Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
BMC Microbiol ; 22(1): 18, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996363

RESUMO

BACKGROUND: Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. RESULTS: The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. CONCLUSIONS: It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.


Assuntos
Microbiota , Necrose e Clorose das Plantas/microbiologia , Pyrus/microbiologia , Rizosfera , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Ontologia Genética , Ferro/análise , Ferro/metabolismo , Metagenômica , Minerais/análise , Minerais/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pyrus/metabolismo , Pyrus/ultraestrutura , Solo/química , Microbiologia do Solo , Água/análise
2.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435361

RESUMO

This study aimed to clarify whether the light condition-dependent changes in the redox state and subcellular distribution of glutathione were similar in the dicotyledonous model plant Arabidopsis (wild-type, ascorbate- and glutathione-deficient mutants) and the monocotyledonous crop species wheat (Chinese Spring variety). With increasing light intensity, the amount of its reduced (GSH) and oxidized (GSSG) form and the GSSG/GSH ratio increased in the leaf extracts of both species including all genotypes, while far-red light increased these parameters only in wheat except for GSH in the GSH-deficient Arabidopsis mutant. Based on the expression changes of the glutathione metabolism-related genes, light intensity influences the size and redox state of the glutathione pool at the transcriptional level in wheat but not in Arabidopsis. In line with the results in leaf extracts, a similar inducing effect of both light intensity and far-red light was found on the total glutathione content at the subcellular level in wheat. In contrast to the leaf extracts, the inducing influence of light intensity on glutathione level was only found in the cell compartments of the GSH-deficient Arabidopsis mutant, and far-red light increased it in both mutants. The observed general and genotype-specific, light-dependent changes in the accumulation and subcellular distribution of glutathione participate in adjusting the redox-dependent metabolism to the actual environmental conditions.


Assuntos
Arabidopsis/metabolismo , Glutationa/metabolismo , Triticum/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/ultraestrutura , Regulação da Expressão Gênica de Plantas , Glutationa/análise , Glutationa/genética , Luz , Oxirredução , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Triticum/citologia , Triticum/genética , Triticum/ultraestrutura
3.
J Ethnopharmacol ; 267: 113620, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tarchonanthus camphoratus L. complex has numerous medicinal uses amongst the sub-Saharan African populace, including treatment for bronchospasm. This study focused on providing scientific rationale for the traditional use of the extracts of T. camphoratus and T. parvicapitulatus. T. camphoratus L. complex has been published under diverse names by various taxonomists. Tarchonanthus parvicapitulatus was one of the newly described taxa, leaving Tarchonanthus camphoratus L. sens. strict. as a homogenous taxon. However, some of the morphological characters used tend to overlap, making it difficult to identify the different taxa. AIMS: The aim of this study was to evaluate the bronchodilatory, antioxidant and toxicological properties of the leaves of T. camphoratus L. and T. parvicapitulatus. This study also aimed to use scanning electron microscopy (SEM) to assess the differences between T. camphoratus L. and T. parvicapitulatus. MATERIALS AND METHODS: Thin layer chromatography (TLC) with vanillin as visualizing agent was used to qualitatively compare the phytoconstituents of the plant acetone extracts. The free radical scavenging antioxidant qualitative assay was done by spraying TLC plates with DPPH free radical. The bronchodilatory effects of the aqueous extracts were assessed using pre-contracted guinea pig trachea. The effects of the extracts of T. camphoratus L. and T. parvicapitulatus on superoxide and ATP production was also investigated on isolated human neutrophils. A micromorphology study was done using scanning electron microscopy to study the leaves. RESULTS: Different compounds were visualized on the TLC plates with more than 40 compounds of intermediate polarity. The TLC plates sprayed with DPPH revealed the presence of 20 and 23 antioxidant compounds for T. camphoratus and T. parvicapitulatus respectively. Upon pre-contraction of the tracheal smooth muscles, the aqueous extracts of T. parvicapitulatus significantly relaxed the trachea while the relaxation observed for T. camphoratus was not significant. All the tested concentrations had a dose dependent inhibitory effect on superoxide production. The crude extract of T. parvicapitulatus at the highest concentration (10 mg/ml) significantly decreased ATP production while a non-significant increase in ATP production was observed for T. camphoratus at the highest concentration (10 mg/ml) when compared with the control. The micromorphology study was useful in revealing the presence of trichomes on the upper leaf surface of the studied taxa. CONCLUSIONS: The results obtained from this study showed that the studied plant extracts had bronchodilatory effects on contracted guinea pig trachea and could also inhibit the production of free radicals including superoxide anions. To the best of our knowledge, this is the first report on the bronchodilatory activity of T. camphoratus and T. parvicapitulatus. The micromorphological studies were useful in distinguishing between the two species, confirming that T. camphoratus L. and T. parvicapitulatus are different taxa. This study provides evidence to support the traditional use of T. camphoratus and T. parvicapitulatus in managing bronchospasm.


Assuntos
Asteraceae , Broncodilatadores/farmacologia , Sequestradores de Radicais Livres/farmacologia , Microscopia Eletrônica de Varredura , Contração Muscular/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Traqueia/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Asteraceae/química , Asteraceae/classificação , Asteraceae/ultraestrutura , Broncodilatadores/isolamento & purificação , Sequestradores de Radicais Livres/isolamento & purificação , Cobaias , Humanos , Técnicas In Vitro , Masculino , Neutrófilos/metabolismo , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Superóxidos/metabolismo
4.
PLoS One ; 15(9): e0238589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881951

RESUMO

Scanning electron microscopy (SEM) is widely used to investigate the surface morphology, and physiological state of plant leaves. Conventionally used methods for sample preparation are invasive, irreversible, require skill and expensive equipment, and are time and labor consuming. This study demonstrates a method to obtain in vivo surface information of plant leaves by imaging replicas with SEM that is rapid and non-invasive. Dental putty was applied to the leaves for 5 minutes and then removed. Replicas were then imaged with SEM and compared to fresh leaves, and leaves that were processed conventionally by chemical fixation, dehydration and critical point drying. The surface structure of leaves was well preserved on the replicas. The outline of epidermal as well as guard cells could be clearly distinguished enabling determination of stomatal density. Comparison of the dimensions of guard cells revealed that replicas did not differ from fresh leaves, while conventional sample preparation induced strong shrinkage (-40% in length and -38% in width) of the cells when compared to guard cells on fresh leaves. Tilting the replicas enabled clear measurement of stomatal aperture dimensions. Summing up, the major advantages of this method are that it is inexpensive, non-toxic, simple to apply, can be performed in the field, and that results on stomatal density and in vivo stomatal dimensions in 3D can be obtained in a few minutes.


Assuntos
Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/anatomia & histologia , Polivinil/química , Siloxanas/química , Nicotiana/anatomia & histologia
5.
Plant Cell Environ ; 43(10): 2492-2507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692422

RESUMO

Nitric oxide (NO) and nitrosylated derivatives are produced in peroxisomes, but the impact of NO metabolism on organelle functions remains largely uncharacterised. Double and triple NO-related mutants expressing cyan florescent protein (CFP)-SKL (nox1 × px-ck and nia1 nia2 × px-ck) were generated to determine whether NO regulates peroxisomal dynamics in response to cadmium (Cd) stress using confocal microscopy. Peroxule production was compromised in the nia1 nia2 mutants, which had lower NO levels than the wild-type plants. These findings show that NO is produced early in the response to Cd stress and was involved in peroxule production. Cd-induced peroxisomal proliferation was analysed using electron microscopy and by the accumulation of the peroxisomal marker PEX14. Peroxisomal proliferation was inhibited in the nia1 nia2 mutants. However, the phenotype was recovered by exogenous NO treatment. The number of peroxisomes and oxidative metabolism were changed in the NO-related mutant cells. Furthermore, the pattern of oxidative modification and S-nitrosylation of the catalase (CAT) protein was changed in the NO-related mutants in both the absence and presence of Cd stress. Peroxisome-dependent signalling was also affected in the NO-related mutants. Taken together, these results show that NO metabolism plays an important role in peroxisome functions and signalling.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Óxido Nítrico/fisiologia , Peroxissomos/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Western Blotting , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Microscopia Confocal , Óxido Nítrico/metabolismo , Peroxissomos/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real
6.
Protoplasma ; 257(5): 1447-1456, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32514767

RESUMO

The oily resin produced by Copaifera langsdorffii, commonly called oil of copaiba, is widely exploited by the drug, cosmetic, and biodiesel industries. The distribution of oily secretory cavities and canals (secretory spaces) over the vegetative body characterizes this species. Oil is stored inside the lumen of the secretory spaces and only reaches the organ surface after injuries. Nonetheless, translucent oily deposits occur on the adaxial surface of intact young leaves. In this study, we searched for further sources of oil production in C. langsdorffii leaves in addition to the well-known secretory cavities and investigated the mechanisms of secretion. Leaves in different developmental stages were collected from adult plants and processed for studies on light and transmission electron microscopies. The primary finding of this study was the involvement of the chlorenchyma cells in lipid biosynthesis, in addition to the secretory cavities. The secretory activity of cavities and chlorenchyma cells overlapped in young leaves. Ultrastructurally, secretory cavity cells exhibited abundant smooth endoplasmic reticulum profiles and oleoplasts, whereas the chlorenchyma cells had large chloroplasts with oil inclusions. Our data suggest that the oily material on the leaf surface arose from the chlorenchyma and was transported via the apoplast. These findings open new avenues for understanding oil biosynthesis regulation in mesophyll cells and planning of future strategies for the biotechnological application of C. langsdorffii leaves.


Assuntos
Fabaceae/ultraestrutura , Folhas de Planta/ultraestrutura , Óleos de Plantas/química
7.
Ecotoxicol Environ Saf ; 200: 110748, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470678

RESUMO

Cadmium (Cd) is an inauspicious abiotic traction that not only influences crop productivity and its growth parameters, but also has adverse effects on human health if these crops are consumed. Among crops, leafy vegetables which are the good source of mineral and vitamins accumulate more Cd than other vegetables. It is thus important to study photosynthetic variables, amino acid composition, and ultrastructural localization of Cd differences in response to Cd accumulation between two low and high Cd accumulating Brassica rapa ssp. chinensis L. (pak choi) cultivars, differing in Cd accumulation ability. Elevated Cd concentrations significantly lowered plant growth rate, biomass, leaf gas exchange and concentrations of amino acids collated to respective controls of both cultivars. Electron microscopy indicated that the impact of high Cd level on ultrastructure of leaf cells was associated to affecting cell functionalities, i.e. irregular cell wall, withdrawal of cell membrane, and chloroplast structure which has negative impact on photosynthetic activities, thus causing considerable plant growth suppression. Damage in root cells were observed in the form of enlargement of vacuole. The energy dispersive micro X-ray spectroscopy of both cultivars leaves indicated that cellular structure exhibited exudates of Cd-dense material. Ultrastructural damages and phytotoxicity were more pronounced in high accumulator cultivar as compared to the low accumulator cultivar. These findings are useful in determining the mechanisms of differential Cd-tolerance among cultivars with different Cd tolerance abilities at cellular level.


Assuntos
Brassica rapa/efeitos dos fármacos , Brassica rapa/metabolismo , Cádmio/toxicidade , Aminoácidos/análise , Biomassa , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/ultraestrutura , Cádmio/farmacocinética , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura
8.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244294

RESUMO

Tobacco (Nicotiana tabacum), is a world's major non-food agricultural crop widely cultivated for its economic value. Among several color change associated biological processes, plastid pigment metabolism is of trivial importance in postharvest plant organs during curing and storage. However, the molecular mechanisms involved in carotenoid and chlorophyll metabolism, as well as color change in tobacco leaves during curing, need further elaboration. Here, proteomic analysis at different curing stages (0 h, 48 h, 72 h) was performed in tobacco cv. Bi'na1 with an aim to investigate the molecular mechanisms of pigment metabolism in tobacco leaves as revealed by the iTRAQ proteomic approach. Our results displayed significant differences in leaf color parameters and ultrastructural fingerprints that indicate an acceleration of chloroplast disintegration and promotion of pigment degradation in tobacco leaves due to curing. In total, 5931 proteins were identified, of which 923 (450 up-regulated, 452 down-regulated, and 21 common) differentially expressed proteins (DEPs) were obtained from tobacco leaves. To elucidate the molecular mechanisms of pigment metabolism and color change, 19 DEPs involved in carotenoid metabolism and 12 DEPs related to chlorophyll metabolism were screened. The results exhibited the complex regulation of DEPs in carotenoid metabolism, a negative regulation in chlorophyll biosynthesis, and a positive regulation in chlorophyll breakdown, which delayed the degradation of xanthophylls and accelerated the breakdown of chlorophylls, promoting the formation of yellow color during curing. Particularly, the up-regulation of the chlorophyllase-1-like isoform X2 was the key protein regulatory mechanism responsible for chlorophyll metabolism and color change. The expression pattern of 8 genes was consistent with the iTRAQ data. These results not only provide new insights into pigment metabolism and color change underlying the postharvest physiological regulatory networks in plants, but also a broader perspective, which prompts us to pay attention to further screen key proteins in tobacco leaves during curing.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Proteômica/métodos , Clorofila/metabolismo , Cor , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Xantofilas/metabolismo
9.
Bioelectromagnetics ; 41(3): 200-212, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32030775

RESUMO

The morphophysiological response of Phaseolus vulgaris L. to low-power electromagnetic radiation was investigated in order to assess the potential harmful effects of long-term continuous exposure. The plants were grown in two separate electromagnetic field (EMF) shielded rooms, in a controlled, greenhouse-like environment. One batch was continuously irradiated during the growth period (from sowing to maturity) and the other one was used as a reference. An unmodulated signal at 915 MHz (the central frequency between the uplink and downlink of the GSM900 mobile communications band) was used, with a maximum power density of 10 mW/m2 measured near the plants. The plants were analyzed using ultraviolet-visible, statistical, morphometric, and electron microscopy methods. Significant differences were observed regarding the height of the plants, number of inflorescences, and chlorophyll and carotenoid content, all closely connected with the ultrastructural changes observed in the leaves. The irradiated batch grew higher (19% increase in plant height, 20% increase in stem and leaves' dry mass), with 18% fewer inflorescences, and extremely long roots (34% increase in dry mass). The ultrastructure of the irradiated leaves showed irregular cells and a higher content of plastoglobules in the chloroplasts. All results indicate that the irradiated plants suffered significant morphological modifications during their long-term exposure to the specific EM radiation. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.


Assuntos
Clorofila , Campos Eletromagnéticos , Phaseolus/fisiologia , Folhas de Planta , Carotenoides/análise , Carotenoides/metabolismo , Clorofila/análise , Clorofila/metabolismo , Inflorescência , Phaseolus/química , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Ondas Ultrassônicas
10.
Cells ; 9(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936247

RESUMO

Prune dwarf virus (PDV) is a plant RNA viral pathogen in many orchard trees worldwide. Our knowledge about resistance genes or resistant reactions of plant hosts to PDV is scant. To fill in part of this gap, an aim of this study was to investigate reactions to PDV infection in a model host, Chenopodium quinoa. Our investigations concentrated on morphological and ultrastructural changes after inoculation with PDV strain 0599. It turned out that PDV infection can cause deformations in host cells but also induce changes in the organelles, such as chloroplasts in inoculated leaves. Moreover, we also demonstrated specific reactions/changes, which could be associated with both types of vascular tissue capable of effectively blocking the systemic spread of PDV to upper leaves. Furthermore, the relative amount of virus, P1 protein deposition, and movement protein (MP) gene expression consequently decreased in PDV-inoculated leaves.


Assuntos
Chenopodium quinoa/imunologia , Chenopodium quinoa/ultraestrutura , Ilarvirus/patogenicidade , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/ultraestrutura , Proteínas Virais/metabolismo , Chenopodium quinoa/metabolismo , Chenopodium quinoa/virologia , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas Virais/genética
11.
Protoplasma ; 257(1): 229-244, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31410590

RESUMO

Cell walls and protoplast may work together or distinctly in the establishment of the functional profiles of gall tissue compartments. This presumption is herein evaluated in three gall systems by immunocytochemical and ultrastructural analyses. The common storage tissues (CSTs) of leaf galls induced by Eriophyidae on Miconia ibaguensis leaves and by Ditylenchus gallaeformans on M. ibaguensis and M. albicans have rigid and porous cell walls due to their composition of pectins. Hemicelluloses in CST cell walls are scarcer when compared to the cell walls of the control leaves, being functionally compensated by rigid pectate gels. The typical nutritive tissues (TNTs) in galls induced by Ditylenchus gallaeformans are similar to promeristematic and secretory cells regarding their enriched cytoplasm, several mitochondria, and proplastids, as well as multivesicular and prolamellar bodies in cell membranes. The cytological features of the feeding cells of Eriophyidae galls indicate that they are not as metabolically active as the cells of the TNT in nematode galls. However, their cell wall composition suggests more plasticity and porosity than the cells of the TNT, which can compensate the less production of nutrients with more transport. The ultrastructural and immunocytochemical profiles of CST cells reveal functional similarities, which are independent of the taxa of the gall inducer or of the host plant. Despite their analogous functionalities, the protoplast and cell wall features of TNT cells of nematode galls and of the feeding cells of the Eriophyidae galls are distinct, and work out through different strategies toward keeping gall developmental site active.


Assuntos
Melastomataceae/citologia , Melastomataceae/parasitologia , Nematoides/citologia , Pectinas/metabolismo , Tumores de Planta/parasitologia , Polissacarídeos/metabolismo , Animais , Glicoproteínas/metabolismo , Melastomataceae/anatomia & histologia , Melastomataceae/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo
12.
Protoplasma ; 257(1): 119-139, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31399808

RESUMO

Leaves of Rubus idaeus are a raw material, ingredients of herbal blend, and a source of antioxidants. There are no data concerning histochemistry of trichomes, and little is known about the leaf structure of this species. The aim of this study was to determine the histochemistry of active compounds and the structure of glandular trichomes, micromorphology, anatomy, and ultrastructure of leaves as well as content of elements. To determine the histochemistry of glandular trichomes, different chemical compounds were used. The leaf structure was analysed using light, scanning, and transmission electron microscopes. The content of elements was determined with atomic absorption spectrometry, and the microanalysis of the epidermis ultrastructure was carried out with a transmission electron microscope equipped with a digital X-ray analyser. In glandular trichomes, polyphenols, terpenes, lipids, proteins, and carbohydrates were identified. The main elements in the ultrastructure of the epidermis were Na, Mo, Se, Ca, and Mg. In dry matter of leaves, K, Mg, Ca, P, and Fe were dominant. Infusions from leaves are safe for health in terms of the Cd and Pb concentrations. Leaves can be a valuable raw material. Non-glandular trichomes prevent clumping of mixed raw materials in herbal mixtures.


Assuntos
Minerais/metabolismo , Nutrientes/metabolismo , Folhas de Planta/química , Rubus/química , Rubus/citologia , Tricomas/citologia , Biomassa , Histocitoquímica , Tamanho do Órgão , Folhas de Planta/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/ultraestrutura , Rubus/ultraestrutura , Tricomas/ultraestrutura
13.
Ecotoxicol Environ Saf ; 185: 109692, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585391

RESUMO

Canna indica L. is a promising species for heavy metal phytoremediation due to its fast growth rate and large biomass. However, few studies have investigated cadmium (Cd) tolerance mechanisms. In the present study, Canna plants were cultivated under hydroponic conditions with increasing Cd concentrations (0, 5, 10, 15 mg/L). We found that the plants performed well under 5 mg/L Cd2+ stress, but damage was observed under higher Cd exposure, such as leaf chlorosis, growth inhibition, a decreased chlorophyll content, and destruction of the ultrastructure of leaf cells. Additionally, Canna alleviated Cd toxicity to a certain extent. After Canna was exposed to 5, 10 and 15 mg/L Cd2+ for 45 d, the highest Cd concentration was exhibited in roots, which was almost 17-47 times the Cd concentration in leaves and 8-20 times that in stems. At the subcellular level, cellular debris and heat-stable proteins (HSPs) were the main binding sites for Cd, and the proportion of Cd in the two subcellular fractions accounted for 71.4-94.2% of the total Cd. Furthermore, we found that granules could participate in the detoxification process when Cd stress was enhanced. Our results indicated that Canna indica L. can tolerate Cd toxicity by sequestering heavy metals in root tissues, fencing out by cell wall, and binding with biologically detoxified fractions (granules and HSPs).


Assuntos
Cádmio/toxicidade , Poluentes do Solo/toxicidade , Frações Subcelulares/efeitos dos fármacos , Zingiberales/efeitos dos fármacos , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Relação Dose-Resposta à Radiação , Tolerância a Medicamentos , Inativação Metabólica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Poluentes do Solo/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Zingiberales/metabolismo , Zingiberales/ultraestrutura
14.
J Exp Bot ; 70(21): 6057-6069, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31403664

RESUMO

Chloroplast protein degradation is known to occur both inside chloroplasts and in the vacuole. Genes encoding cysteine proteases have been found to be highly expressed during leaf senescence. However, it remains unclear where they participate in chloroplast protein degradation. In this study HvPAP14, which belongs to the C1A family of cysteine proteases, was identified in senescing barley (Hordeum vulgare L.) leaves by affinity enrichment using the mechanism-based probe DCG-04 targeting cysteine proteases and subsequent mass spectrometry. Biochemical analyses and expression of a HvPAP14:RFP fusion construct in barley protoplasts was used to identify the subcellular localization and putative substrates of HvPAP14. The HvPAP14:RFP fusion protein was detected in the endoplasmic reticulum and in vesicular bodies. Immunological studies showed that HvPAP14 was mainly located in chloroplasts, where it was found in tight association with thylakoid membranes. The recombinant enzyme was activated by low pH, in accordance with the detection of HvPAP14 in the thylakoid lumen. Overexpression of HvPAP14 in barley revealed that the protease can cleave LHCB proteins and PSBO as well as the large subunit of Rubisco. HvPAP14 is involved in the normal turnover of chloroplast proteins and may have a function in bulk protein degradation during leaf senescence.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cisteína Proteases/metabolismo , Hordeum/enzimologia , Proteólise , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Hordeum/ultraestrutura , Concentração de Íons de Hidrogênio , Modelos Biológicos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
BMC Plant Biol ; 19(1): 253, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196035

RESUMO

BACKGROUND: Because of their broad applications in our life, nanoparticles are expected to be present in the environment raising many concerns about their possible adverse effects on the ecosystem of plants. The aim of this study was to examine the effect of different sizes and concentrations of iron oxide nanoparticles [(Fe3O4) NPs] on morphological, physiological, biochemical, and ultrastructural parameters in tobacco (Nicotiana tabacum var.2 Turkish). RESULTS: Lengths of shoots and roots of 5 nm-treated plants were significantly decreased in all nanoparticle-treated plants compared to control plants or plants treated with any concentration of 10 or 20 nm nanoparticles. The photosynthetic rate and leaf area were drastically reduced in 5 nm (Fe3O4) NP-treated plants of all concentrations compared to control plants and plants treated with 10 or 20 nm (Fe3O4) NPs. Accumulation of sugars in leaves showed no significant differences between the control plants and plants treated with iron oxide of all sizes and concentrations. In contrast, protein accumulation in plants treated with 5 nm iron oxide dramatically increased compared to control plants. Moreover, light and transmission electron micrographs of roots and leaves revealed that roots and chloroplasts of 5 nm (Fe3O4) NPs-treated plants of all concentrations were drastically affected. CONCLUSIONS: The size and concentration of nanoparticles are key factors affecting plant growth and development. The results of this study demonstrated that the toxicity of (Fe3O4) NPs was clearly influenced by size and concentration. Further investigations are needed to elucidate more about NP toxicity in plants, especially at the molecular level.


Assuntos
Nanopartículas Metálicas , Nicotiana/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Relação Dose-Resposta a Droga , Compostos Férricos/farmacologia , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura , Brotos de Planta/efeitos dos fármacos , Nicotiana/metabolismo , Nicotiana/ultraestrutura
16.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980530

RESUMO

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Assuntos
Aciltransferases/metabolismo , Parede Celular/metabolismo , Nicotiana/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiologia , Parede Celular/ultraestrutura , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estômatos de Plantas/metabolismo , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Transcriptoma/genética
17.
PLoS One ; 14(3): e0214010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889228

RESUMO

The Grapevine Pinot Gris disease (GPG-d) is a novel disease characterized by symptoms such as leaf mottling and deformation, which has been recently reported in grapevines, and mostly in Pinot gris. Plants show obvious symptoms at the beginning of the growing season, while during summer symptom recovery frequently occurs, manifesting as symptomless leaves. A new Trichovirus, named Grapevine Pinot gris virus (GPGV), which belongs to the family Betaflexiviridae was found in association with infected plants. The detection of the virus in asymptomatic grapevines raised doubts about disease aetiology. Therefore, the primary target of this work was to set up a reliable system for the study of the disease in controlled conditions, avoiding interfering factor(s) that could affect symptom development. To this end, two clones of the virus, pRI::GPGV-vir and pRI::GPGV-lat, were generated from total RNA collected from one symptomatic and one asymptomatic Pinot gris grapevine, respectively. The clones, which encompassed the entire genome of the virus, were used in Agrobacterium-mediated inoculation of Vitis vinifera and Nicotiana benthamiana plants. All inoculated plants developed symptoms regardless of their inoculum source, demonstrating a correlation between the presence of GPGV and symptomatic manifestations. Four months post inoculum, the grapevines inoculated with the pRI::GPGV-lat clone developed asymptomatic leaves that were still positive to GPGV detection. Three to four weeks later (i.e. ca. 5 months post inoculum), the same phenomenon was observed in the grapevines inoculated with pRI::GPGV-vir. This observation perfectly matches symptom progression in infected field-grown grapevines, suggesting a possible role for plant antiviral mechanisms, such as RNA silencing, in the recovery process.


Assuntos
Flexiviridae/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Vitis/virologia , Agrobacterium/virologia , DNA Viral/genética , Flexiviridae/genética , Flexiviridae/ultraestrutura , Genoma Viral , Microscopia Eletrônica de Transmissão , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Nicotiana/ultraestrutura , Virulência , Vitis/ultraestrutura
18.
Protoplasma ; 256(3): 789-803, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30604244

RESUMO

Two types of glandular tichomes (GTs) develop on the leaves in three Doronicum species. The purpose of the work was to establish common and distinctive morphological, anatomical, histochemical, and ultrustructural features of the trichomes. It turned out that differences between types of trichomes are more significant than interspecific ones. For each Doronicum species, differences between GTs of two types include the dimensions, intensity of coloration by histochemical dyes, as well as ultrastructural features of the cells. The GTs of the first type are higher than GTs of the second type. Two to three upper cell layers of the first trichomes develop histochemical staining, whereas in the second ones, only apical cells give a positive histochemical reaction. In all trichomes, polysaccharides, polyphenols, and terpenoids are detected. In the GTs of the first type, polysaccharides are synthesized in larger quantity; in the GTs of the second type, synthesis of the secondary metabolites predominates. Main ultrastructural features of the GTs of the first type include proliferation of RER and an activity of Golgi apparatus denoting the synthesis of enzymes and pectin; however, development of SER, diversiform leucoplasts with reticular sheaths, and chloroplasts with peripheral plastid reticulum also demonstrate the synthesis of lipid substances. The ultrastructural characteristics of the second type GTs indicate the primary synthesis of lipid components. Secretion is localized in a periplasmic space of the upper cell layers. The secretory products pass through the cell wall, accumulate in the subcuticular cavity, and rupture it.


Assuntos
Asteraceae/anatomia & histologia , Asteraceae/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Tricomas/anatomia & histologia , Tricomas/ultraestrutura , Asteraceae/citologia , Parede Celular/ultraestrutura , Folhas de Planta/citologia , Especificidade da Espécie , Tricomas/citologia
19.
Planta ; 249(3): 861-877, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30448862

RESUMO

MAIN CONCLUSION: Four R3 MYB genes were cloned and identified from Platanus acerifolia and analysed according to endogenous gene expression profiles, protein-protein interaction patterns, phenotypic effects and related gene expression profiles in transgenic Arabidopsis, suggesting that London plane R3 MYB genes inhibit trichome formation in Arabidopsis. The CPC-like MYB transcription factors including CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2 and 3 (ETC1, ETC2 and ETC3), TRICHOMELESS1 (TCL1) and TRICHOMELESS2(TCL2) play important roles in controlling trichome patterning in Arabidopsis. In this study, four sequences homologous with the Arabidopsis CPC family were identified from London plane and named PaTRY, PaCPC-like1, PaCPC-like2 and PaCPC-like3. Over-expression of PaTRY, PaCPC-like1, PaCPC-like2 and PaCPC-like3 in Arabidopsis resulted in glabrous phenotypes. In addition, expression of endogenous GL2, GL1, MYB23, TTG2 and a set of R3 MYB-encoding genes was markedly reduced. Furthermore, the protein products of PaTRY, PaCPC-like1, PaCPC-like2 and PaCPC-like3 were shown to interact with PaGL3 in yeast two-hybrid assays. Together, these results likely suggest that the mechanisms of trichome regulation in London plane have similarities with those in Arabidopsis.


Assuntos
Genes de Plantas/fisiologia , Genes myb/fisiologia , Magnoliopsida/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Tricomas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Clonagem Molecular , Genes de Plantas/genética , Genes myb/genética , Microscopia Eletrônica de Varredura , Mutagênese Sítio-Dirigida , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Fatores de Transcrição/genética , Transcriptoma , Tricomas/genética , Tricomas/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
20.
Microsc Res Tech ; 82(4): 459-465, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30586200

RESUMO

In present study, multiple microscope techniques were used for the systematics identification of the species Asplenium dalhousiae. The plant was collected from different phytogeographical and its natural habitat of Pakistan, where it shows higher diversity. Morphology, foliar epidermal anatomy, and spore morphological characters of the species were studied in detailed using multiple microscopic techniques through light microscopy (LM) and scanning electron microscopy (SEM). LM and SEM were used for the systematics identification of the species. Traditionally, the species is used in the ailment of many diseases, so the spore morphology, anatomical features, and morphological characters are relevant to describe the species taxonomy. The importance of multiple methods of taxonomic study (e.g., documentation and morphological characteristics) for characterizing herbs are important step in systematic certification to maintain the efficacy of herbal medicines. The aim of the present study is to examine the morphological, anatomical, and spore morphology of the species A. dalhousiae in more detailed for the correct taxonomic identification and their medicinal validation from Pakistan.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Polypodiaceae/anatomia & histologia , Polypodiaceae/classificação , Microscopia Eletrônica de Varredura , Paquistão , Epiderme Vegetal/ultraestrutura , Preparações de Plantas/uso terapêutico , Estômatos de Plantas/ultraestrutura , Plantas Medicinais , Pólen/ultraestrutura , Polypodiaceae/química , Esporos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA