Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38920135

RESUMO

Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.


Assuntos
Briozoários , Comportamento Alimentar , Fitoplâncton , Temperatura , Animais , Briozoários/fisiologia , Fitoplâncton/fisiologia
2.
PLoS One ; 19(2): e0295686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324513

RESUMO

Phytoplankton face numerous pressures resulting from chemical and physical stressors, primarily induced by human activities. This study focuses on investigating the interactive effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiology of marine diatoms from diverse latitudes, within the context of global warming. Our findings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on the photochemical performance of the three diatoms examined, with Irgarol treatment exhibiting more pronounced effects. In the case of the two temperate zone diatoms, we observed a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased up to 25°C. Similarly, for the subarctic species, an increase in temperature resulted in a reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on diatoms. Furthermore, our data indicate that increased temperature could significantly interact with UVR or Irgarol for temperate diatoms, while this was not the case for cold water diatoms, indicating temperate and subarctic diatoms may respond differentially under global warming.


Assuntos
Diatomáceas , Triazinas , Humanos , Diatomáceas/fisiologia , Raios Ultravioleta , Temperatura , Fitoplâncton/fisiologia
3.
Carbohydr Polym ; 327: 121652, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171655

RESUMO

Laminaran is a major storage of carbohydrate in marine algae. Its high content and potential functions draw increasing attention. However, our understanding of its metabolisms and functions is still fragmented. After reviewing, marine algae exhibit a spectacular capacity of laminaran accumulation especially in the diatom Odontella aurita (65 % DW). Marine particulate organic carbon (POC) also has high contents of laminaran (42 ± 21 % DW). Laminaran shows a diel variation trend in marine algae, the content of which increases in the day but decreases at night. Laminaran also significantly accumulates in the stationary phase of algal growth. Furthermore, the metabolic pathway of laminaran and the remolding carbon mechanism in response to marine nitrogen limitation are proposed and comprehensively discussed. Laminaran production in marine phytoplankton is predicted to increase in future warmer and CO2-enriched oceans. Laminaran has diverse biological functions, including antioxidant, antimicrobial, anti-cancer, immunomodulatory, wound healing, and prebiotics. In addition, laminaran is also a major carbon storage compound in marine algae, suggesting its significant ecological function in marine carbon cycle. This study provides new insight into algal laminaran functions and its response mechanisms to environmental and climate changes.


Assuntos
Diatomáceas , Glucanos , Fitoplâncton/fisiologia , Compostos Orgânicos , Carbono
4.
Mar Pollut Bull ; 195: 115561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734224

RESUMO

We investigated the effects of volatile organic carbons (VOCs) evaporated from gas condensate on the cyanobacteria Synechococcus sp. WH8103, the diatom Asterionellopsis glacialis, and the dinoflagellate Alexandrium minutum. We used custom algal incubation chambers enabling only the gas condensate-derived VOCs to interact with the cell cultures via an atmospheric bridge, without direct contact with the hydrocarbon oil. The exposure to gas condensate VOCs reduced the abundance, growth rate, and photosynthetic efficiency of Synechococcus sp. WH8103. Thiobarbituric acid reactive substances (TBARS) assays hint at oxidative damage to the chloroplasts and/or the thylakoid membranes in this organism. A.glacialis abundance, physiological state and growth rates remained unchanged, whereas A.minutum abundance and photosynthetic efficiency increased relative to their respective controls. Our results demonstrate that the effects of a gas condensate formed due to an oil spill will not be restricted to the polluted area, but may be prominent in downwind locations through atmospheric transport.


Assuntos
Diatomáceas , Dinoflagellida , Synechococcus , Fitoplâncton/fisiologia , Dinoflagellida/fisiologia , Diatomáceas/fisiologia , Fotossíntese , Carbono
5.
Curr Biol ; 33(20): 4405-4414.e4, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37769661

RESUMO

Next to iron (Fe), recent phytoplankton-enrichment experiments identified manganese (Mn) to (co-)limit Southern Ocean phytoplankton biomass and species composition. Since taxonomic diversity affects aggregation time and sinking rate, the efficiency of the biological carbon pump is directly affected by community structure. However, the impact of FeMn co-limitation on Antarctic primary production, community composition, and the subsequent export of carbon to depth requires more investigation. In situ samplings of 6 stations in the understudied southern Weddell Sea revealed that surface Fe and Mn concentrations, primary production, and carbon export rates were all low, suggesting a FeMn co-limited phytoplankton community. An Fe and Mn addition experiment examined how changes in the species composition drive the aggregation capability of a natural phytoplankton community. Primary production rates were highest when Fe and Mn were added together, due to an increased abundance of the colonial prymnesiophyte Phaeocystis antarctica. Although the community remained diatom dominated, the increase in Phaeocystis abundance led to highly carbon-enriched aggregates and a 4-fold increase in the carbon export potential compared to the control, whereas it only doubled in the Fe treatment. Based on the outcome of the FeMn-enrichment experiment, this region may suffer from FeMn co-limitation. As the Weddell Sea represents one of the most productive Antarctic marginal ice zones, our findings highlight that in response to greater Fe and Mn supply, changes in plankton community composition and primary production can have a disproportionally larger effect on the carbon export potential.


Assuntos
Diatomáceas , Haptófitas , Ferro , Manganês , Carbono , Fitoplâncton/fisiologia , Diatomáceas/fisiologia , Regiões Antárticas , Oceanos e Mares
6.
Water Sci Technol ; 87(10): 2564-2576, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37257110

RESUMO

In recent years, the issue of invasive alien species brought on by ballast water has drawn increasing attention, and advances in ballast water treatment technologies have been made. One of the most popular combined ballast water treatment technologies utilized in ballast water management systems (BWMSs) globally is filtration + UV-C radiation. During the actual voyage of the ship, ballast water is treated by the BWMS and then enters the dark ballast tanks until the ballast water is discharged. Marine organisms are able to complete DNA damage caused by UV radiation in dark ballast tanks. Therefore, the length of holding time affects the effectiveness of the BWMS in treating ballast water. The objective of this study was to examine the efficacy of filtration + UV-C irradiation treatment at different holding times for the removal or inactivation of phytoplankton and zooplankton populations during simulated ballast water treatment. Results indicate that the holding time after the filtration + UV-C radiation treatment increased the inactivating efficacy, especially for zooplankton in natural seawater. For phytoplanktons in ballast water, the strongest impact on the treatment efficacy was reached with a holding time of 24 h.


Assuntos
Raios Ultravioleta , Purificação da Água , Fitoplâncton/fisiologia , Água do Mar , Purificação da Água/métodos , Navios
7.
Mar Environ Res ; 186: 105929, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863076

RESUMO

Multifaceted changes in marine environments as a result of anthropogenic activities are likely to have a compounding impact on the physiology of marine phytoplankton. Most studies on the combined effects of rising pCO2, sea surface temperature, and UVB radiation on marine phytoplankton were only conducted in the short-term, which does not allow to test the adaptive capacity of phytoplankton and associated potential trade-offs. Here, we investigated populations of the diatom Phaeodactylum tricornutum that were long-term (∼3.5 years, ∼3000 generations) adapted to elevated CO2 and/or elevated temperatures, and their physiological responses to short-term (∼2 weeks) exposure of two levels of ultraviolet-B (UVB) radiation. Our results showed that while elevated UVB radiation showed predominantly negative effects on the physiological performance of P. tricornutum regardless of adaptation regimes. Elevated temperature alleviated these effects on most of the measured physiological parameters (e.g., photosynthesis). We also found that elevated CO2 can modulate these antagonistic interactions, and conclude that long-term adaptation to sea surface warming and rising CO2 may alter this diatom's sensitivity to elevated UVB radiation in the environment. Our study provides new insights into marine phytoplankton's long-term responses to the interplay of multiple environmental changes driven by climate change.


Assuntos
Diatomáceas , Temperatura , Dióxido de Carbono , Fitoplâncton/fisiologia , Aclimatação
8.
Science ; 379(6634): 741-742, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821674

RESUMO

Lack of the nutrient limits the plants' productivity, key to climate and ecosystems.


Assuntos
Ferro , Oceanos e Mares , Fitoplâncton , Estresse Fisiológico , Clima , Ferro/análise , Fitoplâncton/fisiologia , Água do Mar/química
9.
Science ; 379(6634): 834-840, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821685

RESUMO

Southern Ocean primary productivity is principally controlled by adjustments in light and iron limitation, but the spatial and temporal determinants of iron availability, accessibility, and demand are poorly constrained, which hinders accurate long-term projections. We present a multidecadal record of phytoplankton photophysiology between 1996 and 2022 from historical in situ datasets collected by Biogeochemical Argo (BGC-Argo) floats and ship-based platforms. We find a significant multidecadal trend in irradiance-normalized nonphotochemical quenching due to increasing iron stress, with concomitant declines in regional net primary production. The observed trend of increasing iron stress results from changing Southern Ocean mixed-layer physics as well as complex biological and chemical feedback that is indicative of important ongoing changes to the Southern Ocean carbon cycle.


Assuntos
Ferro , Fitoplâncton , Estresse Fisiológico , Oceanos e Mares , Fitoplâncton/fisiologia , Água do Mar/química
10.
PLoS One ; 18(1): e0280827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36693065

RESUMO

In large areas of the ocean, iron concentrations are insufficient to promote phytoplankton growth. Numerous studies have been conducted to characterize the effect of iron on algae and how algae cope with fluctuating iron concentrations. Fertilization experiments in low-iron areas resulted primarily in diatom-dominated algal blooms, leading to laboratory studies on diatoms comparing low- and high-iron conditions. Here, we focus on the short-term temporal response following iron addition to an iron-starved open ocean diatom, Thalassiosira oceanica. We employed the NanoString platform and analyzed a high-resolution time series on 54 transcripts encoding proteins involved in photosynthesis, N-linked glycosylation, iron transport, as well as transcription factors. Nine transcripts were iron-responsive, with an immediate response to the addition of iron. The fastest response observed was the decrease in transcript levels of proteins involved in iron uptake, followed by an increase in transcript levels of iron-containing enzymes and a simultaneous decrease in the transcript levels of their iron-free replacement enzymes. The transcription inhibitor actinomycin D was used to understand the underlying mechanisms of the decrease of the iron-responsive transcripts and to determine their half-lives. Here, Mn-superoxide dismutase (Mn-SOD), plastocyanin (PETE), ferredoxin (PETF) and cellular repressor of EA1-stimulated genes (CREGx2) revealed longer than average half-lives. Four iron-responsive transcripts showed statistically significant differences in their decay rates between the iron-recovery samples and the actD treatment. These differences suggest regulatory mechanisms influencing gene transcription and mRNA stability. Overall, our study contributes towards a detailed understanding of diatom cell biology in the context of iron fertilization response and provides important observations to assess oceanic diatom responses following sudden changes in iron concentrations.


Assuntos
Diatomáceas , Fitoplâncton/fisiologia , Oceanos e Mares , Fotossíntese
11.
J Phycol ; 58(6): 804-814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056600

RESUMO

Human alterations to the marine environment such as an oil spill can induce oxidative stress in phytoplankton. Exposure to oil has been shown to be lethal to most phytoplankton species, but some are able to survive and grow at unaffected or reduced growth rates, which appears to be independent of the class and phylum of the phytoplankton and their ability to consume components of oil heterotrophically. The goal of this article is to test the role of core metabolism plasticity in the oil-resisting ability of phytoplankton. Experiments were performed on the oil- resistant chlorophyte, Dunaliella tertiolecta, in control and water accommodated fractions of oil, with and without metabolic inhibitors targeting the core metabolic pathways. We observed that inhibiting pathways such as photosynthetic electron transport (PET) and pentose-phosphate pathway were lethal; however, inhibition of pathways such as mitochondrial electron transport and cyclic electron transport caused growth to be arrested. Pathways such as photorespiration and Kreb's cycle appear to play a critical role in the oil-tolerating ability of D. tertiolecta. Analysis of photo-physiology revealed reduced PET under inhibition of photorespiration but not Kreb's cycle. Further studies showed enhanced flux through Kreb's cycle suggesting increased energy production and photorespiration counteract oxidative stress. Lastly, reduced extracellular carbohydrate secretion under oil exposure indicated carbon and energy conservation, which together with enhanced flux through Kreb's cycle played a major role in the survival of D. tertiolecta under oil exposure by meeting the additional energy demands. Overall, we present data that suggest the role of phenotypic plasticity of multiple core metabolic pathways in accounting for the oxidative stress tolerating ability of certain phytoplankton species.


Assuntos
Clorofíceas , Poluição por Petróleo , Humanos , Fitoplâncton/fisiologia , Fotossíntese , Transporte de Elétrons
12.
Harmful Algae ; 117: 102267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944950

RESUMO

Phosphorus (P) is one of the major macronutrients necessary for phytoplankton growth. In some parts of the ocean, however, P is frequently scarce, hence, there is limited phytoplankton growth. To cope with P deficiency, phytoplankton evolved a variety of strategies, including, utilization of different P sources. Polyphosphate (polyP) is ubiquitously present and serves an essential function in aquatic environments, but it is unclear if and how this polymer is utilized by phytoplankton. Here, we examined the physiological and molecular responses of the widely present harmful algal bloom (HAB) species, Heterosigma akashiwo in polyP utilization, and in coping with P-deficiency. Our results revealed that two forms of inorganic polyP, namely, sodium tripolyphosphate and sodium hexametaphosphate, support H. akashiwo growth as efficiently as orthophosphate. However, few genes involved in polyP utilization have been identified. Under P-deficient conditions, genes associated with P transport, dissolved organic P utilization, sulfolipid synthesis, and energy production, were markedly elevated. In summary, our results indicate that polyP is bioavailable to H. akashiwo, and this HAB species have evolved a comprehensive strategy to cope with P deficiency.


Assuntos
Dinoflagellida , Estramenópilas , Dinoflagellida/genética , Proliferação Nociva de Algas/fisiologia , Fitoplâncton/fisiologia , Polifosfatos , Transcriptoma
13.
Radiat Environ Biophys ; 60(3): 431-435, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160672

RESUMO

Ionizing radiation of astrophysical origin might have played an important role in biological evolution during the long course of Earth's evolution. Several phenomena might have induced intense fluctuations in background ionizing radiation, such as highly energetic stellar explosions. There might also be anthropogenic causes for environmental radiation fluctuations, resulting from nuclear industry activities. The inclusion of these effects in a mathematical model for photosynthesis provides a useful tool to account for the damages of the above-mentioned phenomena in vegetal life. Mathematical models for photosynthesis typically only consider ultraviolet radiation and photosynthetically active radiation, as they have been a ubiquitous physical factor in the settlement of vegetal life. In this work a mathematical model for aquatic photosynthesis is modified, from first principles, to include the action of particulate ionizing radiation on the photosynthetic process. After assuming an ansatz allowing to separate damage/repair kinetics of ultraviolet and ionizing radiations, a treatable mathematical expression of the model is obtained. This generalized model is presented as a function of radiometric and photometric magnitudes, making it prone to calibration and useful to apply to aquatic ecosystems under radiational stress due to gamma-ray bursts, cosmic ray bursts, solar storms, or other sources of ionizing radiations.


Assuntos
Modelos Teóricos , Fotossíntese/efeitos da radiação , Radiação Ionizante , Fitoplâncton/fisiologia , Fitoplâncton/efeitos da radiação
14.
Mar Pollut Bull ; 151: 110798, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056593

RESUMO

Species-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control. The index indicates that dinoflagellates are the most sensitive group to oil and oil-dispersant treatments while the Chrysophytes benefit under oil exposure compared to the other groups examined. The phytoplankton group sensitivity index can be generally applied to quantify and rank the relative sensitivity of diverse microbial groups to environmental conditions and pollutants.


Assuntos
Petróleo , Fitoplâncton/fisiologia , Poluentes Químicos da Água , Diatomáceas , Dinoflagellida , Ribossomos
15.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676479

RESUMO

Previous work has demonstrated that the physical properties of intracellular bacterial gas vesicles (GVs) can be analyzed in vivo using pressure nephelometry. In analyzing the buoyant state of GV-containing cyanobacteria, hydrostatic pressure within a sample cell is increased in a stepwise manner, where the concomitant collapse of GVs due to pressure and the resultant decrease in suspended cells are detected by changes in nephelometric scattering. As the relative pressure at which GVs collapse is a function of turgor pressure and cellular osmotic gradients, pressure nephelometry is a powerful tool for assaying changes in metabolism that affect turgor, such as photosynthetic and osmoregulatory processes. We have developed an updated and automated pressure nephelometer that utilizes visible-infrared (Vis-IR) spectra to accurately quantify GV critical collapse pressure, critical collapse pressure distribution, and cell turgor pressure. Here, using the updated pressure nephelometer and axenic cultures of Microcystis aeruginosa PCC7806, we demonstrate that GV critical collapse pressure is stable during mid-exponential growth phase, introduce pressure-sensitive turbidity as a robust metric for the abundance of gas-vacuolate cyanobacteria, and demonstrate that pressure-sensitive turbidity is a more accurate proxy for abundance and growth than photopigment fluorescence. As cyanobacterium-dominated harmful algal bloom (cyanoHAB) formation is dependent on the constituent cells possessing gas vesicles, characterization of environmental cyanobacteria populations via pressure nephelometry is identified as an underutilized monitoring method. Applications of this instrument focus on physiological and ecological studies of cyanobacteria, for example, cyanoHAB dynamics and the drivers associated with cyanotoxin production in aquatic ecosystems.IMPORTANCE The increased prevalence of bloom-forming cyanobacteria and associated risk of exposure to cyanobacterial toxins through drinking water utilities and recreational waterways are growing public health concerns. Cost-effective, early-detection methodologies specific to cyanobacteria are crucial for mitigating these risks, with a gas vesicle-specific signal offering a number of benefits over photopigment fluorescence, including improved detection limits and discrimination against non-gas-vacuolate phototrophs. Here, we present a multiplexed instrument capable of quantifying the relative abundance of cyanobacteria based on the signal generated from the presence of intracellular gas vesicles specific to bloom-forming cyanobacteria. Additionally, as cell turgor can be measured in vivo via pressure nephelometry, the measurement furnishes information about the internal osmotic pressure of gas-vacuolate cyanobacteria, which relates to the metabolic state of the cell. Together these advances may improve routine waterway monitoring and the mitigation of human health threats due to cyanobacterial blooms.


Assuntos
Cianobactérias/fisiologia , Proliferação Nociva de Algas/fisiologia , Microcystis/fisiologia , Nefelometria e Turbidimetria/métodos , Fitoplâncton/fisiologia , Cianobactérias/crescimento & desenvolvimento , Nefelometria e Turbidimetria/instrumentação
16.
Proc Natl Acad Sci U S A ; 116(10): 4388-4393, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787187

RESUMO

Phytoplankton productivity in the polar Southern Ocean (SO) plays an important role in the transfer of carbon from the atmosphere to the ocean's interior, a process called the biological carbon pump, which helps regulate global climate. SO productivity in turn is limited by low iron, light, and temperature, which restrict the efficiency of the carbon pump. Iron and light can colimit productivity due to the high iron content of the photosynthetic photosystems and the need for increased photosystems for low-light acclimation in many phytoplankton. Here we show that SO phytoplankton have evolved critical adaptations to enhance photosynthetic rates under the joint constraints of low iron, light, and temperature. Under growth-limiting iron and light levels, three SO species had up to sixfold higher photosynthetic rates per photosystem II and similar or higher rates per mol of photosynthetic iron than temperate species, despite their lower growth temperature (3 vs. 18 °C) and light intensity (30 vs. 40 µmol quanta⋅m2⋅s-1), which should have decreased photosynthetic rates. These unexpectedly high rates in the SO species are partly explained by their unusually large photosynthetic antennae, which are among the largest ever recorded in marine phytoplankton. Large antennae are disadvantageous at low light intensities because they increase excitation energy loss as heat, but this loss may be mitigated by the low SO temperatures. Such adaptations point to higher SO production rates than environmental conditions should otherwise permit, with implications for regional ecology and biogeochemistry.


Assuntos
Ferro/metabolismo , Luz , Fotossíntese , Fitoplâncton/fisiologia , Temperatura , Oceanos e Mares , Fitoplâncton/metabolismo
17.
Sci Total Environ ; 650(Pt 2): 2395-2402, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292995

RESUMO

Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge regarding biofilm colonization of plastic and non-plastic substrates, despite the fact that microbial communities generally aggregate on natural solid surfaces. In this study, the effects of substrate type on microbial communities were evaluated by incubation of biofilms on microplastic substrates (polyethylene and polypropylene) and natural substrates (cobblestone and wood) for 21 days under controlled conditions. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversity (richness, evenness, and diversity) was lower in the microplastic-associated communities than in those on the natural substrates, indicating substrate-type-coupled species sorting. Distinct community structure and biofilm composition were observed between these two substrate types. Significantly higher abundances of Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, and Roseococcus were observed on the microplastic substrates compared with the natural substrates. Simultaneously, the functional profiles (KEGG) predicted by Tax4Fun showed that the pathways of amino acid metabolism and metabolism of cofactors and vitamins were increased in biofilms on the microplastic substrates. The findings illustrate that microplastic acts as a distinct microbial habitat (compared with natural substrates) that could not only change the community structure but also affect microbial functions, potentially impacting the ecological functions of microbial communities in aquatic ecosystems.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Microbiota/fisiologia , Fitoplâncton/fisiologia , Plásticos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos
18.
Ecotoxicology ; 28(1): 26-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460435

RESUMO

Arctic shipping and oil exploration are expected to increase, as sea ice extent is reduced. This enhances the risk for accidental oil spills throughout the Arctic, which emphasises the need to quantify potential consequences to the marine ecosystem and to evaluate risk and choose appropriate remediation methods. This study investigated the sensitivity of Arctic marine plankton to the water accommodated fraction (WAF) of heavy fuel oil. Arctic marine phytoplankton and copepods (Calanus finmarchicus) were exposed to three WAF concentrations corresponding to total hydrocarbon contents of 0.07 mg l-1, 0.28 mg l-1 and 0.55 mg l-1. Additionally, the potential phototoxic effects of exposing the WAF to sunlight, including the UV spectrum, were tested. The study determined sub-lethal effects of WAF exposure on rates of key ecosystem processes: primary production of phytoplankton and grazing (faecal pellet production) of copepods. Both phytoplankton and copepods responded negatively to WAF exposure. Biomass specific primary production was reduced by 6, 52 and 73% and faecal pellet production by 18, 51 and 86% with increasing WAF concentrations compared to controls. The phototoxic effect reduced primary production in the two highest WAF concentration treatments by 71 and 91%, respectively. This experiment contributes to the limited knowledge of acute sub-lethal effects of potential oil spills to the Arctic pelagic food web.


Assuntos
Poluição por Petróleo/efeitos adversos , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Zooplâncton/efeitos dos fármacos , Animais , Regiões Árticas , Copépodes/efeitos dos fármacos , Copépodes/fisiologia , Fezes/química , Cadeia Alimentar , Fotossíntese/efeitos dos fármacos , Fitoplâncton/fisiologia , Zooplâncton/fisiologia
19.
PLoS One ; 13(10): e0205260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289946

RESUMO

Many studies have focused on the interactive effects of temperature increases due to global warming and nutrient enrichment on phytoplankton communities. Recently, non-temperature effects of climate change (e.g., decreases in wind speed and increases in solar radiation) on large lakes have received increasing attention. To evaluate the relative contributions of both temperature and non-temperature effects on phytoplankton communities in a large eutrophic subtropical shallow lake, we analyzed long-term monitoring data from Lake Taihu, China from 1997 to 2016. Results showed that Lake Taihu's spring phytoplankton biovolume and composition changed dramatically over this time frame, with a change in dominant species. Stepwise multiple linear regression models indicated that spring phytoplankton biovolume was strongly influenced by total phosphorus (TP), light condition, wind speed and total nitrogen (TN) (radj2 = 0.8, p < 0.01). Partial redundancy analysis (pRDA) showed that light condition accounted for the greatest variation of phytoplankton community composition, followed by TP and wind speed, as well as the interactions between TP and wind speed. Our study points to the additional importance of non-temperature effects of climate change on phytoplankton community dynamics in Lake Taihu.


Assuntos
Cianobactérias/efeitos da radiação , Eutrofização/efeitos da radiação , Fitoplâncton/efeitos da radiação , Energia Solar , Vento , Biomassa , China , Mudança Climática , Cianobactérias/fisiologia , Monitoramento Ambiental/métodos , Lagos/microbiologia , Análise Multivariada , Fitoplâncton/fisiologia , Estações do Ano
20.
Mar Pollut Bull ; 133: 606-615, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30041355

RESUMO

We analyzed the data obtained from field observations on a gas hydrate drilling area in Dongsha of northern South China Sea (SCS) in middle May (before drilling) and early October (after drilling) in 2013. The variation in the phytoplankton communities and biomass as well as the impacts of environmental factors including dissolved methane was studied. Results indicated that the gas hydrate drilling area in Dongsha, SCS exhibited a typical low-nutrients low-chlorophyll a (LNLC) environment accompanied with low phytoplankton abundance. A total of 103 taxa belonging to 52 genera of 5 classes were identified, with diatoms and dinoflagellates dominating the community. Both phytoplankton abundance and chlorophyll a (Chl a) were highest at the subsurface maximum layer. The subsurface chlorophyll maximum (SCM) before and after drilling were stabilized at 75 m (0.30 ±â€¯0.06 mg/m3 and 0.51 ±â€¯0.29 mg/m3, respectively), while the subsurface maximum of abundance after drilling went deeper to 75 m (604.17 ±â€¯313.22 cells/L) from the surface (707.14 ±â€¯243.98 cells/L) before drilling. After drilling, phosphate and Chl a increased significantly, but no significant differences were observed on abundance. Dominant species of diatoms were basically constant with dinoflagellates becoming more apparent in higher occurrence and abundance, while Cyanophyta was diverse after drilling. Redundancy analysis (RDA) and Spearman's correlation analysis both indicated that temperature, pH and phosphates were major factors causing fluctuation in phytoplankton community structure, while dissolved methane had non-significant impact directly. We clearly found both abundance and Chl a increased in particular water layers (between 50 and 75 m) and at stations (DS06, DS08 and DS15) where dissolved methane concentrations were also abnormally high. This study appeared to partly coincide with the findings of natural oil seeps in the Gulf of Mexico, which assumed that the turbulence from the natural oil and gas leaking zone could raise the bottom water through the rising bubbles and bring cold nutrient rich waters to the thermocline from the deep seeps. This plume-generated upwelling could then fuel a bottom-up effect on the photosynthetic species in the upper pelagic waters within the euphotic zone.


Assuntos
Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Fitoplâncton/fisiologia , Biomassa , China , Clorofila/metabolismo , Clorofila A , Cianobactérias/fisiologia , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Fitoplâncton/classificação , Taiwan , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA