabolismo , Ficobilinas , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509926

RESUMO

Phycobilisomes are the major pigment-protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin ß-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.


Assuntos
Proteínas de Bactérias/metabolismo , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência Conservada , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fenótipo , Fotossíntese , Filogenia , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Transcriptoma/genética
6.
Biochim Biophys Acta Bioenerg ; 1861(4): 148047, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306623

RESUMO

Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.


Assuntos
Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Processos Fotoquímicos , Ficobilissomas/química
7.
Photosynth Res ; 143(1): 81-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760552

RESUMO

Some terrestrial cyanobacteria acclimate to and utilize far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis, a process known as far-red light photoacclimation (FaRLiP). A conserved, 20-gene FaRLiP cluster encodes core subunits of Photosystem I (PSI) and Photosystem II (PSII), five phycobiliprotein subunits of FRL-bicylindrical cores, and enzymes for synthesis of chlorophyll (Chl) f and possibly Chl d. Deletion mutants for each of the five apc genes of the FaRLiP cluster were constructed in Synechococcus sp. PCC 7335, and all had similar phenotypes. When the mutants were grown in white (WL) or red (RL) light, the cells closely resembled the wild-type (WT) strain grown under the same conditions. However, the WT and mutant strains were very different when grown under FRL. Mutants grown in FRL were unable to assemble FRL-bicylindrical cores, were essentially devoid of FRL-specific phycobiliproteins, but retained RL-type phycobilisomes and WL-PSII. The transcript levels for genes of the FaRLiP cluster in the mutants were similar to those in WT. Surprisingly, the Chl d contents of the mutant strains were greatly reduced (~ 60-99%) compared to WT and so were the levels of FRL-PSII. We infer that Chl d may be essential for the assembly of FRL-PSII, which does not accumulate to normal levels in the mutants. We further infer that the cysteine-rich subunits of FRL allophycocyanin may either directly participate in the synthesis of Chl d or that FRL bicylindrical cores stabilize FRL-PSII to prevent loss of Chl d.


Assuntos
Clorofila/metabolismo , Luz , Ficocianina/metabolismo , Clorofila/análogos & derivados , Clorofila/química , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Modelos Moleculares , Família Multigênica , Mutação/genética , Ficobilissomas/metabolismo , Proteômica , Espectrometria de Fluorescência , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Synechococcus/efeitos da radiação
8.
Biochim Biophys Acta Bioenerg ; 1859(4): 280-291, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29391123

RESUMO

Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS.


Assuntos
Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Ficobilissomas/genética , Deleção de Sequência , Synechocystis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transferência de Energia , Expressão Gênica , Engenharia Genética , Luz , Mutação , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Ficobilissomas/ultraestrutura , Ligação Proteica , Domínios Proteicos , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
9.
Dokl Biochem Biophys ; 471(1): 403-406, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28058690

RESUMO

In the large linker ArcE polypeptide of the phycobilisome (PBS) from the cyanobacterium Synechocystis sp. PCC 6803, the chromophore-containing 26-kDa domain was deleted with consequent disturbance of the main PBS functions. Phycobilisomes in mutant cells staying in contact with photosystem I cannot transfer energy to the photosystem II. Under the bright light conditions, the interaction of PBSs with the photoprotective orange carotenoid protein in the mutant was lost and the implementation of transition states 1 and 2 of the pigment apparatus was significantly reduced.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carotenoides/metabolismo , Luz , Mutação , Ficobilissomas/genética , Espectrometria de Fluorescência , Synechocystis
10.
J Biomol Struct Dyn ; 34(3): 486-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25905572

RESUMO

Using molecular modeling and known spatial structure of proteins, we have derived a universal 3D model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the process of non-photochemical PBS quenching. The characteristic tip of the phycobilin domain of the core-membrane linker polypeptide (LCM) forms the attachment site on the PBS core surface for interaction with the central inter-domain cavity of the OCP molecule. This spatial arrangement has to be the most advantageous one because the LCM, as the major terminal PBS-fluorescence emitter, accumulates energy from the most other phycobiliproteins within the PBS before quenching by OCP. In agreement with the constructed model, in cyanobacteria, the small fluorescence recovery protein is wedged in the OCP's central cavity, weakening the PBS and OCP interaction. The presence of another one protein, the red carotenoid protein, in some cyanobacterial species, which also can interact with the PBS, also corresponds to this model.


Assuntos
Proteínas de Bactérias/química , Ficobilissomas/química , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ficobilissomas/metabolismo , Ligação Proteica , Conformação Proteica
11.
Biochim Biophys Acta ; 1837(12): 1955-1963, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25256653

RESUMO

The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the ß-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.


Assuntos
Proteínas de Bactérias/química , Luz , Espectrometria de Massas/métodos , Estrutura Secundária de Proteína/efeitos da radiação , Proteínas de Bactérias/metabolismo , Carbodi-Imidas/química , Carbodi-Imidas/metabolismo , Glicina/análogos & derivados , Glicina/química , Glicina/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ficobilissomas/química , Ficobilissomas/metabolismo , Conformação Proteica/efeitos da radiação , Pegadas de Proteínas/métodos , Estrutura Terciária de Proteína/efeitos da radiação , Espectrofotometria , Synechocystis/metabolismo , Fatores de Tempo
12.
PLoS One ; 9(8): e105952, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153076

RESUMO

Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-ß-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNR(L)) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNR(L) accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNR(L) and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.


Assuntos
Liases/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Synechocystis/metabolismo , Liases/genética , Ficobilissomas/genética , Ficocianina/genética , Synechocystis/genética
13.
J Photochem Photobiol B ; 125: 137-45, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23811796

RESUMO

The fluorescence emission of the phycobilisome (PBS) core-membrane linker protein (L(CM)) can be directly quenched by photoactivated orange carotenoid protein (OCP) at room temperature both in vitro and in vivo, which suggests the crucial role of the OCP-L(CM) interaction in non-photochemical quenching (NPQ) of cyanobacteria. This implication was further supported (i) by low-temperature (77K) fluorescence emission and excitation measurements which showed a specific quenching of the corresponding long-wavelength fluorescence bands which belong to the PBS terminal emitters in the presence of photoactivated OCP, (ii) by systematic investigation of the fluorescence quenching and recovery in wild type and L(CM)-less cells of the model cyanobacterium Synechocystis sp. PCC 6803, and (iii) by the impact of dephosphorylation of isolated PBS on the quenching. The OCP binding site within the PBS and the most probable geometrical arrangement of the OCP-allophycocyanin (APC) complex was determined in silico using the crystal structures of OCP and APC. Geometrically modeled attachment of OCP to the PBS core is not at variance with the OCP-L(CM) interaction. It was concluded that besides being a very central element in the PBS to reaction center excitation energy transfer and PBS assembly, L(CM) also has an essential role in the photoprotective light adaptation processes of cyanobacteria.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Ficobilissomas/química , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Fluorescência , Ficobilissomas/metabolismo
14.
Photosynth Res ; 106(1-2): 73-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20521115

RESUMO

Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.


Assuntos
Rodófitas/metabolismo , Tilacoides/química , Tilacoides/metabolismo , Adaptação Fisiológica , Transferência de Energia , Fotossíntese , Ficobilissomas/química , Ficobilissomas/metabolismo
15.
J Plant Physiol ; 167(12): 951-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20417984

RESUMO

The effects of salt stress (0-0.8M NaCl) on excitation energy transfer from phycobilisomes to photosystem I (PSI) and photosystem II (PSII) in the cyanobacterium Spirulina platensis were investigated. Salt stress resulted in a significant decrease in photosynthetic oxygen evolution activity and PSII electron transport activity, but a significant increase in PSI electron transport activity. Analyses of the polyphasic fluorescence transients (OJIP) showed that, with an increase in salt concentration, the fluorescence yield at the phases J, I and P declined considerably and the transient almost leveled off at 0.8M NaCl. Analyses of the JIP test demonstrated that salt stress led to a decrease in the maximal efficiency of PSII photochemistry, the probability of electron transfer beyond Q(A), and the yield of electron transport beyond Q(A). In addition, salt stress resulted in a decrease in the electron transport per PSII reaction center, but an increase in the absorption per PSII reaction center. However, there was no significant change in the trapping per PSII reaction center. Furthermore, there was a decrease in the concentration of the active PSII reaction centers. Analyses of 77K chlorophyll fluorescence emission spectra excited either at 436 or 580nm showed that salt stress inhibited excitation energy transfer from phycobilisomes to PSII but induced an increase in the efficiency of energy transfer from phycobilisomes to PSI. Based on these results, it is suggested that, through a down-regulation of PSII reaction centers and a shift of excitation energy transfer in favor of PSI, the PSII apparatus was protected from excess excitation energy.


Assuntos
Transferência de Energia/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Cloreto de Sódio/farmacologia , Spirulina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Espectrometria de Fluorescência , Spirulina/efeitos dos fármacos , Temperatura
16.
Mol Microbiol ; 76(3): 576-89, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20345653

RESUMO

HtpG, a homologue of HSP90, is essential for thermotolerance in cyanobacteria. It is not known how it plays this important role. We obtained evidence that HtpG interacts with linker polypeptides of phycobilisome in the cyanobacterium Synechococcus elongatus PCC 7942. In an htpG mutant, the 30 kDa rod linker polypeptide was reduced. In vitro studies with purified HtpG and phycobilisome showed that HtpG interacts with the linker polypeptide as well as other linker polypeptides to suppress their thermal aggregation with a stoichiometry of one linker polypeptide/HtpG dimer. We constructed various domain-truncated derivatives of HtpG to identify putative chaperone sites at which HtpG binds linker polypeptides. The middle domain and the N-terminal domain, although less efficiently, prevented the aggregation of denatured polypeptides, while the C-terminal domain did not. Truncation of the C-terminal domain that is involved in the dimerization of HtpG led to decrease in the anti-aggregation activity, while fusion of the N-terminal domain to the middle domain lowered the activity. In vitro studies with HtpG and the isolated 30 kDa rod linker polypeptide provided basically similar results to those with HtpG and phycobilisome. ADP inhibited the anti-aggregation activity, indicating that a compact ADP conformational state provides weaker aggregation protection compared with the others.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ficobilissomas/metabolismo , Synechococcus/metabolismo , Proteínas de Bactérias/genética , Dimerização , Proteínas de Choque Térmico HSP90/genética , Ficobilissomas/química , Ficobilissomas/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Synechococcus/química , Synechococcus/genética
17.
Biochim Biophys Acta ; 1787(4): 272-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19344661

RESUMO

In cyanobacteria, the harvesting of light energy for photosynthesis is mainly carried out by the phycobilisome - a giant, multi-subunit pigment-protein complex. This complex is composed of heterodimeric phycobiliproteins that are assembled with the aid of linker polypeptides such that light absorption and energy transfer to photosystem II are optimised. In this work we have studied, using single particle electron microscopy, the phycobilisome structure in mutants lacking either two or all three of the phycocyanin hexamers. The images presented give much greater detail than those previously published, and in the best two-dimensional projection maps a resolution of 13 A was achieved. As well as giving a better overall picture of the assembly of phycobilisomes, these results reveal new details of the association of allophycocyanin trimers within the core. Insights are gained into the attachment of this core to the membrane surface, essential for efficient energy transfer to photosystem II. Comparison of projection maps of phycobilisomes with and without reconstituted ferredoxin:NADP oxidoreductase suggests a location for this enzyme within the complex at the rod-core interface.


Assuntos
Membrana Celular/metabolismo , Ficobilissomas/química , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Membrana Celular/ultraestrutura , Ferredoxina-NADP Redutase/metabolismo , Modelos Biológicos , Mutação , Peptídeos/metabolismo , Ficobilissomas/ultraestrutura , Ficocianina/metabolismo , Ficocianina/ultraestrutura
18.
PLoS One ; 4(4): e5295, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381335

RESUMO

BACKGROUND: Phycobilisomes (PBsomes) are the extrinsic antenna complexes upon the photosynthetic membranes in red algae and most cyanobacteria. The PBsomes in the cyanobacteria has been proposed to present high lateral mobility on the thylakoid membrane surface. In contrast, direct measurement of PBsome motility in red algae has been lacking so far. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we investigated the dynamics of PBsomes in the unicellular red alga Porphyridium cruentum in vivo and in vitro, using fluorescence recovery after photobleaching (FRAP). We found that part of the fluorescence recovery could be detected in both partially- and wholly-bleached wild-type and mutant F11 (UTEX 637) cells. Such partial fluorescence recovery was also observed in glutaraldehyde-treated and betaine-treated cells in which PBsome diffusion should be restricted by cross-linking effect, as well as in isolated PBsomes immobilized on the glass slide. CONCLUSIONS/SIGNIFICANCE: On the basis of our previous structural results showing the PBsome crowding on the native photosynthetic membrane as well as the present FRAP data, we concluded that the fluorescence recovery observed during FRAP experiment in red algae is mainly ascribed to the intrinsic photoprocesses of the bleached PBsomes in situ, rather than the rapid diffusion of PBsomes on thylakoid membranes in vivo. Furthermore, direct observations of the fluorescence dynamics of phycoerythrins using FRAP demonstrated the energetic decoupling of phycoerythrins in PBsomes against strong excitation light in vivo, which is proposed as a photoprotective mechanism in red algae attributed by the PBsomes in response to excess light energy.


Assuntos
Fotoquímica , Ficobilissomas/metabolismo , Rodófitas/metabolismo , Betaína/administração & dosagem , Difusão , Fluorescência , Glutaral/administração & dosagem
19.
Biochim Biophys Acta ; 1777(5): 417-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18371294

RESUMO

The mechanism of photodegradation of antenna system in cyanobacteria was investigated using spin trapping ESR spectroscopy, SDS-PAGE and HPLC-MS. Exposure of isolated intact phycobilisomes to illumination with strong white light (3500 micromol m(-2) s(-1) photosynthetically active radiation) gave rise to the formation of free radicals, which subsequently led to specific protein degradation as a consequence of reactive oxygen species-induced cleavage of the polypeptide backbone. The use of specific scavengers demonstrated an initial formation of both singlet oxygen (1O2) and superoxide (O2(-)), most likely after direct reaction of molecular oxygen with the triplet state of phycobiliproteins, generated from intersystem crossing of the excited singlet state. In a second phase carbon-based radicals, detected through the appearance of DMPO-R adducts, were produced either via O2(-) or by direct 1O2 attack on amino acid moieties. Thus photo-induced degradation of intact phycobilisomes in cyanobacteria occurs through a complex process with two independent routes leading to protein damage: one involving superoxide and the other singlet oxygen. This is in contrast to the mechanism found in plants, where damage to the light-harvesting complex proteins has been shown to be mediated entirely by 1O2 generation.


Assuntos
Luz , Ficobilissomas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Synechocystis/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Espectrometria de Massas , Ficobilissomas/metabolismo , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo , Synechocystis/metabolismo
20.
Photosynth Res ; 95(2-3): 175-82, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17922214

RESUMO

The phycobilisome is a remarkable light-harvesting antenna that combines high efficiency with functional flexibility and the ability to capture light across a broad spectral range. A combination of biochemical, structural and spectroscopic studies has given an excellent picture of the structure and function of isolated phycobilisomes. However, we still know remarkably little about the interaction of the phycobilisome with the thylakoid membrane and the reaction centres. This article will discuss the various current ideas about this question and explain the things we need to know more about. As a working model, I propose that the phycobilisome is attached to the membrane by multiple weak charge-charge interactions with lipid head-groups and/or proteins, and that the core-membrane linker polypeptide ApcE provides a flexible surface allowing interaction with multiple membrane components.


Assuntos
Cianobactérias/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ficobilissomas/metabolismo , Transferência de Energia , Modelos Biológicos , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA