Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Environ Sci Pollut Res Int ; 31(21): 31331-31342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38630399

RESUMO

Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.


Assuntos
Cádmio , Carvão Vegetal , Ácidos Graxos , Foeniculum , Nanopartículas , Óleos Voláteis , Selênio , Foeniculum/química , Óleos Voláteis/química , Carvão Vegetal/química , Selênio/química , Cádmio/toxicidade , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Solo/química
2.
Sci Rep ; 14(1): 5752, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459176

RESUMO

Herbal spices are widely consumed as food additives owing to their distinct aroma and taste as well as a myriad of economic and health value. The aroma profile of four major spices including bay leaf, black pepper, capsicum, and fennel was tested using HS-SPME/GC-MS and in response to the most widely used spices´ processing methods including autoclaving and γ-radiation at low and high doses. Additionally, the impact of processing on microbial contamination of spices was tested using total aerobic count. GC-MS analysis led to the identification of 22 volatiles in bay leaf, 34 in black pepper, 23 in capsicum, and 24 in fennel. All the identified volatiles belonged to oxides/phenols/ethers, esters, ketones, alcohols, sesquiterpene and monoterpene hydrocarbons. Oxides/phenol/ethers were detected at high levels in all tested spices at ca. 44, 28.2, 48.8, 61.1%, in bay leaves, black pepper, capsicum, and fennel, respectively of the total blend and signifying their typical use as spices. Total oxides/phenol/ethers showed an increase in bay leaf upon exposure to γ-radiation from 44 to 47.5%, while monoterpene hydrocarbons were enriched in black pepper upon autoclaving from 11.4 in control to reach 65.9 and 82.6% for high dose and low dose of autoclaving, respectively. Cineole was detected in bay leaf at 17.9% and upon exposure to autoclaving at high dose and γ-radiation (both doses) its level increased by 29-31%. Both autoclaving and γ-radiation distinctly affected aroma profiles in examined spices. Further, volatile variations in response to processing were assessed using multivariate data analysis (MVA) revealing distinct separation between autoclaved and γ-radiated samples compared to control. Both autoclaving at 115 °C for 15 min and radiation at 10 kGy eliminated detected bioburden in all tested spices i.e., reduced the microbial counts below the detection limit (< 10 cfu/g).


Assuntos
Foeniculum , Piper nigrum , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Fenol/análise , Microextração em Fase Sólida/métodos , Quimiometria , Especiarias , Monoterpenos/análise , Éteres , Óxidos , Compostos Orgânicos Voláteis/análise
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38330242

RESUMO

Global antimicrobial resistance has led to a ban on the use of antibiotics as growth promoters (AGPs) in poultry farming, encouraging the use of natural phytogenic feed additives that provide similar effects to AGPs without causing resistance. The aim of this study was to determine the effects of the addition of encapsulated fennel seed (Foeniculum vulgare Mill.) essential oil (FEO) into the diets on the performance, intestinal microflora, morphology, and transcriptomic profiling of broiler chickens. In the study, 400 one-d-old male chicks of the Ross-308 genotype were randomly distributed into five groups, each with 16 replicates of five birds. The experiment included a control group fed on basal diets without the addition of FEO and treatment groups supplemented with 50 (FEO50), 100 (FEO100), 200 (FEO200), or 400 (FEO400) mg of encapsulated FEO/kg. Body weight and the European Production Efficiency Factor values were higher in the FEO100, FEO200, and FEO400 groups (P < 0.05). The feed conversion ratio significantly improved at all FEO levels (P < 0.05). FEO supplementation improved duodenum, jejunum, and ileum morphologies. It enhanced mucosal layer thickness in the duodenum and jejunum, and muscular layer thickness in the jejunum and ileum (P < 0.05). It also increased the number of Lactobacillus spp. in the jejunum and ileum (P < 0.05). According to the transcriptome profile obtained from the microarray analysis of samples taken from small intestine tissues, the mRNA expression levels of 261 genes in the FEO50 group (206 upregulated and 55 downregulated), 302 genes in the FEO100 group (218 upregulated and 84 downregulated), 292 genes in the FEO200 group (231 upregulated and 61 downregulated), and 348 genes in the FEO400 group (268 upregulated and 80 downregulated) changed compared to the control group. Most upregulated genes were associated with catalytic activity, binding, transcription regulators and transcription factors, anatomical structure and cellular development, and protein binding activity modulators. The downregulated genes mostly belonged to the transporter, carrier, and protein-modifying enzyme classes. Besides, the anti-inflammatory IL-10 gene (4.41-fold) increased significantly in the FEO100 group compared to the control group (P < 0.05). In conclusion, FEO improved the performance of broiler chickens by regulating biological processes such as performance and intestinal health, with the 100 mg FEO/kg supplementation being the most prominent.


The long-term use of low-level antibiotics in the poultry industry to promote growth, rather than for treatment, has led to the development of antimicrobial resistance (AMR), a significant risk to human and animal health. This concern has led to a ban on antibiotics as growth promoters (AGPs) in broiler diets, resulting in an increase in metabolic diseases in broiler chickens. Phytogenic feed additives have been tested as alternatives to compensate for the loss of AGPs. One such additive, fennel seed essential oil (FEO), known for its strong antimicrobial properties, was examined in this study for its impact on broiler growth performance and the underlying genetic and molecular mechanisms. The results showed that FEO enhanced feed conversion efficiency, thereby improving broiler performance. It positively affected the intestinal wall structure and function and helped establish a balanced microbiota by suppressing harmful and supporting beneficial microorganisms. Transcriptome datasets revealed that FEO modulated gene expression related to economically important traits such as performance and intestinal health. In conclusion, considering the urgent need for antibiotic-free production systems owing to escalating AMR and the growing interest in genotype-specific feeding in the postgenomic era, FEO may be a promising, natural, safe, and effective alternative to AGPs.


Assuntos
Foeniculum , Microbioma Gastrointestinal , Óleos Voláteis , Animais , Masculino , Galinhas/fisiologia , Óleos Voláteis/farmacologia , Transcriptoma , Dieta/veterinária , Suplementos Nutricionais/análise , Ração Animal/análise
4.
J Oleo Sci ; 72(11): 985-995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914268

RESUMO

Sunflower oil (SFO) is faced with serious oxidation problems during the deep-frying of Chinese Maye, and the search for natural antioxidants has become a focus of scientific research due to the potential toxicity of synthetic antioxidants. In the present study, the Foeniculum vulgare Mill. essential oil (FVEO), tert-butylhydroquinone (TBHQ) were added to SFO for a 30 h deep frying experiment and the results showed that FVEO added to sunflower oil at 1 g/kg was similar to that of TBHQ-0.01 g/kg, and FVEO-1.5 g/kg would promote the oxidation of SFO. FVEO to sunflower oil also prominently restrained the decrease of the sensory properties of the fried product, Chinese Maye, including appearance, taste, flavor and overall acceptance by 24.2%, 20.2%, 46.1% and 56.0% (p < 0.01 or p < 0.05), respectively. The results indicated that FVEO could be used as a natural antioxidant to replace TBHQ in the deep-frying process of SFO, but further research is needed on the key antioxidant constituent of FVEO.


Assuntos
Foeniculum , Óleos Voláteis , Antioxidantes , Óleo de Girassol
5.
Res Vet Sci ; 164: 104991, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657392

RESUMO

The objective of this study was to examine the direct effects of the medicinal plant fennel on basic functions of ovarian cells, including proliferation, apoptosis, and release of progesterone and insulin-like growth factor I (IGFI), as well as to prevent the influence of the environmental contaminant benzene on these cells. Porcine ovarian granulosa cells were cultured with or without fennel extract alone or in combination with benzene. The expression of the proliferation marker PCNA and the apoptosis marker bax was analyzed by quantitative immunocytochemistry and enzyme-linked immunosorbent assay (ELISA). Fennel was able to promote proliferation and IGF-I release, but to suppress apoptosis and progesterone release. Benzene promoted the accumulation of both the proliferation and apoptosis markers, as well as IGF-I release, but it inhibited progesterone secretion. The presence of fennel did not prevent the effects of benzene on any of the measured parameters, while benzene prevented the effects of fennel on cell proliferation, apoptosis, and IGF-I but not progesterone output. These observations demonstrate the direct influence of fennel and benzene on basic ovarian cell functions. Furthermore, they show the inability of fennel to prevent the effects of benzene on these cells. On the other hand, the environmental contaminant benzene can block the response of ovarian cells to the medicinal plant fennel.


Assuntos
Foeniculum , Progesterona , Feminino , Suínos , Animais , Progesterona/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Foeniculum/metabolismo , Benzeno/toxicidade , Benzeno/metabolismo , Ovário , Células da Granulosa , Proliferação de Células , Apoptose , Células Cultivadas
6.
Sci Rep ; 13(1): 13935, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626070

RESUMO

The aromatic fennel plant (Foeniculum vulgare Miller) is cultivated worldwide due to its high nutritional and medicinal values. The aim of the current study was to determine the effect of the application of bio-organic fertilization (BOF), farmyard manure (FM) or poultry manure (PM), either individually or combined with Lactobacillus plantarum (LP) and/or Lactococcus lactis (LL) on the yield, chemical composition, and antioxidative and antimicrobial activities of fennel seed essential oil (FSEO). In general, PM + LP + LL and FM + LP + LL showed the best results compared to any of the applications of BOF. Among the seventeen identified FSEO components, trans-anethole (78.90 and 91.4%), fenchone (3.35 and 10.10%), limonene (2.94 and 8.62%), and estragole (0.50 and 4.29%) were highly abundant in PM + LP + LL and FM + LP + LL, respectively. In addition, PM + LP + LL and FM + LP + LL exhibited the lowest half-maximal inhibitory concentration (IC50) values of 8.11 and 9.01 µg mL-1, respectively, compared to L-ascorbic acid (IC50 = 35.90 µg mL-1). We also observed a significant (P > 0.05) difference in the free radical scavenging activity of FSEO in the triple treatments. The in vitro study using FSEO obtained from PM + LP + LL or FM + LP + LL showed the largest inhibition zones against all tested Gram positive and Gram negative bacterial strains as well as pathogenic fungi. This suggests that the triple application has suppressive effects against a wide range of foodborne bacterial and fungal pathogens. This study provides the first in-depth analysis of Egyptian fennel seeds processed utilizing BOF treatments, yielding high-quality FSEO that could be used in industrial applications.


Assuntos
Anti-Infecciosos , Foeniculum , Lactobacillus plantarum , Lactococcus lactis , Óleos Voláteis , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Fertilizantes , Esterco , Sementes , Anti-Infecciosos/farmacologia
7.
Pharm Biol ; 61(1): 1030-1040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409739

RESUMO

CONTEXT: Sea fennel (Crithmum maritimum L. [Apiaceae]) is an aromatic herb rich in bioactive molecules, such as polyphenols, with potential positive effects on human health. OBJECTIVE: This study aimed at the characterization of sea fennel secondary metabolites, focusing on the phenolic fraction. MATERIALS AND METHODS: Samples of whole sprouts, sole leaves and sole stems were subjected to accelerated solvent extraction with methanol, and the resulting extracts were analyzed by high­performance thin­layer chromatography, high-performance liquid chromatography, and liquid chromatography coupled with diode array detection and high-resolution mass spectrometry (LC-DAD-HRMS). RESULTS: HPTLC and HPLC analyses of sea fennel extracts showed similar chromatographic profiles among the tested samples, and the prevalence of chlorogenic acid within the phenolic fraction was verified. Ten hydroxycinnamic acids, including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A and isochlorogenic acid C, 11 flavonoid glycosides, e.g., rutin, hyperoside, isoquercitrin, two triterpene saponins and two hydroxylated fatty acids, were detected and annotated via liquid chromatography coupled with diode array detection and high-resolution mass spectrometry. DISCUSSION AND CONCLUSIONS: The use of accelerated solvent extraction and LC-DAD-HRMS for the characterization of sea fennel secondary metabolites allowed the annotation of seven compounds newly detected in sea fennel, including triterpene saponins and hydroxylated fatty acids.


Assuntos
Apiaceae , Foeniculum , Saponinas , Triterpenos , Humanos , Foeniculum/química , Ácido Clorogênico , Apiaceae/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Triterpenos/análise , Solventes
8.
Sci Rep ; 13(1): 11902, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488427

RESUMO

The influence of arbuscular mycorrhiza fungi (AMF) inoculation, seaweed extract (SWE) foliar use, and their co-applications were evaluated on the growth-associated traits, antioxidant potential, essential oil profile, and the nutrients content of fennel plants. A factorial experiment was conducted as a completely randomized design with two factors and four replications in the greenhouse. The factors were: AMF inoculation (not inoculated and inoculated with 5 g kg-1) and SWE foliar application (0, 0.5, 1.5, or 3 g L-1). The highest root colonization percentage was recorded in plants treated with AMF + 3 g L-1 of SWE. The top recorded plant height, leaf number, leaf dry weight, biomass, thousand seed weight (TSW), total soluble proteins and total soluble carbohydrates content, antioxidant activity, and essential oil content belonged to AMF + 3 g L-1 of SWE. Furthermore, the co-application of AMF + SWE resulted in a considerable enhancement of the photosynthetic pigments content and, in N, P, K, Fe, Zn, and Mn contents in the shoots and roots. The GC-FID and GC-MS analysis revealed that (E)-anethole (73.28-76.18%), fenchone (5.94-8.26%), limonene (4.64-6.58%), methyl chavicol (2.91-3.18%), and (Z)-ß-ocimene (1.36-2.01%) were the principal essential oil constituents. The top (E)-anethole and fenchone contents were obtained by AMF + SWE. Altogether, the simultaneous application of AMF and SWE could be introduced as an environment-friendly strategy to reach reliable growth responses, especially in fennel plants' enriched with some precious essential oil constituents.


Assuntos
Foeniculum , Micorrizas , Óleos Voláteis , Alga Marinha , Antioxidantes , Carboidratos da Dieta , Extratos Vegetais
9.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375298

RESUMO

Sea fennel (Crithmum maritimum L.) is a perennial, strongly aromatic herb that has been used since ancient times in cuisine and folk medicine due to its renowned properties. Recently described as a "cash" crop, sea fennel is an ideal candidate for the promotion of halophyte agriculture in the Mediterranean basin due to its acknowledged adaptation to the Mediterranean climate, its resilience to risks/shocks related to climate changes, and its exploitability in food and non-food applications, which generates an alternative source of employment in rural areas. The present review provides insight into the nutritional and functional traits of this new crop as well as its exploitation in innovative food and nutraceutical applications. Various previous studies have fully demonstrated the high biological and nutritional potential of sea fennel, highlighting its high content of bioactive compounds, including polyphenols, carotenoids, ω-3 and ω-6 essential fatty acids, minerals, vitamins, and essential oils. Moreover, in previous studies, this aromatic halophyte showed good potential for application in the manufacturing of high-value foods, including both fermented and unfermented preserves, sauces, powders, and spices, herbal infusions and decoctions, and even edible films, as well as nutraceuticals. Further research efforts are needed to fully disclose the potential of this halophyte in view of its full exploitation by the food and nutraceutical industries.


Assuntos
Apiaceae , Foeniculum , Suplementos Nutricionais , Antioxidantes , Minerais
10.
Asian Pac J Cancer Prev ; 24(3): 833-840, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974535

RESUMO

INTRODUCTION: Breast cancer is one of the important factors of cancer-related deaths. Considering the drug resistance, special attention has been paid to natural compounds. This study aimed at evaluating the anti-metastatic activity of fennel in a breast cancer mouse model. METHODS: A total of 35 adult female BALB/C mice were used in this study. Breast cancer was induced by subcutaneous injection of 4T1 cells in the right lower flank. The mice received fennel extracts daily via intraperitoneal injection for two weeks. Meanwhile, tumor volume was measured every day using calipers. After two weeks, each animal was anesthetized. The protein expression of HSP 70 & 90 was measured in liver tissue and ovary. The expression of her2 was measured in tumor tissue. The activity of Glutathione peroxidase and reductase as anti-oxidant agents were measured in serum. RESULTS: Tumor size significantly decreased after nine days' treatment of the fennel. The expression of HER2 increased in the tumor tissue and decrease with different dose of fennel. Fennel treatment caused a decrease in the protein expression of HSP 70 & 90 in the liver tissues. CONCLUSION: Based on our findings, fennel has anti-tumor and anti-metastatic activities against aggressive cancers.


Assuntos
Foeniculum , Neoplasias , Feminino , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Camundongos Endogâmicos BALB C , Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Neoplasias/tratamento farmacológico
11.
PLoS One ; 18(3): e0281631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893132

RESUMO

Helicobacter pylori (H. pylori) is a common human pathogen causing inflammation. Recent studies have suggested a sophisticated interplay between mitochondria, innate immunity and inflammatory response, thus proposing mitochondrial disfunction as the hallmark of severe inflammatory disorders. In this study, humic substances isolated from composted fennel residues (HS-FEN) were tested as potential therapeutical strategy to restore the mitochondrial physiology and control the inflammation associated with H. pylori infection. The molecular features of HS-FEN were characterized by infrared spectrometry, thermochemolysis-GC/MS, NMR spectroscopy, and high-performance size-exclusion chromatography (HPSEC), which revealed the presence of aromatic polyphenolic components arranged in a rather stable conformation. In vitro results showed antioxidant and anti-inflammatory properties of HS-FEN, that was found to increase the expression level of OPA-1 and SOD-2 genes and in AGS cells stimulated with H. pylori culture filtrate (Hpcf) and concomitantly decrease the expression level of Drp-1 gene and IL-12, IL-17 and G-CSF proteins. The hydrophobic features of HS, their conformational arrangement and large content of bioactive molecules may explain the beneficial effects of HS-FEN, that may potentially become an interesting source of anti-inflammatory agents capable to counteract or prevent the H. pylori-related inflammatory disorders.


Assuntos
Foeniculum , Infecções por Helicobacter , Helicobacter pylori , Humanos , Substâncias Húmicas , Infecções por Helicobacter/complicações , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo
12.
Reprod Biol ; 23(1): 100736, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773449

RESUMO

Experimental studies have documented the toxic effects of toluene on the mammalian female reproductive processes. The aim of this in vitro study was to examine the potential of functional food plant extracts, namely, of ginkgo, fennel, and flaxseed, in modifying the toluene-induced effects on ovarian hormone release. Porcine granulosa cells were incubated with ginkgo, fennel, or flaxseed extracts (0, 1, 10, or 100 µg/mL) and/or toluene (10 µg/mL). Enzyme immunoassays were used in order to measure the release of progesterone (P), oxytocin (OT), and prostaglandin F (PGF) in the culture media. Toluene suppressed the release of P and enhanced the release of OT and PGF. All tested plant extracts reduced P and increased OT release, while the PGF output was found inhibited by ginkgo and stimulated by fennel and flaxseed. When the cells were incubated with toluene and each one of the plant extracts, toluene was able to prevent their action on P release, as well as those of fennel and flaxseed on OT and PGF release. Moreover, ginkgo enhanced but fennel or flaxseed prevented the toluene-induced effects on OT and PGF release. These observations (i) document novel aspects of the toluene-induced toxicity; (ii) demonstrate the direct influence of ginkgo, fennel, and flaxseed extracts on the ovarian secretory activity; (iii) inform our understanding of the interrelationship between toluene and the tested plant extracts with regard to their effects on ovarian hormone release; (iiii) demonstrate the ability of fennel and flaxseed to prevent adverse effect of toluene on ovarian hormones.


Assuntos
Linho , Foeniculum , Feminino , Suínos , Animais , Ginkgo biloba , Tolueno , Progesterona/farmacologia , Células da Granulosa , Extratos Vegetais/farmacologia , Ocitocina , Células Cultivadas , Mamíferos
13.
BMC Complement Med Ther ; 23(1): 45, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788561

RESUMO

BACKGROUND: Early-life exposure to exogenous estrogens such as phytoestrogens (plant-derived estrogens) could affect later health through epigenetic modifications. Foeniculum vulgare (fennel) and Linum usitatissimum (flax) are two common medicinal plants with high phytoestrogen content. Considering the developmental epigenetic programming effect of phytoestrogens, the main goal of the present study was to evaluate the perinatal exposure with life-long exposure to hydroalcoholic extracts of both plants on offspring's ovarian epigenetic changes and estrogen receptors (ESRs) expression level as signaling cascades triggers of phytoestrogens. METHODS: Pregnant mice were randomly divided into control (CTL) that received no treatment and extract-treated groups that received 500 mg/kg/day of fennel (FV) and flaxseed (FX) alone or in combination (FV + FX) during gestation and lactation. At weaning, female offspring exposed to extracts prenatally remained on the maternal-doses diets until puberty. Then, the ovaries were collected for morphometric studies and quantitative real-time PCR analysis. RESULTS: A reduction in mRNA transcripts of the epigenetic modifying enzymes DNMTs and HDACs as well as estrogen receptors was observed in the FV and FX groups compared to the CTL group. Interestingly, an increase in ESRα/ESRß ratio along with HDAC2 overexpression was observed in the FV + FX group. CONCLUSION: Our findings clearly show a positive relationship between pre and postnatal exposure to fennel and flaxseed extracts, ovarian epigenetic changes, and estrogen receptors expression, which may affect the estrogen signaling pathway. However, due to the high phytoestrogen contents of these extracts, the use of these plants in humans requires more detailed investigations.


Assuntos
Linho , Foeniculum , Extratos Vegetais , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Camundongos , Gravidez , Epigênese Genética , Estrogênios , Linho/efeitos adversos , Foeniculum/efeitos adversos , Ovário , Fitoestrógenos/efeitos adversos , Extratos Vegetais/efeitos adversos , Receptores de Estrogênio/metabolismo
14.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677955

RESUMO

Among the environmental factors, seasonality is the one which most affects the metabolome of a plant. Depending on the harvest season, the plant may have a variable content of certain metabolites and thus may have different biological properties. Foeniculum vulgare is an annual plant whose cultivation creates large amounts of waste rich in bioactive compounds. The present investigation was performed with the aim of determining the amount of biologically active compounds in F. vulgare wastes obtained from varieties of different seasonality. Ten polyphenolic compounds were quantified in the little stems and leaves of Tiziano, Pegaso, and Preludio cultivars by ultra performance liquid chromatography (UPLC) hyphenated to QTRAP mass spectrometry by using the MRM (multiple reaction monitoring) method. The antioxidant activity of hydroalcoholic extracts was then evaluated using TEAC and DPPH spectrophotometric assays, followed by a multivariate statistical analysis to determine the correlation between metabolite expression and antioxidant activity. The Preludio variety, grown in summer, showed a higher content of bioactive compounds, which guarantees it a better antioxidant power; kaempferol 3-O-glucuronide, quercetin 3-O-glucuronide, and quercetin 3-O-glucoside are the polyphenolic compounds that could be mainly responsible for the antioxidant effect of fennel. The PLS chemometric model, which correlated quantitative data obtained by a sensitive and selective LC-ESI-QTrap-MS/MS analysis of antioxidant activity, resulted in a selective tool to detect the compounds responsible for the activity shown by the extracts in chemical tests.


Assuntos
Foeniculum , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Antioxidantes/química , Foeniculum/química , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Plantas/metabolismo , Extratos Vegetais/química
15.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614269

RESUMO

This study investigated the phytochemical content of alcoholic extracts and essential oil of a new variety of medicinal plants, Agastache foeniculum (Pursh), which Kuntze adapted for cultivation in Romania, namely "Aromat de Buzau". The essential oil was investigated by GC-MS, while the identification and quantification of various compounds from alcoholic extracts were performed by HPLC-DAD. The total phenol and flavonoid contents of the extracts were evaluated by using standard phytochemical methods. The antioxidant activities of ethanol, methanol extracts, and essential oil of the plant were also assessed against 2,2'-diphenyl-1-picrylhydrazyl (DPPH•), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+), and by ferric reducing power (FRAP) using spectroscopic methods. Cyclic voltammetry was used to evaluate the antioxidant capacity of the essential oil. The concentrations of phenolic compounds were higher in methanolic extract compared to ethanolic extract. A significant correlation was found between total phenol and total flavonoid contents (r = 0.9087). Significant high correlations were also found between the total phenolic compounds and the antioxidant activities of the extracts (r ≥ 0.8600, p < 0.05). In addition, the extracts and essential oil showed good antioxidant and xanthine oxidase inhibitory activities. Estragole was detected as the major constituent of the essential oil (94.89%). The cytotoxic activity of the essential oil was evaluated by the MTT assay. At lower concentrations (1 µg/mL) high cytotoxicity against MCF-7 breast cancer cells was observed but not on the non-tumoral dermal fibroblasts (HDF) which indicated selectivity for cancer cells and suggests the presence of biologically active components that contribute to the observed high cytotoxic effect. Findings from the present study offer new perspectives on the use of A. foeniculum as a potential source of bioactive compounds and a good candidate for pharmaceutical plant-based products.


Assuntos
Agastache , Antineoplásicos , Foeniculum , Óleos Voláteis , Plantas Medicinais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Plantas Medicinais/química , Fenóis/farmacologia , Flavonoides/farmacologia , Fenol , Compostos Fitoquímicos/farmacologia , Metanol
16.
Int J Biol Macromol ; 230: 123119, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603723

RESUMO

Ixiolirion tataricum mucilage (ITM) was characterized and applied in fabrication of ITM/chitosan (CH) blend films activated by Foeniculum vulgare essential oil (FEO) in free and nanoliposomal forms. Uniform smooth surface structure, viscoelastic solid-like behavior and Newtonian nature of ITM were confirmed by morphological and rheological analyses. The prepared FEO nanoliposomes (FEO-NLPs) showed desirable properties in terms of particle size (57.2 nm), polydispersity index (0.243), zeta-potential (-17.6 mV), and encapsulation efficiency (85.2 %). The enhancing effects of FEO-NLPs and the adverse effects of free FEO on the crystalline, morphological and structural properties of films were confirmed by XRD, FE-SEM and ATR-FTIR tests. FEO-NLPs loaded films had better mechanical, thermal, water and gas barrier and antioxidant properties than neat film. Analysis also indicated the high controlled release of FEO from the films containing the nanoliposomal form of FEO. The films containing free FEO showed higher antibacterial activity against E. coli and S. aureus in comparison with FEO-NLPs loaded ones. The results showed the potential of FEO-NLPs loaded ITM/CH films for antioxidant food packaging applications.


Assuntos
Quitosana , Foeniculum , Óleos Voláteis , Antioxidantes/farmacologia , Antioxidantes/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Escherichia coli , Staphylococcus aureus , Polissacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos
17.
J Mol Model ; 29(2): 55, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700982

RESUMO

CONTEXT: The mutations in the TP53 gene are the most frequent (50-60% of human cancer) genetic alterations in cancer cells, indicating the critical role of wild-type p53 in the regulation of cell proliferation and apoptosis upon oncogenic stress. Most missense mutations are clustered in the DNA-binding core domain, disrupting DNA binding ability. However, some mutations like Y220C occur outside the DNA binding domain and are associated with p53 structure destabilization. Overall, the results of these mutations are single amino acid substitutions in p53 and the production of dysfunctional p53 protein in large amounts, consequently allowing the escape of apoptosis and rapid progression of tumor growth. Thus, therapeutic targeting of mutant p53 in tumors to restore its wild-type tumor suppression activity has immense potential for translational cancer research. Various molecules have been discovered with modern scientific techniques to reactivate mutant p53 by reverting structural changes and/or DNA binding ability. These compounds include small molecules, various peptides, and phytochemicals. TP53 protein is long thought of as a potential target; however, its translation for therapeutic purposes is still in its infancy. The study comprehensively analyzed the therapeutic potential of small phytochemicals from Foeniculum vulgare (Fennel) with drug-likeness and capability to reactivate mutant p53 (Y220C) through molecular docking simulation. The docking study and the stable molecular dynamic simulations revealed juglalin (- 8.6 kcal/mol), retinol (- 9.14 kcal/mol), and 3-nitrofluoranthene (- 8.43 kcal/mol) significantly bind to the mutated site suggesting the possibility of drug designing against the Y220C mutp53. The study supports these compounds for further animal based in vivo and in vitro research to validate their efficacy. METHODS: For the purposes of drug repurposing, recently in-silico methods have presented with opportunity to rule out many compounds which have less probability to act as a drug based on their structural moiety and interaction with the target macromolecule. The study here utilizes molecular docking via Autodock 4.2.6 and molecular dynamics using Schrodinger 2021 to find potential therapeutic options which are capable to reactive the mutated TP53 protein.


Assuntos
Foeniculum , Neoplasias , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Foeniculum/genética , Foeniculum/metabolismo , Genes p53 , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Mutação , DNA
18.
Rev. cientif. cienc. med ; 25(1): 49-57, sept. 2022.
Artigo em Espanhol | LILACS | ID: biblio-1407907

RESUMO

INTRODUCCIÓN: el Foeniculum vulgare es una planta medicinal de gran importancia por sus propiedades y valor nutricional. Los extractos del hinojo poseen propiedades terapéuticas ante cambios endocrinos, perturbaciones psicológicas, malestares y sintomatología presente en el ciclo vital de la mujer. OBJETIVOS: analizar información sobre las diferentes propiedades y efectos terapéuticos del F. vulgare en las distintas etapas del ciclo vital de la mujer. METODOLOGÍA: se realizó una búsqueda crítica y analítica del tema por medio de lenguaje controlado recopilado del MeSH y DeCs en metabuscadores científicos. RESULTADOS: el desarrollo de esta revisión fue viable debido a la variedad de literatura, estudios y ensayos clínicos internacionales de libre acceso de información relevante al tema. CONCLUSIÓN: esta planta puede ser empleada como tratamiento, prevención y como fuente de nutrientes; y sus extractos tienen un efecto importante en el ciclo vital de la mujer dependiendo se encuentre en menstruación, menopausia o postmenopausia.


INTRODUCTION: foeniculum vulgare is a medicinal plant of great importance for its properties and nutritional value.Fennel extracts possess therapeutic properties against endocrine changes, psychological disturbances, discomfort and symptomatology present in the vital cycle of women. OBJECTIVES: analyze information on the different properties and therapeutic effects of F. vulgare in the different stages of the life cycle of women. METHODOLOGY: a critical and analytical search of the topic was performed ,by means of controlled language compiled from MeSH and DeCs in scientific meta-search engines. RESULTS: the development of this review was feasible due to the variety of freely available international literature, studies and clinical trials of information relevant to the topic. CONCLUSIÓN: this plant can be used as a treatment, prevention and as a source of nutrients; and its extracts have an important effect on the vital cycle of the woman depending on whether she is in menstruation, menopause or postmenopause.


Assuntos
Plantas Medicinais , Foeniculum , Usos Terapêuticos
19.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807321

RESUMO

Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (-6 and -5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.


Assuntos
Neoplasias da Mama , Foeniculum , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Ligantes , Limoneno , Simulação de Acoplamento Molecular
20.
J Oleo Sci ; 71(8): 1207-1219, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35793972

RESUMO

Umbelliferae plants, which are widely used as traditional Chinese medicine because of their characteristics of relieving rheumatism, alleviating fever, circulating blood and easing pain. This experimental study was based on ear edema model caused by 12-O-tetracycline-propylphenol-13-acetic acid (TPA) in mice and compared with the Ibuprofen (Ib) group. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the composition of the essential oils from the four studied Umbelliferae plants (Angelica sinensis (Oliv.) Diels, A. dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav., A. pubescens Maxim and Foeniculum vulgare Mill.). Biologically active components in volatile oils from the four studied Umbelliferae plants were evaluated. The expression levels of inflammatory cytokines Tumor Necrosis Factor-α (TNF-α), Cyclooxygenase-2 (COX-2), Interleukin-6 (IL-6) and RelA (p65) in mouse skin were determined by immunohistochemical method. The refractive index of the four essential oils was calculated. A total of 239 compounds were identified by GC-MS from the four studied plants, and the main constituents were osthole (44.61%, APEOs), obepin (0.59%, APEOs & 86.58%, FVEOs), undecanol (8.58%, ADEOs), α-muurolene (7.95%, ADEOs) and cis-anethol (9.11%, ADEOs). E-ligustilide (0.14%, APEOs & 81.14%, ASEOs), (-)-spathulenol (0.08%, FVEOs & 1.21%, ASEOs), (-)-terpinen-4-ol (4.91%, FVEOs), 2-butylthiolane (5.76%, APEOs) and α-bisabolol (3.80%, APEOs). This study showed that all the essential oils from the four studied Umbelliferae plants contained various lactones, including ligustrongolactone, trans-anisol and imperatorin. According to the results of the TPA induction test in the mouse ear edema model, the essential oils of four Umbelliferae plants reduced the levels of inflammatory cytokines TNF-α, COX-2, IL-6 and p65. All of them showed extraordinary biological activity in anti-inflammatory, so they have potential application value for biomedical products, pharmaceutical preparations, natural functional nutrients and cosmetic additives.


Assuntos
Angelica sinensis , Angelica , Foeniculum , Óleos Voláteis , Angelica sinensis/química , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2 , Interleucina-6 , Camundongos , Óleos Voláteis/química , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA