Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662792

RESUMO

The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.


Assuntos
Nicotiana , Doenças das Plantas , Proteínas do Movimento Viral em Plantas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Vírus de RNA/genética , Vírus de RNA/fisiologia , Vírus de RNA/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Vírus de Plantas/patogenicidade , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , RNA Viral/genética , RNA Viral/metabolismo , Genoma Viral , Floema/virologia , Floema/metabolismo
2.
Annu Rev Virol ; 7(1): 351-370, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32453971

RESUMO

For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.


Assuntos
Interações entre Hospedeiro e Microrganismos , Floema/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Plantas/virologia , Floema/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093101

RESUMO

Huanglongbing (HLB), also known as citrus greening, is the most notorious citrus disease worldwide. Candidatus Liberibacter asiaticus (CaLas) is a phloem-restricted bacterium associated with HLB. Because there is no mutant library available, the pathogenesis of CaLas is obscure. In this study, we employed tobacco mosaic virus (TMV) to express two mature secretion proteins CLIBASIA_03915 (m03915) and CLIBASIA_04250 (m04250) in Nicotiana benthamiana (N. benthamiana). Phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the two low molecular weight proteins, while no phloem necrosis was observed in the plants that expressed the control, green fluorescent protein (GFP). Additionally, no phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the null mutation of m03915 and frameshifting m04250. The subcellular localizations of m03915 and m04250 were determined by fusion with GFP using confocal microscopy. The subcellular localization of m03915 was found to be as free GFP without a nuclear localization sequence (NLS). However, m04250 did have an NLS. Yeast two-hybrid (Y2H) was carried out to probe the citrus proteins interacting with m03915 and m04250. Six citrus proteins were found to interact with m03915. The identified proteins were involved in the metabolism of compounds, transcription, response to abiotic stress, ubiquitin-mediated protein degradation, etc. The prey of m04250 was involved in the processing of specific pre-mRNAs. Identification of new virulence factors of CaLas will give insight into the pathogenesis of CaLas, and therefore, it will eventually help develop the HLB-resistant citrus.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/patogenicidade , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Citrus/metabolismo , Interações Hospedeiro-Patógeno/genética , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Floema/genética , Floema/metabolismo , Floema/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobiaceae/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/metabolismo , Fatores de Virulência/genética
4.
mBio ; 9(6)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459200

RESUMO

Plant-infecting viruses utilize various strategies involving multiple viral and host factors to achieve successful systemic infections of their compatible hosts. Lettuce infectious yellows virus (LIYV), genus Crinivirus, family Closteroviridae, has long, filamentous flexuous virions and causes phloem-limited infections in its plant hosts. The LIYV-encoded P26 is a distinct non-virion protein that shows no similarities to proteins in current databases: it induces plasmalemma deposits over plasmadesmata (PD) pit fields and is speculated to have roles in LIYV virion transport within infected plants. In this study, P26 was demonstrated to be a PD-localized protein, and its biological significance was tested in planta by mutagenesis analysis. An LIYV P26 knockout mutant (P26X) showed viral RNA replication and virion formation in inoculated leaves of Nicotiana benthamiana plants, but failed to give systemic infection. Confirmation by using a modified green fluorescent protein (GFP)-tagged LIYV P26X showed GFP accumulation only in infiltrated leaf tissues, while wild-type LIYV GFP readily spread systemically in the phloem. Attempts to rescue P26X by complementation in trans were negative. However a translocated LIYV P26 gene in the LIYV genome rescued systemic infection, but P26 orthologs from other criniviruses did not. Mutagenesis in planta assays showed that deletions in P26, as well as 2 of 11 specific alanine-scanning mutants, abolished the ability to systemically infect N. benthamianaIMPORTANCE Plant viruses encode specific proteins that facilitate their ability to establish multicellular/systemic infections in their host plants. Relatively little is known of the transport mechanisms for plant viruses whose infections are phloem limited, including those of the family Closteroviridae. These viruses have complex, long filamentous virions that spread through the phloem. Lettuce infectious yellows virus (LIYV) encodes a non-virion protein, P26, which forms plasmalemma deposits over plasmodesmata pit fields, and LIYV virions are consistently found attached to those deposits. Here we demonstrate that P26 is a unique movement protein required for LIYV systemic infection in plants. LIYV P26 shows no sequence similarities to other proteins, but other criniviruses encode P26 orthologs. However, these failed to complement movement of LIYV P26 mutants.


Assuntos
Crinivirus/genética , Floema/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/genética , Mutagênese , Folhas de Planta/virologia , RNA Viral/genética , Nicotiana/virologia , Translocação Genética , Vírion , Replicação Viral
5.
Mol Plant Microbe Interact ; 31(10): 1095-1110, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29767548

RESUMO

Chloroplasts play a central role in pathogen defense in plants. However, most studies explaining the relationship between pathogens and chloroplasts have focused on pathogens that infect mesophyll cells. In contrast, the family Luteoviridae includes RNA viruses that replicate and traffic exclusively in the phloem. Recently, our lab has shown that Potato leafroll virus (PLRV), the type species in the genus Polerovirus, forms an extensive interaction network with chloroplast-localized proteins that is partially dependent on the PLRV capsid readthrough domain (RTD). In this study, we used virus-induced gene silencing to disrupt chloroplast function and assess the effects on PLRV accumulation in two host species. Silencing of phytoene desaturase (PDS), a key enzyme in carotenoid, chlorophyll, and gibberellic acid (GA) biosynthesis, resulted in a substantial increase in the systemic accumulation of PLRV. This increased accumulation was attenuated when plants were infected with a viral mutant that does not express the RTD. Application of GA partially suppressed the increase in virus accumulation in PDS-silenced plants, suggesting that GA signaling also plays a role in limiting PLRV infection. In addition, the fecundity of the aphid vector of PLRV was increased when fed on PDS-silenced plants relative to PLRV-infected plants.


Assuntos
Afídeos/virologia , Cloroplastos/enzimologia , Nicotiana/virologia , Oxirredutases/metabolismo , Floema/virologia , Animais , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Insetos Vetores , Luteoviridae , Oxirredutases/genética , Nicotiana/metabolismo
6.
Sci Rep ; 7(1): 16467, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184063

RESUMO

Virion distribution and ultrastructural changes induced by the infection of maize or rice with four different reoviruses were examined. Rice black streaked dwarf virus (RBSDV, genus Fijivirus), Rice ragged stunt virus (RRSV, genus Oryzavirus), and Rice gall dwarf virus (RGDV, genus Phytoreovirus) were all phloem-limited and caused cellular hyperplasia in the phloem resulting in tumors or vein swelling and modifying the cellular arrangement of sieve elements (SEs). In contrast, virions of Rice dwarf virus (RDV, genus Phytoreovirus) were observed in both phloem and mesophyll and the virus did not cause hyperplasia of SEs. The three phloem-limited reoviruses (but not RDV) all induced more flexible gateways at the SE-SE interfaces, especially the non-sieve plate interfaces. These flexible gateways were also observed for the first time at the cellular interfaces between SE and phloem parenchyma (PP). In plants infected with any of the reoviruses, virus-like particles could be seen within the flexible gateways, suggesting that these gateways may serve as channels for the movement of plant reoviruses with their large virions between SEs or between SEs and PP. SE hyperplasia and the increase in flexible gateways may be a universal strategy for the movement of phloem-limited reoviruses.


Assuntos
Hiperplasia/patologia , Hiperplasia/virologia , Fenótipo , Floema/virologia , Doenças das Plantas/virologia , Reoviridae/fisiologia , Interações Hospedeiro-Patógeno , Oryza/ultraestrutura , Oryza/virologia , Floema/ultraestrutura , Tropismo Viral , Vírion/ultraestrutura , Zea mays/ultraestrutura , Zea mays/virologia
7.
Virology ; 510: 76-89, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28710959

RESUMO

In this study we use vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem associated translatome responses to infection by tobacco mosaic virus (TMV) in systemic hosts Arabidopsis thaliana ecotype Shahdara and Nicotiana benthamiana. Results demonstrate that in both hosts the number of translatome gene alterations that occurred in response to infection is at least four fold higher in phloem specific translatomes than in non-phloem translatomes. This finding indicates that phloem functions as a key responsive tissue to TMV infection. In addition, host comparisons of translatome alterations reveal both similarities and differences in phloem responses to infection, representing both conserved virus induced phloem alterations involved in promoting infection and virus spread as well as host specific alterations that reflect differences in symptom responses. Combined these results suggest phloem tissues play a disproportion role in the mediation and control of host responses to virus infection.


Assuntos
Arabidopsis/virologia , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Floema/virologia , Biossíntese de Proteínas , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
8.
Arch Virol ; 162(7): 1855-1865, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28251380

RESUMO

The long distance movement of potyviruses is a poorly understood step of the viral cycle. Only factors inhibiting this process, referred to as "Restricted TEV Movement" (RTM), have been identified in Arabidopsis thaliana. On the virus side, the potyvirus coat protein (CP) displays determinants required for long-distance movement and for RTM-based resistance breaking. However, the potyvirus CP was previously shown not to interact with the RTM proteins. We undertook the identification of Arabidopsis factors which directly interact with either the RTM proteins or the CP of lettuce mosaic virus (LMV). An Arabidopsis cDNA library generated from companion cells was screened with LMV CP and RTM proteins using the yeast two-hybrid system. Fourteen interacting proteins were identified. Two of them were shown to interact with CP and the RTM proteins suggesting that a multiprotein complex could be formed between the RTM proteins and virions or viral ribonucleoprotein complexes. Co-localization experiments in Nicotiana benthamiana showed that most of the viral and cellular protein pairs co-localized at the periphery of chloroplasts which suggests a putative role for plastids in this process.


Assuntos
Arabidopsis/virologia , Proteínas do Capsídeo/fisiologia , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Microscopia Confocal , Floema/metabolismo , Floema/virologia , Doenças das Plantas/virologia , Epiderme Vegetal/citologia , Proteínas de Plantas/genética , Transporte Proteico , Nicotiana/fisiologia , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido
9.
J Proteome Res ; 15(12): 4601-4611, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27762138

RESUMO

Phloem localization of plant viruses is advantageous for acquisition by sap-sucking vectors but hampers host-virus protein interaction studies. In this study, Potato leafroll virus (PLRV)-host protein complexes were isolated from systemically infected potato, a natural host of the virus. Comparing two different co-immunoprecipitation (co-IP) support matrices coupled to mass spectrometry (MS), we identified 44 potato proteins and one viral protein (P1) specifically associated with virus isolated from infected phloem. An additional 142 proteins interact in complex with virus at varying degrees of confidence. Greater than 80% of these proteins were previously found to form high confidence interactions with PLRV isolated from the model host Nicotiana benthamiana. Bioinformatics revealed that these proteins are enriched for functions related to plasmodesmata, organelle membrane transport, translation, and mRNA processing. Our results show that model system proteomics experiments are extremely valuable for understanding protein interactions regulating infection in recalcitrant pathogens such as phloem-limited viruses.


Assuntos
Floema/virologia , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Vírus de Plantas/química , Ligação Proteica , Solanum tuberosum/química , Solanum tuberosum/virologia , Proteínas Virais/metabolismo
10.
Sci Rep ; 6: 29848, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432466

RESUMO

A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant.


Assuntos
Floema/genética , Doenças das Plantas/genética , Tumores de Planta/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Oryza/virologia , Floema/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Tumores de Planta/virologia , Reoviridae/genética , Reoviridae/patogenicidade , Replicação Viral/genética , Zea mays/virologia
11.
Proc Natl Acad Sci U S A ; 113(19): E2740-9, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118842

RESUMO

Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread.


Assuntos
Ácidos Indolacéticos/metabolismo , Nicotiana/virologia , Floema/metabolismo , Floema/virologia , Vírus do Mosaico do Tabaco/fisiologia , Carga Viral/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana/metabolismo , Ativação Transcricional/fisiologia , Internalização do Vírus
12.
Plant Signal Behav ; 10(8): e1042639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955489

RESUMO

It is generally accepted that in order to establish a systemic infection in a plant, viruses move from the initially infected cell to the vascular tissues by cell-to-cell movement through plasmodesmata (PD), and load into the vascular conducting tubes (i.e. phloem sieve elements and xylem vessel elements) for long-distance movement. The viral unit in these movements can be a virion or a yet-to-be-defined ribonucleic protein (RNP) complex. Using live-cell imaging, our laboratory has previously demonstrated that membrane-bound replication complexes move cell-to-cell during turnip mosaic virus (TuMV) infection. Our recent study shows that these membrane-bound replication complexes end up in the vascular conducting tubes, which is likely the case for potato virus X (PVX) also. The presence of TuMV-induced membrane complexes in xylem vessels suggests that viral components could also be found in other apoplastic regions of the plant, such as the intercellular space. This possibility may have implications regarding how we approach the study of plant innate immune responses against viruses.


Assuntos
Membrana Celular/virologia , Nicotiana/virologia , Floema/virologia , Doenças das Plantas/virologia , Potexvirus/patogenicidade , Replicação Viral , Xilema/virologia , Plasmodesmos/virologia , Potexvirus/fisiologia
13.
Plant Physiol ; 167(4): 1374-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25717035

RESUMO

Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem.


Assuntos
Brassica napus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Potyvirus/fisiologia , Proteínas Virais/metabolismo , Brassica napus/ultraestrutura , Floema/ultraestrutura , Floema/virologia , Caules de Planta/ultraestrutura , Caules de Planta/virologia , Vírus de Plantas/genética , Potyvirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Replicação Viral , Xilema/virologia
14.
Sci Rep ; 5: 7682, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25567524

RESUMO

Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen.


Assuntos
Insetos Vetores/virologia , Vírus de Plantas/patogenicidade , Animais , Begomovirus/patogenicidade , Comportamento Animal/fisiologia , Comportamento Alimentar/fisiologia , Hemípteros/crescimento & desenvolvimento , Hemípteros/fisiologia , Hemípteros/virologia , Floema/virologia , Doenças das Plantas/virologia , Nicotiana/virologia
15.
Mol Plant Pathol ; 16(5): 484-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25220764

RESUMO

RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 µE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 µE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 µE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation.


Assuntos
Agrobacterium/fisiologia , Inativação Gênica/efeitos da radiação , Luz , Nicotiana/efeitos da radiação , Nicotiana/virologia , Temperatura , DNA Bacteriano/genética , DNA Viral/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Umidade , Vírus do Mosaico/fisiologia , Fenótipo , Floema/efeitos da radiação , Floema/virologia , Doenças das Plantas/virologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , Nicotiana/genética , Transgenes
16.
Micron ; 70: 7-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25541480

RESUMO

Tobraviruses, like other (+) stranded RNA viruses of plants, replicate their genome in cytoplasm and use such usual membranous structures like endoplasmic reticulum. Based on the ultrastructural examination of Tobacco rattle virus (TRV)-infected potato and tobacco leaf tissues, in this work we provide evidence of the participation of not only the membranous and vesicular ER structures but also other cell organelles during the viral infection cycle. Non-capsidated TRV PSG particles (potato isolate from the Netherlands) (long and short forms) were observed inside the nucleus while the presence of TRV capsid protein (CP) was detected in the nucleus caryolymph and within the nucleolus area. Both capsidated and non-capsidated viral particles were localized inside the strongly disorganized chloroplasts and mitochondria. The electron-dense TRV particles were connected with vesicular structures of mitochondria as well as with chloroplasts in both potato and tobacco tissues. At 15-30 days after infection, vesicles filled with TRV short particles were visible in mitochondria revealing the expanded cristae structures. Immunodetection analysis revealed the TRV PSG CP epitope inside chloroplast with disorganized thylakoids structure as well as in mitochondria of different tobacco and potato tissues. The ultrastructural analysis demonstrated high dynamics of the main cell organelles during the TRV PSG-Solanaceous plants interactions. Moreover, our results suggest a relationship between organelle changes and different stages of virus infection cycle and/or particle formation.


Assuntos
Retículo Endoplasmático/ultraestrutura , Organelas/ultraestrutura , Organelas/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vírus de RNA/fisiologia , Proteínas do Capsídeo/isolamento & purificação , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Cloroplastos/ultraestrutura , Cloroplastos/virologia , Retículo Endoplasmático/virologia , Células do Mesofilo/ultraestrutura , Células do Mesofilo/virologia , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Floema/ultraestrutura , Floema/virologia , Folhas de Planta/virologia , Vírus de Plantas/ultraestrutura , Vírus de RNA/ultraestrutura , Solanum tuberosum/virologia , Nicotiana/virologia
17.
Mol Plant Microbe Interact ; 27(6): 567-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24450774

RESUMO

Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.


Assuntos
Ciclopentanos/farmacologia , Nicotiana/imunologia , Oxilipinas/farmacologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/farmacologia , Vírus do Mosaico do Tabaco/patogenicidade , Acetatos/análise , Acetatos/metabolismo , Acetatos/farmacologia , Ciclopentanos/análise , Ciclopentanos/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Reporter , Oxilipinas/análise , Oxilipinas/metabolismo , Floema/imunologia , Floema/virologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salicilatos/análise , Salicilatos/metabolismo , Salicilatos/farmacologia , Ácido Salicílico/análise , Ácido Salicílico/metabolismo , Transdução de Sinais , Nicotiana/virologia , Vírus do Mosaico do Tabaco/fisiologia
18.
Plant J ; 77(4): 653-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372679

RESUMO

Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Potyvirus/fisiologia , Proteínas Virais/metabolismo , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/virologia , Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/virologia , Brassica napus/parasitologia , Brassica napus/virologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Floema/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Potyvirus/genética , Reprodução , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/genética
19.
Virus Res ; 161(2): 170-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21843560

RESUMO

Mixed viral infections can induce different changes in symptom development, genome accumulation and tissue tropism. These issues were investigated for two phloem-limited begomoviruses, Abutilon mosaic virus (AbMV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) in Nicotiana benthamiana plants doubly infected by either the potyvirus Cowpea aphid-borne mosaic virus (CABMV) or the tombusvirus Artichoke mottled crinkle virus (AMCV). Both RNA viruses induced an increase of the amount of AbMV, led to its occasional egress from the phloem and induced symptom aggravation, while the amount and tissue tropism of TYLCSV were almost unaffected. In transgenic plants expressing the silencing suppressors of CABMV (HC-Pro) or AMCV (P19), AbMV was supported to a much lesser extent than in the mixed infections, with the effect of CABMV HC-Pro being superior to that of AMCV P19. Neither of the silencing suppressors influenced TYLCSV accumulation. These results demonstrate that begomoviruses differentially respond to the invasion of other viruses and to silencing suppression.


Assuntos
Begomovirus/fisiologia , Doenças das Plantas/virologia , Vírus de RNA/genética , Supressão Genética , Begomovirus/genética , Coinfecção/virologia , Floema/virologia , Plantas Geneticamente Modificadas/virologia , Vírus de RNA/fisiologia , Nicotiana/virologia , Tropismo Viral
20.
Virus Res ; 160(1-2): 428-34, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763366

RESUMO

Barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPV (CYDV-RPV) are only transmitted between host plants by aphid vectors and not by mechanical transmission. This presents a severe limitation for the use of a reverse genetics approach to analyze the effects of mutations in these viruses on plant infection and aphid transmission. Here we describe the use of agroinfection to infect plants with BYDV-PAV and CYDV-RPV. The cDNAs corresponding to the complete RNA genomes of BYDV-PAV and CYDV-RPV were cloned into a binary vector under the control of the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. The self-cleaving ribozyme from hepatitis virus D was included to produce a transcript in planta with a 3' terminus identical to the natural viral RNA. ELISA and RT-PCR analysis showed that the replicons of BYDV-PAV and CYDV-RPV introduced by Agrobacterium into Nicotiana benthamiana and N. clevelandii gave rise to a local infection in the infiltrated mesophyll cells. After several weeks systemic infection of phloem tissue was detected, although no systemic symptoms were observed. Three heterologous virus silencing suppressors increased the efficiency of agroinfection and accumulation of BYDV-PAV and CYDV-RPV in the two Nicotiana species. The progeny viruses purified from infiltrated tissues were successfully transmitted to oat plants by aphids, and typical yellow dwarf symptoms were observed. This study reports the first agroinfection of eudicot plants using BYDV-PAV and CYDV-RPV.


Assuntos
Luteovirus/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Agrobacterium/genética , Animais , Afídeos/virologia , Avena/virologia , Clonagem Molecular , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Insetos Vetores/virologia , Luteovirus/genética , Floema/virologia , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA