Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 226: 105878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582134

RESUMO

Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.


Assuntos
Antivirais , Flavivirus , Serina Endopeptidases , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Flavivirus/efeitos dos fármacos , Flavivirus/enzimologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Antivirais/farmacologia , Antivirais/química , Humanos , RNA Helicases/metabolismo , RNA Helicases/química , RNA Helicases/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
2.
Viruses ; 14(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35062249

RESUMO

Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Infecções por Flavivirus/virologia , Flavivirus/enzimologia , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Vírus da Dengue , Redução da Medicação , Vírus da Encefalite Japonesa (Espécie) , Flavivirus/genética , Humanos , Peptídeo Hidrolases/genética , Poliproteínas , RNA Helicases/genética , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/genética , Proteínas do Complexo da Replicase Viral , Vírus do Nilo Ocidental , Vírus da Febre Amarela , Zika virus
3.
ChemMedChem ; 15(24): 2391-2419, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961008

RESUMO

Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.


Assuntos
Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Infecções por Flavivirus/tratamento farmacológico , Flavivirus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Linhagem Celular Tumoral , Química Farmacêutica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Flavivirus/química , Flavivirus/enzimologia , Humanos
4.
Antiviral Res ; 182: 104899, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763313

RESUMO

Remdesivir was shown to inhibit RNA-dependent RNA-polymerases (RdRp) from distinct viral families such as from Filoviridae (Ebola) and Coronaviridae (SARS-CoV, SARS-CoV-2, MERS). In this study, we tested the ability of remdesivir to inhibit RdRps from the Flaviviridae family. Instead of remdesivir, we used the active species that is produced in cells from remdesivir, the appropriate triphosphate, which could be directly tested in vitro using recombinant flaviviral polymerases. Our results show that remdesivir can efficiently inhibit RdRps from viruses causing severe illnesses such as Yellow fever, West Nile fever, Japanese and Tick-borne encephalitis, Zika and Dengue. Taken together, this study demonstrates that remdesivir or its derivatives have the potential to become a broad-spectrum antiviral agent effective against many RNA viruses.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Flavivirus/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Antivirais/química , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Flavivirus/enzimologia , Humanos , Concentração Inibidora 50 , Pandemias , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
5.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260545

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.


Assuntos
Cisteína Endopeptidases/química , Flavivirus/enzimologia , Proteínas Virais/química , Antivirais/química , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
6.
PLoS Pathog ; 13(5): e1006411, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542603

RESUMO

The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 µM, 11.4 µM, and 4.8 µM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 µM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis experiments unambiguously demonstrated an allosteric mechanism for inhibition of the viral protease by NSC135618.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavivirus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Proteínas não Estruturais Virais/química , Regulação Alostérica , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Flavivirus/química , Flavivirus/enzimologia , Flavivirus/genética , Cinética , Conformação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
7.
J Med Chem ; 60(1): 511-516, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27966962

RESUMO

A thousand-fold affinity gain is achieved by introduction of a C-terminal boronic acid moiety into dipeptidic inhibitors of the Zika, West Nile, and dengue virus proteases. The resulting compounds have Ki values in the two-digit nanomolar range, are not cytotoxic, and inhibit virus replication. Structure-activity relationships and a high resolution X-ray cocrystal structure with West Nile virus protease provide a basis for the design of optimized covalent-reversible inhibitors aimed at emerging flaviviral pathogens.


Assuntos
Antivirais/farmacologia , Ácidos Borônicos/química , Flavivirus/efeitos dos fármacos , Peptídeos/química , Inibidores de Proteases/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Flavivirus/enzimologia , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
8.
PLoS One ; 10(6): e0130062, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098995

RESUMO

The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2'-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition.


Assuntos
Antivirais/farmacologia , Infecções por Flavivirus/tratamento farmacológico , Flavivirus/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Sítios de Ligação , Flavivirus/enzimologia , Metilação/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Capuzes de RNA/metabolismo , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
9.
Antiviral Res ; 118: 148-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25842996

RESUMO

The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.


Assuntos
Antivirais/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Flavivirus/efeitos dos fármacos , Flavivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/metabolismo , Descoberta de Drogas/tendências , Inibidores Enzimáticos/metabolismo , Flavivirus/fisiologia , Humanos , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo
10.
J Biomol Screen ; 19(8): 1147-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24793430

RESUMO

RNA-protein interactions are vital to the replication of the flaviviral genome. Discovery focused on small molecules that disrupt these interactions represent a viable path for identification of new inhibitors. The viral RNA (vRNA) cap methyltransferase (MTase) of the flaviviruses has been validated as a suitable drug target. Here we report the development of a high-throughput screen for the discovery of compounds that target the RNA binding site of flaviviral protein NS5A. The assay described here is based on displacement of an MT-bound polynucleotide aptamer, decathymidylate derivatized at its 5' end with fluorescein (FL-dT10). Based on the measurement of fluorescence polarization, FL-dT10 bound to yellow fever virus (YFV) MTase in a saturable manner with a Kd= 231 nM. The binding was reversed by a 250-nucleotide YFV messenger RNA (mRNA) transcript and by the triphenylmethane dye aurintricarboxylic acid (ATA). The EC50for ATA displacement was 1.54 µM. The MTase cofactors guanosine-5'-triphosphate and S-adenosyl-methionine failed to displace FL-dT10. Analysis by electrophoretic mobility shift assay (EMSA) suggests that ATA binds YFV MTase so as to displace the vRNA. The assay was determined to have a Z' of 0.83 and was successfully used to screen a library of known bioactives.


Assuntos
Aptâmeros de Nucleotídeos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Flavivirus/enzimologia , Metiltransferases/antagonistas & inibidores , Antivirais/química , Antivirais/farmacologia , Ácido Aurintricarboxílico/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/química , Polarização de Fluorescência , Guanosina Trifosfato/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Terapia de Alvo Molecular/métodos , Oligodesoxirribonucleotídeos/metabolismo , Capuzes de RNA , RNA Mensageiro , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/metabolismo , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/metabolismo
11.
Virol Sin ; 29(2): 74-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24691778

RESUMO

Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.


Assuntos
Flavivirus/enzimologia , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Flavivirus/fisiologia , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Helicases/química , RNA Viral/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas Virais/metabolismo , Replicação Viral
12.
Virol Sin ; 28(6): 326-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24242363

RESUMO

Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.


Assuntos
Antivirais/isolamento & purificação , Descoberta de Drogas/métodos , Flavivirus/efeitos dos fármacos , Flavivirus/enzimologia , Inibidores de Proteases/isolamento & purificação , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , Descoberta de Drogas/tendências , Humanos , Inibidores de Proteases/farmacologia , RNA Helicases/antagonistas & inibidores , Serina Endopeptidases
13.
PLoS One ; 8(10): e76900, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130807

RESUMO

The methyltransferase enzyme (MTase), which catalyzes the transfer of a methyl group from S-adenosyl-methionine (AdoMet) to viral RNA, and generates S-adenosyl-homocysteine (AdoHcy) as a by-product, is essential for the life cycle of many significant human pathogen flaviviruses. Here we investigated inhibition of the flavivirus MTase by several AdoHcy-derivatives. Unexpectedly we found that AdoHcy itself barely inhibits the flavivirus MTase activities, even at high concentrations. AdoHcy was also shown to not inhibit virus growth in cell-culture. Binding studies confirmed that AdoHcy has a much lower binding affinity for the MTase than either the AdoMet co-factor, or the natural AdoMet analog inhibitor sinefungin (SIN). While AdoMet is a positively charged molecule, SIN is similar to AdoHcy in being uncharged, and only has an additional amine group that can make extra electrostatic contacts with the MTase. Molecular Mechanics Poisson-Boltzmann Sovation Area analysis on AdoHcy and SIN binding to the MTase suggests that the stronger binding of SIN may not be directly due to interactions of this amine group, but due to distributed differences in SIN binding resulting from its presence. The results suggest that better MTase inhibitors could be designed by using SIN as a scaffold rather than AdoHcy.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Flavivirus/enzimologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Linhagem Celular , Inibidores Enzimáticos/efeitos adversos , Flavivirus/efeitos dos fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , S-Adenosil-Homocisteína/efeitos adversos , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/enzimologia
14.
PLoS One ; 6(10): e25795, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022449

RESUMO

Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.


Assuntos
Vírus da Dengue/enzimologia , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Análise Mutacional de DNA , Vírus da Dengue/efeitos dos fármacos , Flavivirus/efeitos dos fármacos , Flavivirus/enzimologia , Polarização de Fluorescência , Guanosina Trifosfato/farmacologia , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , S-Adenosilmetionina/farmacologia , Proteínas Virais/metabolismo , Vírus da Febre Amarela/efeitos dos fármacos
15.
J Biomol Screen ; 16(8): 852-61, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21788392

RESUMO

There are no effective antivirals currently available for the treatment of flavivirus infection in humans. As such, the identification and characterization of novel drug target sites are critical to developing new classes of antiviral drugs. The flavivirus NS5 N-terminal capping enzyme (CE) is vital for the formation of the viral RNA cap structure, which directs viral polyprotein translation and stabilizes the 5' end of the viral genome. The structure of the flavivirus CE has been solved, and a detailed understanding of the CE-guanosine triphosphate (GTP) and CE-RNA cap interactions is available. Because of the essential nature of the interaction for viral replication, disrupting CE-GTP binding is an attractive approach for drug development. The authors have previously developed a robust assay for monitoring CE-GTP binding in real time. They adapted this assay for high-throughput screening and performed a pilot screen of 46 323 commercially available compounds. A number of small-molecule inhibitors capable of displacing a fluorescently labeled GTP in vitro were identified, and a second functional assay was developed to identify false positives. The results presented indicate that the flavivirus CE cap-binding site is a valuable new target site for antiviral drug discovery and should be further exploited for broad-spectrum anti-flaviviral drug development.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Infecções por Flavivirus/tratamento farmacológico , Flavivirus/enzimologia , Guanosina Trifosfato/metabolismo , Ensaios de Triagem em Larga Escala , Capuzes de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Flavivirus/química , Flavivirus/genética , Infecções por Flavivirus/virologia , Fluorescência , Guanosina Trifosfato/química , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Capuzes de RNA/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
16.
J Biol Chem ; 285(42): 32586-95, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20685660

RESUMO

The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2'-O positions of the viral RNA cap (GpppA-RNA → m(7)GpppA-RNA → m(7)GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-Šresolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus, SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase.


Assuntos
Flavivirus/enzimologia , Metiltransferases/química , Metiltransferases/metabolismo , Estrutura Terciária de Proteína , Adenosina/análogos & derivados , Adenosina/química , Sequência de Aminoácidos , Animais , Antifúngicos/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Capuzes de RNA/química , RNA Viral/química , RNA Viral/metabolismo , Vírus do Nilo Ocidental/enzimologia
17.
RNA ; 15(12): 2340-50, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19850911

RESUMO

The 5'-end of the flavivirus genome harbors a methylated (m7)GpppA(2'OMe) cap structure, which is generated by the virus-encoded RNA triphosphatase, RNA (guanine-N7) methyltransferase, nucleoside 2'-O-methyltransferase, and RNA guanylyltransferase. The presence of the flavivirus guanylyltransferase activity in NS5 has been suggested by several groups but has not been empirically proven. Here we provide evidence that the N-terminus of the flavivirus NS5 protein is a true RNA guanylyltransferase. We demonstrate that GTP can be used as a substrate by the enzyme to form a covalent GMP-enzyme intermediate via a phosphoamide bond. Mutational studies also confirm the importance of a specific lysine residue in the GTP binding site for the enzymatic activity. We show that the GMP moiety can be transferred to the diphosphate end of an RNA transcript harboring an adenosine as the initiating residue. We also demonstrate that the flavivirus RNA triphosphatase (NS3 protein) stimulates the RNA guanylyltransferase activity of the NS5 protein. Finally, we show that both enzymes are sufficient and necessary to catalyze the de novo formation of a methylated RNA cap structure in vitro using a triphosphorylated RNA transcript. Our study provides biochemical evidence that flaviviruses encode a complete RNA capping machinery.


Assuntos
Biocatálise , Flavivirus/enzimologia , Nucleotidiltransferases/metabolismo , Capuzes de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Guanosina Monofosfato/metabolismo , Nucleotidiltransferases/genética , Capuzes de RNA/química , Especificidade por Substrato , Transcrição Gênica , Proteínas não Estruturais Virais/genética
18.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 8): 796-803, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19622863

RESUMO

The Modoc virus (MODV) is a flavivirus with no known vector (NKV). Evolutionary studies have shown that the viruses in the MODV group have evolved in association with mammals (bats, rodents) without transmission by an arthropod vector. MODV methyltransferase is the first enzyme from this evolutionary branch to be structurally characterized. The high-resolution structure of the methyltransferase domain of the MODV NS5 protein (MTase(MODV)) was determined. The protein structure was solved in the apo form and in complex with its cofactor S-adenosyl-L-methionine (SAM). Although it belongs to a separate evolutionary branch, MTase(MODV) shares structural characteristics with flaviviral MTases from the other branches. Its capping machinery is a relatively new target in flaviviral drug development and the observed structural conservation between the three flaviviral branches indicates that it may be possible to identify a drug that targets a range of flaviviruses. The structural conservation also supports the choice of MODV as a possible model for flavivirus studies.


Assuntos
Infecções por Flavivirus/enzimologia , Flavivirus/enzimologia , Metiltransferases/química , Proteínas não Estruturais Virais/química , Animais , Vetores Artrópodes , Quirópteros , Cristalização , Cristalografia por Raios X , Evolução Molecular , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/genética , Infecções por Flavivirus/transmissão , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína/genética , Análogos de Capuz de RNA/uso terapêutico , Capuzes de RNA/metabolismo , Ratos , S-Adenosilmetionina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
19.
J Mol Biol ; 385(1): 140-52, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18976670

RESUMO

The mRNA-capping process starts with the conversion of a 5'-triphosphate end into a 5'-diphosphate by an RNA triphosphatase, followed by the addition of a guanosine monophosphate unit in a 5'-5' phosphodiester bond by a guanylyltransferase. Methyltransferases are involved in the third step of the process, transferring a methyl group from S-adenosyl-l-methionine to N7-guanine (cap 0) and to the ribose 2'OH group (cap 1) of the first RNA nucleotide; capping is essential for mRNA stability and proper replication. In the genus Flavivirus, N7-methyltransferase and 2'O-methyltransferase activities have been recently associated with the N-terminal domain of the viral NS5 protein. In order to further characterize the series of enzymatic reactions that support capping, we analyzed the crystal structures of Wesselsbron virus methyltransferase in complex with the S-adenosyl-l-methionine cofactor, S-adenosyl-l-homocysteine (the product of the methylation reaction), Sinefungin (a molecular analogue of the enzyme cofactor), and three different cap analogues (GpppG, (N7Me)GpppG, and (N7Me)GpppA). The structural results, together with those on other flaviviral methyltransferases, show that the capped RNA analogues all bind to an RNA high-affinity binding site. However, lack of specific interactions between the enzyme and the first nucleotide of the RNA chain suggests the requirement of a minimal number of nucleotides following the cap to strengthen protein/RNA interaction. Our data also show that, following incubation with guanosine triphosphate, Wesselsbron virus methyltransferase displays a guanosine monophosphate molecule covalently bound to residue Lys28, hinting at possible implications for the transfer of a guanine group to ppRNA. The structures of the Wesselsbron virus methyltransferase complexes obtained are discussed in the context of a model for N7-methyltransferase and 2'O-methyltransferase activities.


Assuntos
Flavivirus/enzimologia , Metiltransferases/química , Capuzes de RNA/metabolismo , Proteínas não Estruturais Virais/química , Adenosina/análogos & derivados , Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Bioensaio , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Metiltransferases/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas não Estruturais Virais/antagonistas & inibidores
20.
Future Med Chem ; 1(2): 327-44, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-20165556

RESUMO

BACKGROUND: Infection by mosquito-borne flaviviruses (family Flaviviridae) is increasing in prevalence worldwide. The vast global, social and economic impact due to the morbidity and mortality associated with the diseases caused by these viruses necessitates therapeutic intervention. There is currently no effective clinical treatment for any flaviviral infection. Therefore, there is a great need for the identification of novel inhibitors to target the virus life cycle. DISCUSSION: In this article, we discuss structural and nonstructural viral proteins that are the focus of current target validation and drug discovery efforts. Both inhibition of essential enzymatic activities and disruption of necessary protein­protein interactions are considered. In addition, we address promising new targets for future research. CONCLUSION: As our molecular and biochemical understanding of the flavivirus life cycle increases, the number of targets for antiviral therapeutic discovery grows and the possibility for novel drug discovery continues to strengthen.


Assuntos
Flavivirus/enzimologia , Proteínas Virais/antagonistas & inibidores , Antivirais/uso terapêutico , Flavivirus/genética , Flavivirus/metabolismo , Infecções por Flavivirus/tratamento farmacológico , Humanos , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Serina Endopeptidases/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA