Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Biochem Biophys Res Commun ; 595: 82-88, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104704

RESUMO

The development of ultra-long circulating nanodrug delivery systems have showed distinct advantage in maintaining the long-lasting tumor retention. Although the relationship between extended tumor retention and ultra-long plasma half-life was apparent, there was still a lack of experimental evidence to reveal the enhancement mechanism. Herein, we proposed a concept of "Sustained Irrigation" effect ("SI" effect) to elucidate that it was through sustained blood irrigation that the ultra-long circulating nanoparticles achieved long-lasting tumor retention. Besides, in order to intuitively verify the "SI" effect, we developed an "ON-OFF-ON" fluorescence switch technology. The ultra-long circulating delivery nanoparticle was constructed by encapsulating the protein with hydrophilic polymer shell. Nanoparticles with ultra-long plasma half-life (t1/2>40 h) fabricated by this method were employed as models for demonstrating the "SI" effect. The recovery of Cy5.5 fluorescence after the laser quenching meant the "fresh" Cy5.5-labeled nanoparticles were entering tumor, which confirmed the ultra-long circulating nanoparticles in blood could sustainedly irrigate to tumor. Our finding revealed the key mechanism by which ultra-long circulating NDDSs enhanced the tumor accumulation and retention, and provided experimental support for the development of ultra-long circulating delivery system in clinic.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/metabolismo , Soroalbumina Bovina/administração & dosagem , Animais , Carbocianinas/química , Carbocianinas/farmacocinética , Linhagem Celular Tumoral , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Masculino , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ratos Sprague-Dawley , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Distribuição Tecidual
2.
Physiol Rep ; 8(20): e14629, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33113283

RESUMO

Impaired intestinal permeability can induce systemic inflammation and metabolic disturbance. However, the effect of impaired intestinal permeability on metabolic function in the skeletal muscle is unknown. Dietary polysorbate 80 (PS80), a common emulsifier, has been shown to impair intestinal permeability in mice. Here, we investigated the effect of PS80-induced intestinal permeability on glucose tolerance with metabolic signaling in the skeletal muscle. Male ICR mice were divided into control and PS80 groups. In the PS80 group, PS80 was contained in the drinking water at 1% (w/v). After 4 weeks, plasma fluorescein isothiocyanate (FITC) intensity was measured after orally administering FITC-dextran. Half of the mice in each group underwent running exercises. Metabolic and inflammatory parameters were examined in the blood and skeletal muscle. Plasma FITC and lipopolysaccharide levels were higher in the PS80 group than the control group (p < .01, p = .085). The expression of tumor necrosis factor-α in the skeletal muscle was increased upon PS80 administration (p < .05). Although the homeostasis model assessment ratio was higher in the PS80-fed mice (p < .05), insulin-signaling activity in the muscle did not differ between groups. Muscular pH, mitochondrial cytochrome oxidase activity, and glycogen content after exercise were lower in the PS80 group (p < .05) than the control group. There was a negative correlation between plasma FITC and muscle glycogen levels in the exercised groups (r = -.60, p < .05). These results suggest that daily PS80 intake induces intestinal permeability, leading to glucose intolerance and mitochondrial dysfunction in the skeletal muscle.


Assuntos
Absorção Intestinal/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Polissorbatos/farmacologia , Tensoativos/farmacologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fluoresceína-5-Isotiocianato/farmacocinética , Glicogênio/metabolismo , Lipopolissacarídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Polissorbatos/efeitos adversos , Corrida , Tensoativos/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
3.
Biomed Res Int ; 2020: 4012194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550231

RESUMO

pH is a critical indicator of bone physiological function and disease status; however, noninvasive and real-time sensing of bone pH in vivo has been a challenge. Here, we synthesized a bone pH sensor by labeling alendronate with the H+-sensitive dye fluorescein isothiocyanate (Aln-FITC). Aln-FITC showed selective affinity for hydroxyapatite (HAp) rather than other calcium materials. An in vivo biodistribution study showed that Aln-FITC can be rapidly and specifically delivered to rat bones after caudal vein injection, and the fluorescence lasted for at least 12 h. The fluorescence intensity of Aln-FITC binding to HAp linearly decreased when the pH changed from 6 to 12. This finding was further confirmed on bone blocks and perfused bone when the pH changed from 6.8 to 7.4, indicating unique pH-responsive characteristics in the bone microenvironment. Aln-FITC was then preliminarily applied to evaluate the changes in bone pH in a nude mouse acidosis model. Our results demonstrated that Aln-FITC might have the potential for minimally invasive and real-time in vivo bone pH sensing in preclinical studies of bone healing, metabolism, and cancer mechanisms.


Assuntos
Alendronato , Osso e Ossos , Durapatita , Fluoresceína-5-Isotiocianato , Concentração de Íons de Hidrogênio , Alendronato/análise , Alendronato/química , Alendronato/farmacocinética , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Durapatita/química , Durapatita/metabolismo , Fluoresceína-5-Isotiocianato/análise , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Masculino , Camundongos Nus , Monitorização Fisiológica , Imagem Óptica , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
4.
Int J Pharm ; 584: 119455, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32464235

RESUMO

Chronic kidney disease (CKD) is one of the leading public health problems worldwide and finally progresses to end-stage renal disease. The therapeutic options of CKD are very limited. Thus, development of drug delivery systems specific-targeting to kidney may offer more options. Here we developed an efficient kidney-targeted drug delivery system using a FITC labeled renal tubular-targeting peptide modified PLGA-PEG nanoparticles and investigated the intrarenal distribution and cell-type binding. We found that the modified nanoparticles with an approximate diameter of 200 nm exhibited the highest binding capacity with HK-2 cells and fluorescence and immunohistochemical analysis showed they mainly localized in renal proximal tubules by passing through the basolateral side. Furthermore, these kidney-specific nanoparticles could significantly enhance the therapeutic effects of asiatic acid, an insoluble triterpenoid compound as drug delivery carriers. In conclusion, these results suggest the potential of the peptide modified PLGA-PEG nanoparticles as kidneytargeted drug delivery system to proximal tubular cells in treatment of CKD.


Assuntos
Sistemas de Liberação de Medicamentos , Nefropatias/tratamento farmacológico , Nanopartículas/administração & dosagem , Triterpenos Pentacíclicos/administração & dosagem , Peptídeos/administração & dosagem , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo III/metabolismo , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Triterpenos Pentacíclicos/farmacocinética , Peptídeos/farmacocinética , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo
5.
J Crohns Colitis ; 14(7): 974-994, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32003421

RESUMO

BACKGROUND AND AIMS: There is evidence for a disturbed intestinal barrier function in inflammatory bowel diseases [IBD] but the underlying mechanisms are unclear. Because mucins represent the major components of the mucus barrier and disturbed mucin expression is reported in the colon of IBD patients, we studied the association between mucin expression, inflammation and intestinal permeability in experimental colitis. METHODS: We quantified 4-kDa FITC-dextran intestinal permeability and the expression of cytokines, mucins, junctional and polarity proteins at dedicated time points in the adoptive T cell transfer and dextran sodium sulfate [DSS]-induced colitis models. Mucin expression was also validated in biopsies from IBD patients. RESULTS: In both animal models, the course of colitis was associated with increased interleukin-1ß [IL-1ß] and tumour necrosis factor-α [TNF-α] expression and increased Muc1 and Muc13 expression. In the T cell transfer model, a gradually increasing Muc1 expression coincided with gradually increasing 4-kDa FITC-dextran intestinal permeability and correlated with enhanced IL-1ß expression. In the DSS model, Muc13 expression coincided with rapidly increased 4-kDa FITC-dextran intestinal permeability and correlated with TNF-α and Muc1 overexpression. Moreover, a significant association was observed between Muc1, Cldn1, Ocln, Par3 and aPKCζ expression in the T cell transfer model and between Muc13, Cldn1, Jam2, Tjp2, aPkcζ, Crb3 and Scrib expression in the DSS model. Additionally, MUC1 and MUC13 expression was upregulated in inflamed mucosa of IBD patients. CONCLUSIONS: Aberrantly expressed MUC1 and MUC13 might be involved in intestinal barrier dysfunction upon inflammation by affecting junctional and cell polarity proteins, indicating their potential as therapeutic targets in IBD.


Assuntos
Colite Ulcerativa/fisiopatologia , Colite/fisiopatologia , Doença de Crohn/fisiopatologia , Citocinas/metabolismo , Mucinas/genética , Mucinas/metabolismo , Actinas/metabolismo , Animais , Linfócitos T CD4-Positivos/transplante , Moléculas de Adesão Celular/genética , Colite/induzido quimicamente , Colite/imunologia , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Sulfato de Dextrana , Dextranos/farmacocinética , Modelos Animais de Doenças , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Quinase de Cadeia Leve de Miosina/genética , Permeabilidade , Peroxidase/metabolismo , Proteínas de Junções Íntimas/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Int J Pharm ; 577: 119044, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954866

RESUMO

This research aims to investigate the potential of N-[4-[1-(3-Aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl]-1,3-propanediamine (SPM-NONOate) for promoting the absorption of poorly absorbed macromolecules delivered by intrapulmonary route. Influence of SPM-NONOate on the drug absorption was characterized by using a series of fluorescein isothiocyanate-labeled dextrans (FDs) as affordable models of hydrophilic macromolecules with established tools for quantitative analysis. SPM-NONOate increased concentration-dependently within 1-10 mM the pulmonary absorptions of FDs in rats. Moreover, this promoting effect varied with the molecular weight of FDs, and the largest absorption enhancement effect was obtained for FD70. SPM-NONOate also showed promising enhancement potential on the absorption of some therapeutic peptides, where obvious hypoglycemic and hypocalcemic effects were observed after intrapulmonary delivery of insulin and calcitionin, respectively, with SPM-NONOate to rats. The safety of SPM-NONOate was confirmed based on measurement of some biological markers in bronchoalveolar lavage fluid (BALF) of rats. Additionally, mechanism underling the absorption enhancement action of SPM-NONOate was explored by combinatorial administration of FD4 and SPM-NONOate with various scavengers and generator to rat lungs. Results indicated that NO released from SPM-NONOate induced the enhancement in the drug absorption, and peroxynitrate, a NO metabolite, possibly participated in the absorption enhancing action of SPM-NONOate.


Assuntos
Dextranos/administração & dosagem , Fluoresceína-5-Isotiocianato/análogos & derivados , Óxido Nítrico/metabolismo , Peptídeos/administração & dosagem , Espermina/análogos & derivados , Animais , Líquido da Lavagem Broncoalveolar , Calcitonina/administração & dosagem , Calcitonina/farmacocinética , Calcitonina/farmacologia , Dextranos/química , Dextranos/farmacocinética , Sistemas de Liberação de Medicamentos , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Insulina/administração & dosagem , Insulina/farmacocinética , Insulina/farmacologia , Masculino , Peso Molecular , Peptídeos/química , Peptídeos/farmacocinética , Ratos , Ratos Sprague-Dawley , Absorção pelo Trato Respiratório , Espermina/química
7.
Nat Prod Res ; 34(22): 3253-3256, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30676779

RESUMO

ß-glucans are a heterogeneous group of natural polysaccharides. They are ubiquitously found in bacterial or fungal cell walls, cereals, seaweed, and mushrooms. The beneficial role of ß-glucan in tumor, insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. Ample evidence showed that ß-glucan could act on several receptors, such as Dectin, complement receptor (CR3), TLR-2, 4, 6 and scavenger. Based on the above, we wanted to explore whether agaricus bisporus-derived ß-glucan acted on these receptors on Raw 264.7 macrophages and 3T3-L1 adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Agaricus/química , Antígenos CD36/metabolismo , Macrófagos/efeitos dos fármacos , beta-Glucanas/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo/instrumentação , Fluoresceína-5-Isotiocianato/farmacocinética , Polissacarídeos Fúngicos/farmacocinética , Polissacarídeos Fúngicos/farmacologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , beta-Glucanas/farmacocinética
8.
Lymphat Res Biol ; 18(1): 16-21, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31233351

RESUMO

Background: Radiation therapy has been applied to prolong the duration of lymphedema. This study aimed to evaluate the effect of radiation on the development of lymphedema in a mouse hindlimb model. Methods and Results: A total of 24 Balb/c mice underwent the right popliteal lymph node excision and the afferent and efferent lymphatics blockage. The radiation group (n = 12) received a single 20 Gy radiation 1 day before surgery in the right hindlimb of each mouse, whereas the control group (n = 12) only received surgery without radiation. The right hindpaw thickness of each mouse was measured twice a week for 4 weeks. Fluorescence microscopy images using fluorescein isothiocyanate-dextran tracer were obtained once weekly. Immunohistochemical (IHC) staining images using anti-lymphatic vessel endothelial hyaluronan receptor-1 (anti-LYVE-1) were obtained at 4 weeks after surgery. The radiation group showed significant increase in the thickness of the right hind paws from 0.5 to 2 weeks compared with the control group. As for fluorescence lymphography, the radiation group showed a lower number of regenerated lymphatics and more congestion of tracers in the operated limb at the surgery sites at 1, 2, 3, and 4 weeks after surgery. For the IHC analysis, the radiation group showed a lower number of regenerated lymphatics per high-power field at the surgery site than the control group. Conclusion: Radiation therapy transiently aggravated the extent of lymphedema by inhibiting regenerated lymphatics in a mouse hindlimb model. However, it did not prolong the duration of lymphedema because the cutaneous interstitial flow contributes to the lymphatic fluid clearance.


Assuntos
Raios gama/efeitos adversos , Membro Posterior/patologia , Vasos Linfáticos/patologia , Linfedema/patologia , Animais , Biomarcadores/metabolismo , Dextranos/análise , Dextranos/farmacocinética , Modelos Animais de Doenças , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/análise , Fluoresceína-5-Isotiocianato/farmacocinética , Corantes Fluorescentes/análise , Corantes Fluorescentes/farmacocinética , Expressão Gênica , Membro Posterior/diagnóstico por imagem , Membro Posterior/metabolismo , Humanos , Excisão de Linfonodo/métodos , Linfonodos/cirurgia , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Linfedema/diagnóstico por imagem , Linfedema/radioterapia , Linfografia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
9.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547100

RESUMO

Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 µM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.


Assuntos
Carcinoma de Células Renais , Quitosana , Ácido Clorogênico , Sistemas de Liberação de Medicamentos , Sequestradores de Radicais Livres , Neoplasias Renais , Nanopartículas , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Ácido Clorogênico/química , Ácido Clorogênico/farmacocinética , Ácido Clorogênico/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/uso terapêutico
10.
Sci Rep ; 9(1): 10506, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324820

RESUMO

For augmentation or reconstruction of urinary bladder after cystectomy, bladder urothelium derived from human induced pluripotent stem cells (hiPSCs) has recently received focus. However, previous studies have only shown the emergence of cells expressing some urothelial markers among derivatives of hiPSCs, and no report has demonstrated the stratified structure, which is a particularly important attribute of the barrier function of mature bladder urothelium. In present study, we developed a method for the directed differentiation of hiPSCs into mature stratified bladder urothelium. The caudal hindgut, from which the bladder urothelium develops, was predominantly induced via the high-dose administration of CHIR99021 during definitive endoderm induction, and this treatment subsequently increased the expressions of uroplakins. Terminal differentiation, characterized by the increased expression of uroplakins, CK13, and CK20, was induced with the combination of Troglitazone + PD153035. FGF10 enhanced the expression of uroplakins and the stratification of the epithelium, and the transwell culture system further enhanced such stratification. Furthermore, the barrier function of our urothelium was demonstrated by a permeability assay using FITC-dextran. According to an immunohistological analysis, the stratified uroplakin II-positive epithelium was observed in the transwells. This method might be useful in the field of regenerative medicine of the bladder.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Bexiga Urinária/citologia , Urotélio/citologia , Fator de Transcrição CDX2/biossíntese , Fator de Transcrição CDX2/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dextranos/metabolismo , Dextranos/farmacocinética , Endoderma/citologia , Receptores ErbB/antagonistas & inibidores , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacocinética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , PPAR gama/agonistas , Permeabilidade , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Proteínas Recombinantes/farmacologia , Medicina Regenerativa/métodos , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Troglitazona/farmacologia , Uroplaquinas/biossíntese
11.
Eur J Pharm Biopharm ; 139: 232-239, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30954658

RESUMO

Fast in situ forming, chemically crosslinked hydrogels were prepared by the amidation reaction between N-succinimidyl ester end groups of multi-armed poly(ethylene glycol) (PEG) and amino surface groups of poly(amido amine) (PAMAM) dendrimer generation 2.0. To control the properties of the PEG/PAMAM hydrogels, PEGs were used with different arm numbers (4 or 8) as well as different linkers (amide or ester) between the PEG arms and their terminal N-succinimidyl ester groups. Oscillatory rheology measurements showed that the hydrogels form within seconds after mixing the PEG and PAMAM precursor solutions. The storage moduli increased with crosslink density and reached values up to 2.3 kPa for hydrogels based on 4-armed PEG. Gravimetrical degradation experiments demonstrated that hydrogels with ester linkages between PEG and PAMAM degrade within 2 days, whereas amide-linked hydrogels were stable for several months. The release of two different model drugs (fluorescein isothiocyanate-dextran with molecular weights of 4·103 and 2·106 g/mol, FITC-DEX4K and FITC-DEX2000K, respectively) from amide-linked hydrogels was characterized by an initial burst followed by diffusion-controlled release, of which the rate depended on the size of the drug. In contrast, the release of FITC-DEX2000K from ester-containing hydrogels was governed mainly by degradation of the hydrogels and could be modulated via the ratio between ester and amide linkages. In vitro cytotoxicity experiments indicated that the PEG/PAMAM hydrogels are non-toxic to mouse fibroblasts. These in situ forming PEG/PAMAM hydrogels can be tuned with a broad range of mechanical, degradation and release properties and therefore hold promise as a platform for the delivery of therapeutic agents.


Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogéis/química , Polietilenoglicóis/química , Animais , Linhagem Celular , Dendrímeros/toxicidade , Dextranos/administração & dosagem , Dextranos/farmacocinética , Portadores de Fármacos/toxicidade , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Fibroblastos , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Hidrogéis/toxicidade , Camundongos , Polietilenoglicóis/toxicidade , Reologia , Fatores de Tempo , Testes de Toxicidade
12.
Lasers Surg Med ; 51(7): 625-633, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30811633

RESUMO

BACKGROUND: Photodynamic therapy (PDT), a minimally invasive therapeutic tool, has been an important option for post-surgical treatment of malignant gliomas (MGs) in both adult and young patients. Recent studies have shown that PDT can also open the blood-brain barrier (BBB). However, there are no optimized parameters of PDT for patients at different ages. To determine whether there are age differences in PDT effects on the BBB, we studied PDT-related BBB opening through the optical clearing skull window in healthy 4- and 8-week-old mice. METHODS: In this work, we realized BBB opening by combining PDT with the optical clearing skull window by using different radiant exposures (635 nm, 10-20-30-40 J/cm2 ) and 5-aminole-vulinic acid (5-ALA, 20 mg/kg). Then, we evaluated BBB permeability by: (i) spectrofluorimetric measuring of Evans Blue dye (EBd) leakage; (ii) confocal imaging of 70 kDa FITC-dextran extravasation and the BBB integrity; and (iii) histological analysis of brain tissues. RESULTS: Using the skull optical clearing method, we demonstrated PDT-induced BBB opening to EBd and FITC-dextran in a radiant exposure manner. The histological analysis revealed the different severities of vasogenic edema corresponding to radiant exposures. Besides, the PDT-related increase in the BBB permeability to high weight molecules (EBd and FITC-dextran) and solutes (vasogenic edema) was more pronounced in 4-week-old mice than in 8-week-old mice. CONCLUSIONS: The more pronounced PDT-induced BBB disruption in juvenile mice compared with adult mice suggests age differences in PDT-related BBB opening. This might be an important informative platform for a new application of PDT as a method for brain drug delivery, especially for post-surgical treatment of MGs. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácido Aminolevulínico/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Dextranos/farmacocinética , Azul Evans/farmacocinética , Fluoresceína-5-Isotiocianato/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fatores Etários , Animais , Fluoresceína-5-Isotiocianato/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Permeabilidade/efeitos dos fármacos
13.
Ultrasound Med Biol ; 44(12): 2662-2672, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30274682

RESUMO

Ultrasound-induced microbubble destruction can enhance drug delivery to cells. The molecular weight of therapeutic compounds varies significantly (from <1 kDa for small molecule drugs, to 7-15 kDa for siRNAs/miRNAs, to >1000 kDa for DNA plasmids). Therefore, the objective of this study was to determine the relationship between uptake efficiency and molecular weight using equal molar concentrations. Uptake efficiency of fluorescent compounds with different molecular weights (0.3, 10 and 2000 kDa) was explored in vitro using human cardiac mesenchymal cells and breast cancer cells exposed to microbubbles and 2.5-MHz ultrasound pulses. Uptake by viable cells was quantified using flow cytometry. After correction for the fluorescence yield of each compound, there was a significant size-dependent difference in fluorescence intensity, indicating an inverse relationship between size and uptake efficiency. These results suggest that diffusion of therapeutic compounds across permeabilized cell membranes may be an important mechanism for ultrasound-mediated drug delivery.


Assuntos
Neoplasias da Mama/metabolismo , Dextranos/farmacocinética , Fluoresceína-5-Isotiocianato/análogos & derivados , Corantes Fluorescentes/farmacocinética , Miocárdio/metabolismo , Sonicação/métodos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Mesoderma , Microbolhas , Peso Molecular
14.
ACS Appl Mater Interfaces ; 10(41): 34954-34964, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30234287

RESUMO

A Mn3O4 nanoparticle (NP)-based dual-modality probe has been developed for tumor positron emission tomography (PET)/magnetic resonance (MR) imaging. The dual-modality imaging probe was constructed by modifying multifunctional polyethyleneimine (PEI)-coated Mn3O4 NPs with folic acid (FA), followed with the radiolabeling with 64Cu. The formed imaging probe was utilized for PET/MR imaging of human cervical cancer mouse xenografts, which overexpress folate receptor (FR). The PEI-coated Mn3O4 NPs were synthesized using a solvothermal approach via decomposition of acetylacetone manganese. Multifunctional groups, including fluorescein isothiocyanate (FI), PEGylated FA, and NOTA chelator, were then sequentially loaded onto the surface of the amine groups of the Mn3O4 NPs. The remaining PEI amines were neutralized by the acetylation reaction. The resulting NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs were fully characterized and evaluated in vitro and successfully radiolabeled with 64Cu for tumor PET/MR imaging in small animals. In vivo blocking experiments were performed to determine the FR binding specificity of NPs. PET imaging results demonstrated that 64Cu-labeled Mn3O4 NPs display good tracer uptake in the FR-expressing HeLa tumors (tumor-to-muscle (T/M) ratio: 5.35 ± 0.31 at 18 h postinjection (pi)) and substantially reduced tracer uptake in the FR-blocked HeLa tumors (T/M ratio: 2.78 ± 0.68 at 18 h pi). The ex vivo data, including PET imaging and biodistribution, further confirmed the tumor binding specificity of the 64Cu-labeled Mn3O4 NPs. Moreover, the FR-targeted Mn3O4 NPs exhibited efficient T1-weighted MR imaging (MRI), leading to the precise tumor MRI at 18 h pi. PET/MR imaging with the 64Cu-NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs may offer a new quantitative approach to precisely measure the FR in tumors. The strategy of incorporating PEI nanotechnology into the construction of new biomaterials may be applied for the construction of novel nanoplatforms for cancer diagnosis and therapy.


Assuntos
Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Compostos de Manganês , Neoplasias Experimentais , Óxidos , Tomografia por Emissão de Pósitrons , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/farmacologia , Células HeLa , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacocinética , Compostos de Manganês/farmacologia , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Óxidos/química , Óxidos/farmacocinética , Óxidos/farmacologia , Polietilenoimina/química , Polietilenoimina/farmacocinética , Polietilenoimina/farmacologia
15.
World J Gastroenterol ; 24(17): 1888-1900, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29740204

RESUMO

AIM: To investigate the effects of plecanatide and dolcanatide on maintenance of paracellular permeability, integrity of tight junctions and on suppression of visceral hypersensitivity. METHODS: Transport of fluorescein isothiocyanate (FITC)-dextran was measured to assess permeability across cell monolayers and rat colon tissues. Effects of plecanatide and dolcanatide on the integrity of tight junctions in Caco-2 and T84 monolayers and on the expression and localization of occludin and zonula occludens-1 (ZO-1) were examined by immunofluorescence microscopy. Anti-nociceptive activity of these agonists was evaluated in trinitrobenzene sulfonic acid (TNBS)-induced inflammatory as well as in non-inflammatory partial restraint stress (PRS) rat models. Statistical significance between the treatment groups in the permeability studies were evaluated using unpaired t-tests. RESULTS: Treatment of T84 and Caco-2 monolayers with lipopolysaccharide (LPS) rapidly increased permeability, which was effectively suppressed when monolayers were also treated with plecanatide or dolcanatide. Similarly, when T84 and Caco-2 monolayers were treated with LPS, cell surface localization of tight junction proteins occludin and ZO-1 was severely disrupted. When cell monolayers were treated with LPS in the presence of plecanatide or dolcanatide, occludin and ZO-1 were localized at the cell surface of adjoining cells, similar to that observed for vehicle treated cells. Treatment of cell monolayers with plecanatide or dolcanatide without LPS did not alter permeability, integrity of tight junctions and cell surface localization of either of the tight junction proteins. In rat visceral hypersensitivity models, both agonists suppressed the TNBS-induced increase in abdominal contractions in response to colorectal distension without affecting the colonic wall elasticity, and both agonists also reduced colonic hypersensitivity in the PRS model. CONCLUSION: Our results suggest that activation of GC-C signaling might be involved in maintenance of barrier function, possibly through regulating normal localization of tight junction proteins. Consistent with these findings, plecanatide and dolcanatide showed potent anti-nociceptive activity in rat visceral hypersensitivity models. These results imply that activation of GC-C signaling may be an attractive therapeutic approach to treat functional constipation disorders and inflammatory gastrointestinal conditions.


Assuntos
Constipação Intestinal/tratamento farmacológico , Agonistas da Guanilil Ciclase C/farmacologia , Síndrome do Intestino Irritável/tratamento farmacológico , Receptores de Enterotoxina/metabolismo , Dor Visceral/tratamento farmacológico , Administração Oral , Animais , Células CACO-2 , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Constipação Intestinal/patologia , Dextranos/farmacocinética , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Agonistas da Guanilil Ciclase C/uso terapêutico , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/patologia , Lipopolissacarídeos/farmacologia , Masculino , Peptídeos Natriuréticos/farmacologia , Peptídeos Natriuréticos/uso terapêutico , Nociceptividade/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/induzido quimicamente , Dor Visceral/patologia
16.
Drug Deliv Transl Res ; 8(1): 73-82, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134553

RESUMO

The effective drug delivery systems for cancer treatment are currently on high demand. In this paper, biological behavior of the novel hybrid copolymers based on polysaccharide glycogen were characterized. The copolymers were modified by fluorescent dyes for flow cytometry, confocal microscopy, and in vivo fluorescence imaging. Moreover, the effect of oxazoline grafts on degradation rate was examined. Intracellular localization, cytotoxicity, and internalization route of the modified copolymers were examined on HepG2 cell line. Biodistribution of copolymers was addressed by in vivo fluorescence imaging in C57BL/6 mice. Our results indicate biocompatibility, biodegradability, and non-toxicity of the glycogen-based hybrid copolymers. Copolymers were endocyted into the cytoplasm, most probably via caveolae-mediated endocytosis. Higher content of oxazoline in polymers slowed down cellular uptake. No strong colocalization of the glycogen-based probe with lysosomes was observed; thus, it seems that the modified externally administered glycogen is degraded in the same way as an endogenous glycogen. In vivo experiment showed relatively fast biodistribution and biodegradation. In conclusion, this novel nanoprobe offers unique chemical and biological attributes for its use as a novel drug delivery system that might serve as an efficient carrier for cancer therapeutics with multimodal imaging properties.


Assuntos
Portadores de Fármacos/administração & dosagem , Glicogênio/administração & dosagem , Animais , Portadores de Fármacos/farmacocinética , Endocitose , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/farmacocinética , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Glicogênio/farmacocinética , Células Hep G2 , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/farmacocinética , Humanos , Camundongos Endogâmicos C57BL , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacocinética , Poliaminas/administração & dosagem , Poliaminas/farmacocinética , Distribuição Tecidual
17.
Int J Nanomedicine ; 12: 5659-5672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848345

RESUMO

PURPOSE: Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. MATERIALS AND METHODS: AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell-AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate-dextran uptake. RESULTS: Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. CONCLUSION: Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell-AuNP incubation time.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Lasers , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/administração & dosagem , Cetuximab/química , Dextranos/farmacocinética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Citometria de Fluxo/métodos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Nanopartículas Metálicas/administração & dosagem , Terapia de Alvo Molecular , Propídio/farmacocinética
18.
PLoS One ; 12(8): e0183186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800593

RESUMO

Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG) mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23), allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.


Assuntos
Fêmur/irrigação sanguínea , Microcirculação/fisiologia , Músculo Estriado/irrigação sanguínea , Pele/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Permeabilidade Capilar/fisiologia , Fêmur/anatomia & histologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Corantes Fluorescentes/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Músculo Estriado/anatomia & histologia , Especificidade de Órgãos , Perfusão , Soroalbumina Bovina/farmacocinética , Pele/anatomia & histologia
19.
Cell Immunol ; 316: 70-76, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28413062

RESUMO

Intact epithelial body surfaces represent physical barriers which protect the organism from invading pathogens and loss of nutrients. Barrier malfunction is closely linked to disorders such as inflammatory bowel disease and graft-versus-host disease. In fact, several pharmacological or radiobiological therapeutic strategies have side effects that affect epithelial surfaces. In this context, assays that accurately assess epithelial barrier integrity in patients and animal models are crucial to create a better understanding of the mechanisms leading to disease or limiting therapeutic approaches due to barrier disruption. Here, we tested the ability of the widely used FITC-dextran intestinal permeability analysis to evaluate loss of intestinal barrier integrity in different murine models of gut mucosal damage and established influx of neutrophil granulocytes into the intestinal lamina propria (LP) as an alternative approach. We demonstrate that the sensitivity and specificity of FITC-dextran intestinal permeability analysis is relatively low: Although it did represent severe forms of mucosal damage due to intensive conditioning therapy (high doses of either total body irradiation (TBI) or chemotherapy) or after conditioning and allogeneic stem cell transplantation, it did not recognize less severe forms of damage as after lower doses of TBI or chemotherapy alone. In addition, discrimination of untreated from irradiated mice by differences in FITC-dextran translocation was not exact. In contrast, influx of neutrophil granulocytes into the intestinal LP, which reflects immune activation due to translocation of microbes and microbial products during intestinal barrier breech, quantitatively correlated with the severity of intestinal barrier damage. It accurately represented both severe and less severe forms of intestinal damage as after high or lower dose TBI or chemotherapy and correctly discriminated treated from untreated animals. Taken together, we demonstrate the limitations of FITC-dextran intestinal permeability analysis and identify intestinal neutrophil influx as a powerful additional tool to measure breakdown of intestinal barrier function.


Assuntos
Enteropatias/imunologia , Infiltração de Neutrófilos , Neutrófilos , Animais , Dextranos/farmacocinética , Modelos Animais de Doenças , Doxorrubicina , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Microbioma Gastrointestinal , Enteropatias/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/patologia , Permeabilidade
20.
Int J Nanomedicine ; 11: 3677-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536106

RESUMO

Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Dendrímeros/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Feminino , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Células MCF-7/efeitos dos fármacos , Células MCF-7/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nylons/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA