Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Int J Biol Macromol ; 274(Pt 2): 133472, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942410

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive impairment and memory loss. In this study, AD was experimentally induced in rats using aluminum chloride (AlCl3) and D-galactose (D-gal). Fisetin (Fis), a natural compound with antioxidant and anti-inflammatory properties, has potential for neurodegeneration management, but its low bioavailability limits clinical applications. To address this, we synthesized and characterized Pluronic-2-Acrylamido-2-methylpropane sulfonic acid (PLUR-PAMPS) nanogels using gamma radiation and successfully loaded Fis onto them (Fis-PLUR-PAMPS). The optimal formulation exhibited minimal particle size, a highly acceptable polydispersity index, and the highest zeta-potential, enhancing stability and solubilization efficiency. Our goal was to improve Fis's bioavailability and assess its efficacy against AlCl3/D-gal-induced AD. Male albino Wistar rats were pre-treated orally with Fis (40 mg/kg) or Fis-PLUR-PAMPS for seven days, followed by a seven-day intraperitoneal injection of AlCl3 and D-gal. Behavioral assessments, histopathological analysis, and biochemical evaluation of markers related to AD pathology were conducted. Results demonstrated that Fis-PLUR-PAMPS effectively mitigated cognitive impairments and neurodegenerative signs induced by AlCl3/D-gal. These findings suggest that Fis-PLUR-PAMPS nanogels enhance Fis's bioavailability and therapeutic efficacy, offering a promising approach for AD management.


Assuntos
Doença de Alzheimer , Apoptose , Modelos Animais de Doenças , Flavonóis , Nanogéis , Animais , Doença de Alzheimer/tratamento farmacológico , Ratos , Masculino , Flavonóis/farmacologia , Flavonóis/química , Apoptose/efeitos dos fármacos , Nanogéis/química , Poloxâmero/química , Ratos Wistar , Disfunção Cognitiva/tratamento farmacológico , Cloreto de Alumínio , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/síntese química , Portadores de Fármacos/química , Galactose/química
2.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891769

RESUMO

Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair.


Assuntos
Antioxidantes , Flavonóis , Glicosídeos , Extratos Vegetais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Flavonóis/farmacologia , Flavonóis/química , Flavonóis/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Quercetina/isolamento & purificação , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Animais
3.
Food Chem ; 454: 139803, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810448

RESUMO

In this work, effects of cellulose nanofiber/dihydromyricetin (CNF/DMY) ratio on the structural, antioxidant and emulsifying properties of the CNF/DMY mixtures were investigated. CNF integrated with DMY via hydrogen bonding and the antioxidant capacity of mixtures increased with decreasing CNF/DMY ratio (k). The oxidative stability of emulsions enhanced as the DMY content increased. Emulsions formed at Φ = 0.5 displayed larger size (about 25 µm), better viscoelasticity and centrifugal stability than those at Φ = 0.3 (about 23 µm). The emulsions at k = 17:3 and Φ = 0.5 exhibited the most excellent viscoelasticity. In conclusion, the DMY content in mixtures and the oil phase fraction exhibited distinct synergistic effects on the formation and characteristics of emulsions, and the emulsions could demonstrate superior oxidative and storage stability. These findings could provide a novel strategy to extend the shelf life of cellulose-based emulsions and related products.


Assuntos
Antioxidantes , Celulose , Emulsões , Flavonóis , Nanofibras , Celulose/química , Antioxidantes/química , Flavonóis/química , Nanofibras/química , Emulsões/química , Tamanho da Partícula , Emulsificantes/química , Oxirredução , Viscosidade
4.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731532

RESUMO

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Assuntos
Antineoplásicos , Apoptose , Flavonóis , Humanos , Flavonóis/farmacologia , Flavonóis/síntese química , Flavonóis/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células A549 , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Fluoruracila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral
5.
ChemMedChem ; 19(11): e202300682, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369675

RESUMO

Carbon monoxide (CO) delivery molecules are of significant current interest as potential therapeutics, including for anticancer applications. A recent approach toward generating new types of materials-based anticancer agents involves combining the Fenton reactivity of a redox active metal ion with CO delivery. However, small molecule examples of these types of entities have not been systematically studied to evaluate the combined effect on cellular toxicity. Herein we describe a Cu(II) flavonolato complex which produces anticancer effects through a combination of copper-mediated reactive oxygen species (ROS) generation and light-induced flavonol CO release. Confocal microscopy studies provide evidence of enhanced flavonol uptake in the copper flavonolato system relative to the free flavonol, which leads to an increased amount of CO delivery within cells. Importantly, this work demonstrates that a metal flavonolato species can be used to produce enhanced toxicity effects resulting from both metal ion-induced Fenton reactivity and increased cellular uptake of a flavonol CO donor.


Assuntos
Monóxido de Carbono , Complexos de Coordenação , Cobre , Flavonóis , Espécies Reativas de Oxigênio , Monóxido de Carbono/química , Cobre/química , Cobre/farmacologia , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Espécies Reativas de Oxigênio/metabolismo , Flavonóis/química , Flavonóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral
6.
Food Chem ; 442: 138453, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266407

RESUMO

This study explores the coordination dynamics between dietary polyphenols, specifically kaempferol, quercetin, and myricetin, and Cu ions in aqueous environments. A novel synthesis method for flavonol-Cu(II) coordination compounds is introduced, effectively reducing interference from free metal ions. Our results reveal consistent binding patterns of Cu ions with flavonols (2:1 ratio of flavonol to Cu(II)), predominantly at the 4,5 sites. Various analytical techniques are used to validate these coordination ratios and sites. The binding affinity of the flavonols for Cu ions follows a descending sequence: myricetin > quercetin > kaempferol. Notably, coordination with Cu ions enhances the free-radical scavenging activities of these flavonols. These findings hold substantial importance for food chemistry, biology, and medicine, providing crucial insights into the way dietary flavonols form stable structures in environments similar to human body fluids and their interactions with metal ions, opening new possibilities for their application and understanding in diverse scientific domains.


Assuntos
Quempferóis , Quercetina , Humanos , Flavonóis/química , Metais , Sítios de Ligação , Íons
7.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838766

RESUMO

Hibiscus rosa-sinensis plants are mainly cultivated as ornamental plants, but they also have food and medicinal uses. In this work, 16 H. rosa-sinensis cultivars were studied to measure their colorimetric parameters and the chemical composition of hydroethanolic extracts obtained from their petals. These extracts were characterized using UHPLC-ESI+-Obitrap-MS, and their antioxidant activity was evaluated using the ORAC assay. The identified flavonoids included anthocyanins derived from cyanidin, glycosylated flavonols derived from quercetin and kaempferol, and flavan-3-ols such as catechin and epicatechin. Cyanidin-sophoroside was the anthocyanin present in extracts of lilac, pink, orange, and red flowers, but was not detected in extracts of white or yellow flowers. The total flavonol concentration in the flower extracts was inversely proportional to the total anthocyanin content. The flavonol concentration varied according to the cultivar in the following order: red < pink < orange < yellow ≈ white, with the extract from the red flower presenting the lowest flavonol concentration and the highest anthocyanin concentration. The antioxidant activity increased in proportion to the anthocyanin concentration, from 1580 µmol Trolox®/g sample (white cultivar) to 3840 µmol Trolox®/g sample (red cultivar).


Assuntos
Catequina , Hibiscus , Rosa , Flavonoides/análise , Antocianinas/química , Antioxidantes/análise , Hibiscus/química , Flavonóis/química , Catequina/análise , Flores/química , Cor
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122128, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455462

RESUMO

Transferrin is the indispensable component in the body fluids and has been explored as a potential drug carrier for target drugs to cancer cells. Flavonols are widely distributed in plants and shown a wide range of biological activities. In the present study, the interaction between flavonols (including galangin, kaempferol, quercetin, and myricetin) and transferrin under physiological conditions was investigated by using experimental as well as computational approaches. Fluorescence data reveal that the fluorescence quenching mechanism of transferrin by flavonols is static quenching. Transferrin has moderate affinity with flavonols, and the binding constants (Ka) are 103-104 L/mol. In addition, there are two different binding sites for the interaction between kaempferol and transferrin. Thermodynamic parameter analysis shows that the interaction of flavonols and transferrin is synergistically driven by enthalpy and entropy. Hydrophobic interaction, electrostatic force and hydrogen bonds are the main force types. Synchronous fluorescence spectroscopy shows that flavonols decrease the hydrophobicity of the microenvironment around tryptophan (Trp) and have no effect on the microenvironment around tyrosine (Tyr). UV-vis and CD spectra show that the interaction between transferrin and flavonols leads to the loosening and unfolding of transferrin backbone. The increase of ß-sheet is accompanied by the decrease of α-helix and ß-turn. The specific binding sites of flavonols to transferrin are confirmed by molecular docking. Molecular dynamic simulation suggests that the transferrin-flavonols docked complex is stable throughout the simulation trajectory.


Assuntos
Flavonóis , Quempferóis , Transferrina , Sítios de Ligação , Dicroísmo Circular , Flavonóis/química , Quempferóis/química , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência/métodos , Termodinâmica , Transferrina/química , Quercetina
9.
J Inorg Biochem ; 238: 112021, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395718

RESUMO

Nature exploits transition metal centers to enhance and tune the oxidizing power of natural oxidants such as O2 and H2O2. The design and interrogation of synthetic metallocomplexes with similar reactivity to metalloproteins provides one strategy for gaining insight into the mechanistic underpinnings of oxygen-activating enzymes such as oxidases, oxygenases, and dioxygenases like Ni-quercetinase (Ni-QueD). Ni-QueD catalyzes the oxidative ring opening of the polyphenol quercetin, a natural product with antioxidant properties. Herein, we report the synthesis and characterization of Ni(13-DOB), a Ni(II) species complexed by an N4-macrocycle that has been characterized by single crystal X-ray crystallography. Ni(13-DOB) forms a Ni-superoxide intermediate (Ni(13-DOB)O2•-) upon treatment with H2O2 and Et3N, as verified by resonance Raman spectroscopy. We demonstrate through UV/vis and LCMS that Ni(13-DOB)O2•- is capable of the 1-electron oxidation of flavonols, including both 3-hydroxyflavone (3-HF, the simplest flavonol) and quercetin itself. Incorporation of two O-atoms into the flavonol radical via superoxide from Ni(13-DOB)O2•- precedes oxidative cleavage of the flavonol scaffold in each case, consistent with quercetinase ring cleavage by Ni-QueD in Streptomyces sp. FLA. Conversion of 3-HF into 2-hydroxybenzoylbenzoic acid was accomplished with catalytic turnover of Ni(13-DOB) at ambient temperature, as confirmed by HPLC timecourses and GCMS analysis of isotopic labeling studies. The Ni(13-DOB)-mediated oxidative cleavage of quercetin to the corresponding biomimetic phenolic ester was also verified through 18O-isotopic labeling studies. Through the HPLC characterization of both on- and off-pathway products of flavonol dioxygenation by Ni(13-DOB)O2•-, the stringent reaction pathway control provided by enzyme active sites is highlighted.


Assuntos
Dioxigenases , Níquel , Níquel/química , Superóxidos , Quercetina , Peróxido de Hidrogênio , Dioxigenases/química , Flavonóis/química , Oxigênio/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-35619306

RESUMO

BACKGROUND: Phytochemicals belonging to the class of flavonoids have been used in medicine for the treatment of different kinds of human health complications. Flavonoids have beneficial health aspects in medicine mainly due to their anti-microbial, anti-diabetic, anti-inflammatory, anticancer, and anti-carcinogenic activities. They have been scientifically investigated for their health benefit and pharmacological activities in medicine. Engeletin is a pure flavanonol class phytocompound present in the skin of white grapes and white wine. Engeletin has numerous pharmacological activities in medicine. METHODS: In order to know the beneficial health aspects of engeletin in medicine, scientific data on engeletin have been collected from different literature sources and analyzed in the present work. The present work summarized the important findings of engeletin with respect to its medicinal uses, pharmacological activities, and analytical aspects in medicine. All the scientific data were collected from PubMed, Google, Scopus, Science Direct and Google Scholar and analyzed in the present work. RESULTS: Scientific data analysis of research works revealed the biological importance and therapeutic benefit of engeletin in medicine. Engeletin has attracted scientific attention mainly due to its antiinflammatory and anti-tumor potential. Engeletin could inhibit the occurrence of cervical cancer and delay the development of liver damage and lung cancer in mice. Engeletin was found to inhibit lipopolysaccharides- induced endometritis in mice by inhibiting the inflammatory response. Pharmacological data analysis revealed the therapeutic importance of engeletin against acute lung injury, inflammatory diseases, liver injury, pulmonary fibrogenesis, Alzheimer's disease, endometritis, cervical carcinogenesis, lung cancer, and osteoarthritis. Analytical data signified the importance of modern analytical tools for separating, isolating, and identifying engeletin. CONCLUSION: Scientific data analysis revealed the biological importance and therapeutic benefit of engeletin in medicine and other allied health sectors.


Assuntos
Endometrite , Neoplasias Pulmonares , Humanos , Feminino , Camundongos , Animais , Medicina Tradicional , Flavonóis/química , Flavonóis/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
11.
Nutrients ; 14(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501187

RESUMO

Mono- and poly-O-methylated flavonols and their glycoside derivatives belong to the group of natural plant polyphenols with a wide spectrum of pharmacological activities. These compounds are known for their antioxidant, antimutagenic, hepatoprotective, antidiabetic, and antilipogenic properties. Additionally, they inhibit carcinogenesis and cancer development. Having in mind the multidirectional biological activity of methylated flavonols, we would like to support further study on their health-promoting activities; in this review we summarized the most recent reports on syringetin and some of its structural analogues: laricitrin, ayanin, and isorhamnetin. Natural sources and biological potential of these substances were described based on the latest research papers.


Assuntos
Antioxidantes , Flavonóis , Flavonóis/farmacologia , Flavonóis/química , Antioxidantes/farmacologia , Glicosídeos/farmacologia
12.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555695

RESUMO

Prenylated flavonol glycosides in Epimedium plants, as key medicinal components, are known to have great pharmaceutical activities for human health. Among the main prenylated flavonol glycosides, the modification mechanism of different sugar moieties is still not well understood. In the current study, a novel prenylated flavonol rhamnoside xylosyltransferase gene (EpF3R2″XylT) was cloned from E. pubescens, and the enzymatic activity of its decoding proteins was examined in vitro with different prenylated flavonol rhamnoside substrates and different 3-O-monosaccharide moieties. Furthermore, the functional and structural domains of EpF3R2″XylT were analyzed by bioinformatic approaches and 3-D protein structure remodeling. In summary, EpF3R2″XylT was shown to cluster with GGT (glycosyltransferase that glycosylates sugar moieties of glycosides) through phylogenetic analysis. In enzymatic analysis, EpF3R2″XylT was proven to transfer xylose moiety from UDP-xylose to prenylated flavonol rhamnoside at the 2″-OH position of rhamnose. The analysis of enzymatic kinetics showed that EpF3R2″XylT had the highest substrate affinity toward icariin with the lowest Km value of 75.96 ± 11.91 mM. Transient expression of EpF3R2″XylT in tobacco leaf showed functional production of EpF3R2″XylT proteins in planta. EpF3R2″XylT was preferably expressed in the leaves of E. pubescens, which is consistent with the accumulation levels of major prenylflavonol 3-O-triglycoside. The discovery of EpF3R2″XylT will provide an economical and efficient alternative way to produce prenylated flavonol trisaccharides through the biosynthetic approach.


Assuntos
Epimedium , Glicosídeos , Flavonoides , Flavonóis/química , Glicosídeos/química , Filogenia , Açúcares , Xilose , UDP Xilose-Proteína Xilosiltransferase
13.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430695

RESUMO

Phenolic plant constituents are well known for their health-promoting and cancer chemopreventive properties, and products containing such constituents are therefore readily consumed. In the present work, we isolated 13 phenolic constituents of four different compound classes from the aerial parts of the Moldavian dragonhead, an aromatic and medicinal plant with a high diversity on secondary metabolites. All compounds were tested for their apoptotic effect on myeloma (KMS-12-PE) and AML (Molm-13) cells, with the highest activity observed for the flavone and flavonol derivatives. While diosmetin (6) exhibited the most pronounced effects on the myeloma cell line, two polymethylated flavones, namely cirsimaritin (1) and xanthomicrol (3), were particularly active against AML cells and therefore subsequently investigated for their antiproliferative effects at lower concentrations. At a concentration of 2.5 µM, cirsimaritin (1) reduced proliferation of Molm-13 cells by 72% while xanthomicrol (3) even inhibited proliferation to the extent of 84% of control. In addition, both compounds were identified as potent FLT3 inhibitors and thus display promising lead structures for further drug development. Moreover, our results confirmed the chemopreventive properties of flavonoids in general, and in particular of polymethylated flavones, which have been intensively investigated especially over the last decade.


Assuntos
Flavonas , Lamiaceae , Leucemia Mieloide Aguda , Lignanas , Mieloma Múltiplo , Flavonóis/farmacologia , Flavonóis/química , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/química , Lamiaceae/química , Leucemia Mieloide Aguda/tratamento farmacológico , Fenóis
14.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054774

RESUMO

Single-stranded DNA (ssDNA)-binding protein (SSB) plays a crucial role in DNA replication, repair, and recombination as well as replication fork restarts. SSB is essential for cell survival and, thus, is an attractive target for potential antipathogen chemotherapy. Whether naturally occurring products can inhibit SSB remains unknown. In this study, the effect of the flavonols myricetin, quercetin, kaempferol, and galangin on the inhibition of Pseudomonas aeruginosa SSB (PaSSB) was investigated. Furthermore, SSB was identified as a novel quercetin-binding protein. Through an electrophoretic mobility shift analysis, myricetin could inhibit the ssDNA binding activity of PaSSB with an IC50 of 2.8 ± 0.4 µM. The effect of quercetin, kaempferol, and galangin was insignificant. To elucidate the flavonol inhibition specificity, the crystal structure of PaSSB complexed with the non-inhibitor quercetin was solved using the molecular replacement method at a resolution of 2.3 Å (PDB entry 7VUM) and compared with a structure with the inhibitor myricetin (PDB entry 5YUN). Although myricetin and quercetin bound PaSSB at a similar site, their binding poses were different. Compared with myricetin, the aromatic ring of quercetin shifted by a distance of 4.9 Å and an angle of 31o for hydrogen bonding to the side chain of Asn108 in PaSSB. In addition, myricetin occupied and interacted with the ssDNA binding sites Lys7 and Glu80 in PaSSB whereas quercetin did not. This result might explain why myricetin could, but quercetin could not, strongly inhibit PaSSB. This molecular evidence reveals the flavonol inhibition specificity and also extends the interactomes of the natural anticancer products myricetin and quercetin to include the OB-fold protein SSB.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Flavonóis/farmacologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Flavonoides/farmacologia , Flavonóis/química , Quempferóis/farmacologia , Modelos Moleculares , Conformação Proteica , Quercetina/química , Quercetina/farmacologia
15.
J Sci Food Agric ; 102(10): 4363-4372, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066885

RESUMO

BACKGROUND: Enzymatic catalyzed grafting of oligosaccharides with polyphenols is a safe and environmentally friendly approach to simultaneously enhance the bioactivity of oligosaccharides and the solubility of polyphenols. In this study, chitosan oligosaccharide (COS) was grafted with three different flavonols including myricetin (MYR), quercetin (QUE) and kaempferol (KAE) by horseradish peroxidase (HRP) catalysis. The structures, antioxidant activity and edible coating application of COS-flavonol conjugates were investigated. RESULTS: The total phenol content of COS-MYR, COS-QUE and COS-KAE conjugates was 59.89, 68.37 and 53.77 mg gallic acid equivalents g-1 , respectively. Thin layer chromatography showed the conjugates did not contain ungrafted flavonols. COS-flavonol conjugates showed ultraviolet absorption peak at about 294 nm, corresponding to the A-ring of flavonols. Fourier-transform infrared spectra of conjugates confirmed the formation of Schiff-base and Michael-addition products. The proton-nuclear magnetic resonance spectrum of COS-KAE conjugate exhibited phenyl proton signals of KAE. X-ray diffraction patterns of conjugates showed some diffraction peaks of flavonols. COS-flavonol conjugates presented rough and porous morphologies with sheet-like and/or blocky structures. The conjugates showed higher water solubility, free radical scavenging activity and reducing power than flavonols. Moreover, fish gelatin/COS-flavonol conjugate coatings effectively prolonged the shelf life of refrigerated largemouth bass (Micropterus salmoides) fillets from 5 days to 7-8 days. CONCLUSION: COS-flavonol conjugates prepared by HRP catalysis have great potentials as novel antioxidant agents. © 2022 Society of Chemical Industry.


Assuntos
Quitosana , Filmes Comestíveis , Animais , Antioxidantes/química , Catálise , Quitosana/química , Flavonóis/química , Peroxidase do Rábano Silvestre , Oligossacarídeos/química , Polifenóis , Prótons , Quercetina
16.
J Asian Nat Prod Res ; 24(5): 496-502, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34581213

RESUMO

Two new flavonol glycosides 3,5,7-trimethoxyflavone-4'-O-[5'''-O-p-coumaroyl-ß-D-apiofuranoyl-(1'''→2'')-ß-D-glucopyranoside] (1) and 3,5,7-trimethoxyflavone -4'-O-ß-D-glucopyranoside (2) were isolated from Selaginella tamariscina. The structures of 1 and 2 were elucidated on the basis of chemical and spectral analysis, including 1D, 2D NMR analyses and HRESIMS spectrometry. Two compounds were evaluated for cytotoxic activities against A-375, MCF-7, MDA-MB-231 and MDA-MB-468 cell lines by MTT assay. Unfortunately, two compounds displayed no cytotoxic activities.


Assuntos
Selaginellaceae , Flavonóis/química , Flavonóis/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Selaginellaceae/química
17.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946649

RESUMO

In this paper, biological investigations and a high-resolution UPLC-PDA-ESI-qTOF-HRMS technique were employed for Brassica oleracea L. var. capitata f. rubra DC. (red cabbage) of the family Brassicaceae (Cruciferae), cultivated in Egypt, for the first time. The positive ionization mode is usually performed to identify anthocyanins. However, this technique cannot differentiate between anthocyanins and corresponding non-anthocyanin polyphenols. Thus, the negative ionization mode was also used, as it provided a series of characteristic ions for the MS analysis of anthocyanins. This helped in identifying five kaempferol derivatives for the first time in red cabbage, as well as nine-previously reported-anthocyanins. For the biological investigations, the acidified methanolic extract of fresh leaves and the methanolic extract of air-dried powdered leaves were examined for their antioxidant, antimicrobial, and anticancer activities. The freshly prepared phenolic extract was proven to be more biologically potent. Statistical significance was determined for its anticancer activity in comparison with standard doxorubicin.


Assuntos
Antocianinas , Antineoplásicos Fitogênicos , Brassica/química , Flavonóis , Neoplasias/tratamento farmacológico , Extratos Vegetais/química , Antocianinas/química , Antocianinas/isolamento & purificação , Antocianinas/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Egito , Flavonóis/química , Flavonóis/isolamento & purificação , Flavonóis/farmacologia , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Neoplasias/metabolismo
18.
Bioorg Med Chem ; 49: 116456, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628233

RESUMO

Acute lung injury (ALI) refers to a common and life-threatening disease attributed to inflammation. However, effective drug treatments have been rare for ALI. Natural products have been considered as a vital source of drug discovery which indicates that it's a workable method to find new anti-inflammatory drugs in natural products. Inspired by the various biological activities of fisetin, we reported the design and synthesis of a series of fisetin derivatives which were also evaluated for their anti-inflammatory activities in J774A.1 macrophages. Most of the obtain derivatives could effectively inhibit the release of IL-6 and TNF-α in vitro experiments without cytotoxicity. The most promising compound 5b exhibited significant in vivo anti-inflammatory activity in the model of LPS-induced ALI in mice. On the whole, this study could provide novel candidates for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Desenho de Fármacos , Flavonóis/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Flavonóis/síntese química , Flavonóis/química , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Sep Sci ; 44(24): 4422-4430, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34670011

RESUMO

The flavonoids from Euonymus alatus exhibit many biological activities including significant antioxidant, anti-inflammatory, anti-cancer. In this work, a high-speed countercurrent chromatography method for the isolation and purification of flavonoids from crude extracts of Euonymus alatus was established. The effects of several solvent systems on the separation efficiency of target compounds in the extract of Euonymus alatus were studied. The solvent system composed of n-hexane-ethyl acetate-methanol-water at a volume ratio of (3:5:3:5, v/v) was chosen, in which the lower phase was used as the mobile phase at the rotation speed of 800 rpm and flow rate of 2.0 mL/min. The three flavonoids were obtained and identified as patuletin-3-O-rutinoside, rhamnazin-3-O-rutinoside, and dehydrodicatechin A by mass spectroscopy and nuclear magnetic resonance, and the quantities of patuletin-3-O-rutinoside, rhamnazin-3-O-rutinoside, and dehydrodicatechin A were 2.2, 9.7, and 1.8 mg, respectively. The results indicated that high-speed countercurrent chromatography was a simple and efficient method for the isolation and purification of flavonoids from the crude extracts of Euonymus alatus. The cellular antioxidant activity experimental result indicated that rhamnazin-3-O-rutinoside could alleviate H2 O2 -induced oxidative stress.


Assuntos
Antocianinas/farmacologia , Distribuição Contracorrente/métodos , Euonymus/química , Flavonoides/isolamento & purificação , Flavonóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Antocianinas/química , Células Cultivadas , Flavonóis/química , Técnicas In Vitro , Extratos Vegetais/farmacologia
20.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638751

RESUMO

Obesity is a risk factor for metabolic diseases including type 2 diabetes, nonalcoholic steatohepatitis (NASH), heart diseases, and cancer. This study aimed to investigate the anti-obesity effect of Polygalin C (PC) isolated from Polygala japonica Houtt. in 3T3-L1 adipocytes. Based on Oil Red O assay results, PC significantly decreased lipid accumulation compared to the control. We found that PC suppressed adipogenesis transcription factors including peroxisome proliferator-activated receptor γ (PPAR γ) and CCAAT/enhancer-binding protein (C/EBP) α, and lipogenic factors such as sterol regulatory element-binding protein 1c (SREBP 1c) and fatty acid synthase (FAS), in 3T3-L1 adipocytes using Western blotting and real-time polymerase chain reaction (PCR). Moreover, PC inhibited the differentiation of 3T3-L1 cells by regulating the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) and mitogen-activated protein kinase/protein kinase B (MAPK/Akt) signaling pathways. Additionally, we confirmed that PC inhibited early adipogenesis factors C/EBP ß and C/EBP δ. Therefore, PC inhibited adipogenesis and lipogenesis in vitro. Thus, PC appears to exert potential therapeutic effects on obesity by suppressing lipid metabolism.


Assuntos
Adipogenia/efeitos dos fármacos , Flavonóis/farmacologia , Lipogênese/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Obesidade , Polygala/química , Células 3T3-L1 , Animais , Ácido Graxo Sintase Tipo I/biossíntese , Flavonóis/química , Flavonóis/isolamento & purificação , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA