Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell Biochem Funct ; 41(7): 814-822, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37814477

RESUMO

Duloxetine, a selective reuptake inhibitor for serotonin and norepinephrine, is a medication widely used for major depression. Currently, duloxetine is also recommended for pain related to chemotherapy-induced peripheral neuropathy or cancer. Previously, we showed that transforming growth factor-α (TGF-α) induces the migration of human hepatocellular carcinoma (HCC)-derived HuH7 cells through the activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and AKT. In the present study, we investigate whether duloxetine affects cell migration and its mechanism. Duloxetine significantly enhanced the TGF-α-induced migration of HuH7 cells. Fluvoxamine and sertraline, specific inhibitors of serotonin reuptake, also upregulated the TGF-α-induced cell migration. On the contrary, reboxetine, a specific norepinephrine reuptake inhibitor, failed to affect cell migration. Duloxetine significantly amplified the TGF-α-stimulated phosphorylation of JNK, but not p38 MAPK and AKT. In addition, fluvoxamine and sertraline, but not reboxetine, enhanced the phosphorylation of JNK. SP600125, a JNK inhibitor, suppressed the enhancement by duloxetine, fluvoxamine, or sertraline of TGF-α-induced migration of HuH7 cells. Taken together, our results strongly suggest that duloxetine strengthens the TGF-α-induced activation of JNK via inhibition of serotonin reuptake in HCC cells, leading to the enhancement of cell migration.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Cloridrato de Duloxetina/farmacologia , Fluvoxamina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas/patologia , Norepinefrina , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serotonina/metabolismo , Sertralina/farmacologia , Fator de Crescimento Transformador alfa/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Regulação para Cima
2.
Cell Biol Int ; 47(2): 439-450, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36259746

RESUMO

A colon tumor, one of the digestive tract malignant tumors, is harmful to human health. A potential new treatment still deserves attention. The development of a new drug needs more resources, including time and expense. Therefore, the old drug with new targets has become a current research hotspot. Fluvoxamine, as an antidepressant, could play an effect on inhibiting 5-hydroxytryptamine reuptake. In the present research, the antitumor effects and possible mechanisms of fluvoxamine are validated. The results showed that fluvoxamine significantly suppressed the migration and proliferation of tumor cells, and increased the apoptosis in vitro. Additionally, fluvoxamine significantly delays tumor development, and prompts the apoptosis in tumor tissues of mice-burdened colon tumors in vivo. The tumor suppression might be related with that fluvoxamine inhibits the expression of phosphorylated signal transducer and activator of transcription 3, matrix metalloproteinase 2, and cleaved-caspase 3. Importantly, fluvoxamine significantly reduces the expression level of programmed cell death ligand 1. This could be a possible reason that treatment with fluvoxamine drives the infiltration of T lymphocytes and M1-type macrophages in tumor tissues. Taken together, this research suggests that fluvoxamine might be a promising drug to treat colon cancer by inhibiting the proliferation and migration, inducing apoptosis, and even increasing the immune response of antitumor.


Assuntos
Neoplasias do Colo , Fluvoxamina , Humanos , Animais , Camundongos , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Metaloproteinase 2 da Matriz , Antígeno B7-H1/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral
3.
Environ Sci Pollut Res Int ; 30(6): 14580-14591, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36152089

RESUMO

Fluvoxamine, a selective serotonin re uptake inhibitor, is used to treat depression. The aim of present study was to evaluate fluvoxamine in acute (egg albumin-induced inflammation) and chronic inflammatory rat models (formaldehyde and complete Freund's adjuvant (CFA)-induced arthritis). Fluvoxamine showed highly significant (p<0.001) protective effect at dose of 50 mg/kg orally with percentage suppression 21.3% as compared to disease control group in acute model. Likewise, formaldehyde-induced arthritic experiment confirmed the significant (p<0.001) anti-arthritic behavior, showed by fluvoxamine (50 mg/kg orally) throughout the study. Moreover, In CFA-induced model, the higher dose (fluvoxamine 50 mg/kg) exhibited highly significant (p<0.001) decrease in paw thickness and arthritic score with significant increase in weight of animals from 123.8± 1.934 g to 130.2± 1.655 g, significantly decreased the level of RF and CRP to level of 12.0±0.707 and 11.40±0.50 respectively and restoration of SOD, CAT (69.8±1.5, 72.0±1.4 respectively). Furthermore, the level of TNF-α, PGE2, and IL-1ß (147.0±2.0, 406.8±2.5, and 93.8±1.3 respectively) in arthritic animals was reduced to significant (p<0.001) level (53.8±1.3, 205±3.6, and 42.0±1.4 respectively) after treatment with fluvoxamine. Furthermore, molecular docking of fluvoxamine against TNF-α, PGE2, and IL-1ß protein targets showed good binding energies which hereby from computational studies proves our compound anti-inflammatory potential. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies reveled that fluvoxamine has very good pharmacokinetic profile with no specific hepatic toxicity and good absorption level. In addition, the skin sensitization test in vitro human cell line activation test (h-CLAT) and KeratinoSens have revealed that isolated flavone is not skin sensitive with confidence score of 59.6% and 91.6%. The current findings validated the anti-arthritic potential of fluvoxamine but it should be recommended for clinical investigation in future research.


Assuntos
Dinoprostona , Fator de Necrose Tumoral alfa , Ratos , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fluvoxamina/farmacologia , Interleucina-1beta , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Inflamação
4.
J Neurotrauma ; 39(17-18): 1240-1261, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35502478

RESUMO

Neuroinflammation is an important mediator of secondary injury pathogenesis that exerts dual beneficial and detrimental effects on pathophysiology of the central nervous system (CNS) after traumatic brain injury (TBI). Fluvoxamine is a serotonin selective reuptake inhibitor (SSRI) and has been reported to have the anti-inflammatory properties. However, the mechanisms and therapeutic effects of fluvoxamine in neuroinflammation after TBI have not be defined. In this study, we showed that fluvoxamine inhibited peripheral immune cell infiltration and glia activation at 3 days in mice subjected to TBI. Fluvoxamine treatment promoted microglial/macrophage phenotypic transformation from pro-inflammatory M1-phenotype to anti-inflammatory M2-phenotype in in vivo and in vitro experiments. In addition, fluvoxamine treatment attenuated neuronal apoptosis, blood-brain barrier (BBB) disruption, cerebrovascular damage, and post-traumatic edema formation, thereby improving neurological function of mice subjected to TBI. These findings support the clinical evaluation of fluvoxamine as a neuroprotective therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Animais , Anti-Inflamatórios/farmacologia , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Leucócitos/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Neuroproteção
5.
Artigo em Inglês | MEDLINE | ID: mdl-34392133

RESUMO

Tramadol, a weak µ-opioid receptor (MOR) agonist with inhibitory effects on the reuptake of serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine, is an effective analgesic to chronic pains. Osteoprotegerin produced by osteoblasts is essential for bone remodeling to suppress osteoclastic bone resorption. We previously reported that prostaglandin D2 (PGD2) induces osteoprotegerin synthesis whereby p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) are involved in osteoblast-like MC3T3-E1 cells. Herein, we investigated the mechanism underlying the effect of tramadol on the PGD2-induced osteoprotegerin synthesis in these cells. Tramadol enhanced the PGD2-induced release and mRNA expression of osteoprotegerin. Naloxone, a MOR antagonist, reduced the amplification by tramadol of the PGD2-stimulated osteoprotegerin release. Not the selective norepinephrine reuptake inhibitor reboxetine but the selective serotonin reuptake inhibitors fluvoxamine and sertraline upregulated the PGD2-induced osteoprotegerin release, which was further amplified by morphine. Tramadol enhanced PGD2-stimulated phosphorylation of p38 MAP kinase and SAPK/JNK, but not p44/p42 MAP kinase. Both SB203580 and SP600125 suppressed the tramadol effect to enhance the PGD2-stimulated osteoprotegerin release. Tramadol enhanced the PGE2-induced osteoprotegerin release as well as PGD2. These results suggest that tramadol amplifies the PGD2-induced osteoprotegerin synthesis at the upstream of p38 MAP kinase and SAPK/JNK in the involvement of both MOR and 5-HT transporter in osteoblasts.


Assuntos
Analgésicos Opioides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoprotegerina/efeitos dos fármacos , Prostaglandina D2/farmacologia , Receptores Opioides mu/agonistas , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tramadol/farmacologia , Animais , Antracenos/farmacologia , Remodelação Óssea/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluvoxamina/farmacologia , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Osteoblastos/metabolismo , Osteoprotegerina/biossíntese , Piridinas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sertralina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Mol Cell Biochem ; 476(11): 4177-4189, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34324118

RESUMO

Despite the existing therapies and lack of receptors such as HER-2, estrogen receptor and progesterone receptor, triple-negative breast cancer is one of the most aggressive subtypes of breast cancer. TNBCs are known for their highly aggressive metastatic behavior and typically migrate to brain and bone for secondary site propagation. Many diseases share similar molecular pathology exposing new avenues in molecular signaling for engendering innovative therapies. Generation of newer therapies and novel drugs are time consuming associated with very high resources. In order to provide personalized or precision medicine, drug repositioning will contribute in a cost-effective manner. In our study, we have repurposed and used a neoteric combination of two drug molecules namely, fluvoxamine and tivozanib, to target triple-negative breast cancer growth and progression. Our combination regime significantly targets two diverse but significant pathways in TNBCs. Subsequent analysis on migratory, invasive, and angiogenic properties showed the significance of our repurposed drug combination. Molecular array data resulted in identifying the specific and key players participating in cancer progression when the drug combination was used. The innovative combination of fluvoxamine and tivozanib reiterates the use of drug repositioning for precision medicine and subsequent companion diagnostic development.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reposicionamento de Medicamentos/métodos , Fluvoxamina/farmacologia , Compostos de Fenilureia/farmacologia , Medicina de Precisão/métodos , Quinolinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antidepressivos de Segunda Geração/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Fluvoxamina/administração & dosagem , Humanos , Compostos de Fenilureia/administração & dosagem , Quinolinas/administração & dosagem , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670304

RESUMO

Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Lisossomos/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/farmacocinética , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Clorpromazina/farmacocinética , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Fluvoxamina/farmacocinética , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Interleucina-1/antagonistas & inibidores , Interleucina-1/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Replicação Viral/efeitos dos fármacos
8.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516975

RESUMO

Inflammatory Bowel Disease (IBD) is an autoimmune ailment of the gastrointestinal (GI) tract, which is characterized by enhanced activation of proinflammatory cytokines. It is suggested that the sigma-1 receptor (σ1R) confers anti-inflammatory effects. As the exact pathogenesis of IBD is still unknown and treatment options are limited, we aimed to investigate the effects of σ1R in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis. To this end, male Wistar-Harlan rats were used to model colitic inflammation through the administration of TNBS. To investigate the effects of σ1R, Fluvoxamine (FLV, σ1R agonist) and BD1063 (σ1R antagonist) were applied via intracolonic administration to the animals once a day for three days. Our radioligand binding studies indicated the existence of σ1Rs as [3H](+)-pentazocine binding sites, and FLV treatment increased the reduced σ1R maximum binding capacity in TNBS-induced colitis. Furthermore, FLV significantly attenuated the colonic damage, the effect of which was abolished by the administration of BD1063. Additionally, FLV potentially increased the expression of ubiquitin C-terminal hydrolase ligase-1 (UCHL-1) and the levels of endothelial nitric oxide synthase (eNOS), and decreased the levels of interleukin-6 (IL-6) and inducible NOS (iNOS) expression. In summary, our study offers evidence for the anti-inflammatory potential of FLV and σ1R in experimental colitis, and our results present a promising approach to the development of new σ1R-targeted treatment options against IBD.


Assuntos
Colite/etiologia , Colite/metabolismo , Interleucina-6/metabolismo , Receptores sigma/metabolismo , Transdução de Sinais , Ácido Trinitrobenzenossulfônico/efeitos adversos , Ubiquitina Tiolesterase/metabolismo , Animais , Colite/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fluvoxamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Mediadores da Inflamação/metabolismo , Ligantes , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Ligação Proteica , Ratos , Receptores sigma/agonistas , Receptores sigma/genética , Índice de Gravidade de Doença , Receptor Sigma-1
10.
Life Sci ; 235: 116837, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493481

RESUMO

AIMS: This study aimed to evaluate the effects of the sigma-1 receptor (S1R) on atrial fibrillation (AF) susceptibility in rats. MAIN METHODS: Rats were randomly assigned into three groups for intraperitoneal treatment with saline (CTL group), BD1047 (an antagonist of the S1R, BD group) or BD1047 plus fluvoxamine (an agonist of the S1R, BD + F group) for 4 weeks. The heart rate variability (HRV) and atrial electrophysiological parameters were measured via the PowerLab system and analyzed by LabChart 8.0 software. Atrial histology was determined with Masson staining. The protein levels of connexin (Cx) 40, Cav1.2, S1R, eNOS, p-eNOS, and p-AKT were detected by western blot assays. KEY FINDINGS: Our results showed that BD1047 significantly shortened the atrial effective refractory period (ERP) and action potential duration (APD), increased AF inducibility and duration, augmented sympathetic activity, depressed parasympathetic activity, and reduced heart rate variability (HRV) compared with the CTL group. Masson staining also showed a significant increase in atrial fibrosis in the BD group. Furthermore, the expressions of S1R, Cx40, Cav1.2, p-eNOS, and p-AKT were dramatically reduced in the BD group compared with the CTL group (all P < 0.01). However, fluvoxamine administration mitigated most of the abovementioned alterations. SIGNIFICANCE: Our findings indicated that S1R inhibition contributed to atrial electrical remodeling, cardiac autonomic remodeling and atrial fibrosis, which could be attenuated by fluvoxamine, thus providing new insights into the relationship between the S1R and AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/fisiologia , Receptores sigma/antagonistas & inibidores , Receptores sigma/fisiologia , Potenciais de Ação , Animais , Fibrilação Atrial/patologia , Canais de Cálcio Tipo L , Conexinas/metabolismo , Etilenodiaminas/farmacologia , Fluvoxamina/farmacologia , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo , Ratos , Receptores sigma/agonistas , Receptores sigma/metabolismo , Proteína alfa-5 de Junções Comunicantes , Receptor Sigma-1
11.
Schizophr Res ; 210: 143-148, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182321

RESUMO

BACKGROUND: Clozapine (CLZ) is metabolized via cytochrome P450 CYP1A2 to N-desmethylclozapine (NCLZ). Smoking induces CYP1A2 thereby increasing clozapine metabolism whereas fluvoxamine inhibits CYP1A2. Studies suggest that the beneficial effect of fluvoxamine augmentation in raising serum clozapine concentrations also occurs when serum concentrations are low due to smoking. Yet, little is known about the influence of fluvoxamine augmentation on clozapine serum concentrations in smoking versus non-smoking patients. METHODS: A TDM database was analyzed. Serum concentrations of CLZ, NCLZ, dose-adjusted serum concentrations (C/D) and metabolite-to-parent ratios (MPR) were compared using non-parametrical tests in four groups: clozapine-monotherapy in non-smokers (VNS, n = 28) and smokers (VS, n = 43); combined treatment with clozapine and fluvoxamine in non-smokers (VNS+F, n = 11) and smokers (VS+F, n = 43). RESULTS: The CLZ monotherapy smoking group showed lower values of C/D CLZ of -38.6% (p < 0.001), C/D NCLZ -35.6% (p < 0.001) and a higher MPR (p = 0.021) than in the non-smoking group. The combination of CLZ and fluvoxamine in non-smoking patients led to higher C/D values: C/D CLZ +117.9% (p < 0.001), C/D NCLZ +60.8% (p = 0.029) while the MPR did not differ between groups (p = 0.089). Changes were comparable to fluvoxamine augmentation in the smoking group with increased C/D CLZ of +120.1% (p < 0.001), C/D NCLZ of +85.8% (p < 0.001) and lower MPR (p = 0.006). CONCLUSIONS: Smoking in clozapine monotherapy reduced median dose-adjusted serum concentrations more than a third. Combined treatment with fluvoxamine and clozapine led to higher median C/D values in both, smokers and non-smokers. The opposing effects of CYP1A2 induction by smoking and inhibition by fluvoxamine on clozapine serum concentrations balanced out.


Assuntos
Antipsicóticos/sangue , Fumar Cigarros/sangue , Clozapina/sangue , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Fluvoxamina/farmacologia , Esquizofrenia/sangue , Esquizofrenia/tratamento farmacológico , Adulto , Idoso , Fumar Cigarros/epidemiologia , Comorbidade , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/epidemiologia , Adulto Jovem
12.
Eur J Pharmacol ; 853: 129-135, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902656

RESUMO

The selective serotonin reuptake inhibitors (SSRIs) fluvoxamine and sertraline show a high affinity for sigma-1 receptors. Fluvoxamine enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells via a sigma-1 receptor-mediated mechanism, which suggests that neurogenesis may be involved in the antidepressant action of fluvoxamine. However, the effects of sertraline on neurite outgrowth remain unclear. Here, we report the effects of sertraline on NGF-induced neurite outgrowth in PC12 cells. At concentrations above 0.3 µM, sertraline inhibited neurite outgrowth induced by NGF (50 ng/mL) in PC12 cells in a concentration-dependent manner. At 0.3-3 µM, sertraline inhibited NGF-induced neurite outgrowth; however, had no effect on cell viability. This suggests that at these concentrations, sertraline inhibits NGF-induced neurite outgrowth without causing cell toxicity. Because sertraline has a high affinity for the sigma-1 receptor, we investigated whether this receptor is involved in sertraline's inhibitory effect on NGF-induced neurite outgrowth. The effect was reversed by both the sigma-1 receptor agonist PRE-084 and the sigma-1 receptor antagonist NE-100. These results suggest that sertraline inhibits NGF-induced neurite outgrowth in PC12 cells by acting as an inverse agonist of the sigma-1 receptor in this system.


Assuntos
Fator de Crescimento Neural/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Receptores sigma/metabolismo , Sertralina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Fluvoxamina/farmacologia , Camundongos , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Receptor Sigma-1
13.
Sci Transl Med ; 11(478)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728287

RESUMO

Sepsis is an often deadly complication of infection in which systemic inflammation damages the vasculature, leading to tissue hypoperfusion and multiple organ failure. Currently, the standard of care for sepsis is predominantly supportive, with few therapeutic options available. Because of increased sepsis incidence worldwide, there is an urgent need for discovery of novel therapeutic targets and development of new treatments. The recently discovered function of the endoplasmic reticulum (ER) in regulation of inflammation offers a potential avenue for sepsis control. Here, we identify the ER-resident protein sigma-1 receptor (S1R) as an essential inhibitor of cytokine production in a preclinical model of septic shock. Mice lacking S1R succumb quickly to hypercytokinemia induced by a sublethal challenge in two models of acute inflammation. Mechanistically, we find that S1R restricts the endonuclease activity of the ER stress sensor IRE1 and cytokine expression but does not inhibit the classical inflammatory signaling pathways. These findings could have substantial clinical implications, as we further find that fluvoxamine, an antidepressant therapeutic with high affinity for S1R, protects mice from lethal septic shock and dampens the inflammatory response in human blood leukocytes. Our data reveal the contribution of S1R to the restraint of the inflammatory response and place S1R as a possible therapeutic target to treat bacterial-derived inflammatory pathology.


Assuntos
Endorribonucleases/metabolismo , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores sigma/metabolismo , Sepse/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Fluvoxamina/farmacologia , Células HEK293 , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Ligantes , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores sigma/agonistas , Sepse/sangue , Sepse/complicações , Sepse/patologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem , Receptor Sigma-1
14.
Biosci Biotechnol Biochem ; 83(4): 659-665, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30543144

RESUMO

In the present study, we examined the effects of fluvoxamine on nerve growth factor (NGF)-induced neurite outgrowth inhibition by dexamethasone (DEX) in PC12 cells. Fluvoxamine increased NGF-induced neurite outgrowth. Compared with co-treatment with NGF and fluvoxamine, p-Akt levels were higher than the values without fluvoxamine. The phosphorylated extracellular regulated kinase 1/2 levels were slightly increased by co-treatment with NGF and fluvoxamine. Fluvoxamine concentration-dependently improved NGF-induced neurite outgrowth inhibition by DEX. Fluvoxamine also improved the decrease in the NGF-induced p-Akt level caused by DEX. Interestingly, the sigma-1 receptor antagonist NE-100 blocked the improvement effects of fluvoxamine on NGF-induced neurite outgrowth inhibition by DEX. The selective sigma-1 receptor agonist PRE-084 also improved NGF-induced neurite outgrowth inhibition by DEX, which is blocked by NE-100. These results indicate that the improvement effects of fluvoxamine on NGF-induced neurite outgrowth inhibition by DEX may be attributable to the phosphorylation of Akt and the sigma-1 receptor.


Assuntos
Ansiolíticos/farmacologia , Fluvoxamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Anisóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dexametasona/antagonistas & inibidores , Dexametasona/farmacologia , Glucocorticoides/antagonistas & inibidores , Glucocorticoides/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , Fator de Crescimento Neural/farmacologia , Crescimento Neuronal/genética , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , Propilaminas/farmacologia , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Receptores sigma/metabolismo , Transdução de Sinais , Receptor Sigma-1
15.
J Clin Pharmacol ; 58(10): 1295-1304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29762875

RESUMO

Pomalidomide is an immunomodulatory drug, and the dosage of 4 mg per day taken orally on days 1-21 of repeated 28-day cycles has been approved in the European Union and the United States to treat patients with relapsed/refractory multiple myeloma. In vitro data showed that pomalidomide is a substrate of multiple cytochrome P450 (CYP) isozymes and that its oxidative metabolism is mediated primarily by CYP1A2 and CYP3A4, with minor contributions from CYP2C19 and CYP2D6. The effect of CYP1A2 inhibition by fluvoxamine (a strong CYP1A2 inhibitor) and CYP1A2 induction by smoking on pomalidomide pharmacokinetics in healthy subjects has been assessed in 2 separate phase 1 open-label, single-dose studies. Following administration of a single oral dose of 4 mg pomalidomide, the plasma exposure when coadministered with fluvoxamine was 225.1% and 123.7% of that when administered alone for the total plasma exposure (AUC0-inf ) and the plasma peak exposure (Cmax ), respectively. In smokers with elevated CYP1A2 activity demonstrated by high caffeine clearance (a marker of CYP1A2 induction), the AUC0-inf was 32.3% lower, whereas the Cmax was 14.4% higher than that in nonsmokers. In addition, pomalidomide was safe and well tolerated as a single oral dose of 4 mg in healthy male smokers and nonsmokers ≥ 40 to ≤ 80 years old, and a single oral dose of 4 mg pomalidomide coadministered with multiple oral 50-mg doses of the CYP1A2 inhibitor fluvoxamine compared with pomalidomide alone was safe and well tolerated by the healthy male subjects.


Assuntos
Fumar Cigarros , Citocromo P-450 CYP1A2/metabolismo , Interações Medicamentosas , Talidomida/análogos & derivados , Adulto , Idoso , Área Sob a Curva , Cafeína/administração & dosagem , Cafeína/farmacocinética , Cafeína/farmacologia , Indutores do Citocromo P-450 CYP1A2/administração & dosagem , Indutores do Citocromo P-450 CYP1A2/farmacocinética , Indutores do Citocromo P-450 CYP1A2/farmacologia , Inibidores do Citocromo P-450 CYP1A2/administração & dosagem , Inibidores do Citocromo P-450 CYP1A2/farmacocinética , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Fluvoxamina/administração & dosagem , Fluvoxamina/farmacocinética , Fluvoxamina/farmacologia , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Talidomida/administração & dosagem , Talidomida/farmacocinética
16.
J Alzheimers Dis ; 62(4): 1777-1787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614681

RESUMO

Alzheimer's disease is characterized by abnormal amyloid-ß (Aß) peptide accumulation beginning decades before symptom onset. An effective prophylactic treatment aimed at arresting the amyloidogenic pathway would therefore need to be initiated prior to the occurrence of Aß pathology. The SIGMAR1 gene encodes a molecular chaperone that modulates processing of the amyloid-ß protein precursor (AßPP). Fluvoxamine is a selective serotonin reuptake inhibitor and a potent SIGMAR1 agonist. We therefore hypothesized that fluvoxamine treatment would reduce Aß production and improve cognition. We firstly investigated the impact of SIGMAR1 on AßPP processing, and found that overexpression and knockdown of SIGMAR1 significantly affected γ-secretase activity in SK-N-MC neuronal cells. We then tested the impact of fluvoxamine on Aß production in an amyloidogenic cell model, and found that fluvoxamine significantly reduced Aß production by inhibiting γ-secretase activity. Finally, we assessed the efficacy of long-term treatment (i.e., ∼8 months) of 10 mg/kg/day fluvoxamine in the J20 amyloidogenic mouse model; the treatment was initiated prior to the occurrence of predicted Aß pathology. Physical examination of the animals revealed no overt pathology or change in weight. We conducted a series of behavioral tests to assess learning and memory, and found that the fluvoxamine treatment significantly improved memory function as measured by novel object recognition task. Two other tests revealed no significant change in memory function. In conclusion, fluvoxamine has a clear impact on γ-secretase activity and AßPP processing to generate Aß, and may have a protective effect on cognition in the J20 mice.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fluvoxamina/farmacologia , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Modelos Animais de Doenças , Feminino , Humanos , Memória/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores sigma/genética , Receptores sigma/metabolismo , Receptor Sigma-1
17.
Cancer Chemother Pharmacol ; 81(1): 73-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101463

RESUMO

PURPOSE: Dovitinib is an orally available multi tyrosine kinase inhibitor which inhibits VEGFR 1-3, FGFR 1-3, and PDGFR. This study was performed to investigate the potential drug-drug interaction of dovitinib with the CYP1A2 inhibitor fluvoxamine in patients with advanced solid tumors. METHODS: Non-smoking patients of ≥ 18 years with advanced solid tumors, excluding breast cancer, were included. Patients were treated with a dose of 300 mg in 5 days on/2 days off schedule. Steady-state pharmacokinetic assessments of dovitinib were performed with or without fluvoxamine. RESULTS: Forty-five patients were enrolled; 24 were evaluable for drug-drug interaction assessment. Median age was 60 years (range 30-85). At steady state the geometric mean for dovitinib (coefficient of variation%) of the area under the plasma concentration-time curve (AUC0-72h) and maximum concentration (C max) were 2880 ng/mL h (47%) and 144 ng/mL (41%), respectively. Following administration of dovitinib in combination with fluvoxamine the geometric mean of dovitinib AUC0-72h and C max were 8290 ng/mL h (60%) and 259 ng/mL (45%), respectively. The estimated geometric mean ratios for dovitinib AUC0-72h and C max (dovitinib + fluvoxamine vs. dovitinib alone) were 2.88 [90% confidence interval (CI) 2.58, 3.20] and 1.80 (90% CI 1.66, 1.95). This effect is considered a moderate drug-drug interaction. CONCLUSIONS: Fluvoxamine co-administration resulted in a 80% increase in C max and a 188% increase in AUC0-72h of dovitinib. Given the increase in exposure to dovitinib observed, patients are at risk of dovitinib related toxicity. Dovitinib should, therefore, not be co-administered with moderate and strong CYP1A2 inhibitors, without dose reduction.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzimidazóis/farmacocinética , Benzimidazóis/uso terapêutico , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Inibidores do Citocromo P-450 CYP1A2/uso terapêutico , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Neoplasias/tratamento farmacológico , Quinolonas/farmacocinética , Quinolonas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Área Sob a Curva , Benzimidazóis/administração & dosagem , Inibidores do Citocromo P-450 CYP1A2/administração & dosagem , Inibidores do Citocromo P-450 CYP1A2/efeitos adversos , Esquema de Medicação , Interações Medicamentosas , Feminino , Fluvoxamina/administração & dosagem , Meia-Vida , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Quinolonas/administração & dosagem
18.
Toxicol In Vitro ; 41: 1-11, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28179152

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) used as first line of treatment in major depressive disorder (MDD) are known to exert negative effects on the endocrine system and fertility. The aim of the present study was to investigate the possible endocrine disrupting effect of six SSRIs, fluoxetine, paroxetine, citalopram and its active enantiomer escitalopram, sertraline and fluvoxamine using the OECD standardized and validated human in vitro adrenocortical H295R cell assay. All the major steroids, including progestagens, corticosteroids, androgens and estrogens were analysed using a fully validated LC-MS/MS method. All 6 SSRIs were found to exert endocrine disrupting effects on steroid hormone synthesis at concentrations just around Cmax. Although the mechanisms of disruption were all different, they all resulted in decreased testosterone levels, some due to effects on CYP17, some earlier in the pathway. Furthermore, all SSRIs relatively increased the estrogen/androgen ratio, indicating stimulating effects on the aromatase. Our study demonstrates the potential of SSRIs to interfere with steroid production in the H295R cells around Cmax levels and indicates that these drugs should be investigated further to determine any hazards for the users.


Assuntos
Androgênios/metabolismo , Antidepressivos/farmacologia , Disruptores Endócrinos/farmacologia , Estrogênios/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Esteroides/metabolismo , Aromatase/metabolismo , Linhagem Celular , Citalopram/farmacologia , Família 21 do Citocromo P450/metabolismo , Fluoxetina/farmacologia , Fluvoxamina/farmacologia , Humanos , Paroxetina/farmacologia , Sertralina/farmacologia , Esteroide 17-alfa-Hidroxilase/metabolismo
19.
Psychopharmacology (Berl) ; 233(17): 3125-34, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27339616

RESUMO

RATIONALE: We previously reported that the fluvoxamine-induced increase in prefrontal dopamine levels is enhanced by adrenalectomy/castration (which results in circulating neurosteroid deficiency), via combined activation of serotonin1A (5-HT1A) and σ1 receptors. However, the mechanistic details of the interaction between 5-HT1A and σ1 receptors are unknown. OBJECTIVES: Because most neurosteroids have affinity for γ-aminobutyric acid (GABA)A receptors, in the present study, we examined the involvement of GABAA receptors in this process. RESULTS: Adrenalectomy/castration decreased pentobarbital-induced sleeping time in mice, suggesting that it reduced GABAA receptor function. The GABAA receptor antagonist picrotoxin (1 mg/kg) enhanced the fluvoxamine-induced increase in prefrontal dopamine, but not noradrenaline or serotonin, levels in mice, suggesting that picrotoxin mimicked the effect of adrenalectomy/castration. Picrotoxin also potentiated the increase in prefrontal dopamine levels mediated by co-administration of the 5-HT1A receptor agonist osemozotan and the σ1 receptor agonist (+)-SKF-10,047, while it did not affect the co-administration-induced changes in noradrenaline and serotonin levels. Conversely, the GABAA receptor agonist diazepam (1 mg/kg) blocked the effect of adrenalectomy/castration on the fluvoxamine-induced increase in prefrontal dopamine levels. Co-administration of osemozotan and (+)-SKF-10,047 did not affect the expression of the neuronal activity marker c-Fos in the prefrontal cortex, ventral tegmental area, and nucleus accumbens in control mice, while it increased the c-Fos expression only in the prefrontal cortex and ventral tegmental area in picrotoxin-treated mice. CONCLUSIONS: These results suggest that the GABAA receptor plays a key role in mediating the synergistic effects of 5-HT1A and σ1 receptor activation on prefrontal dopamine neurotransmission.


Assuntos
Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de GABA-A/metabolismo , Receptores sigma/metabolismo , Adrenalectomia , Animais , Antipsicóticos/farmacologia , Castração , Diazepam/farmacologia , Dioxanos/farmacologia , Dioxóis/farmacologia , Dopamina/metabolismo , Fluvoxamina/farmacologia , Antagonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Orquiectomia , Fenazocina/análogos & derivados , Fenazocina/farmacologia , Picrotoxina/farmacologia , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de GABA/metabolismo , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptor Sigma-1
20.
Sci Rep ; 6: 23372, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26988603

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood-brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Fluvoxamina/administração & dosagem , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Fluvoxamina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA