Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302615

RESUMO

We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whether GABAergic RFMes neurons are active during SD and then, by staining for receptors, whether their activity is associated with homeostatic changes in GABAA or acetylcholine muscarinic type 2 (AChM2) receptors (Rs), which evoke inhibition. We found that a significantly greater proportion of the GABAergic neurons were positively stained for c-Fos after SD (∼27%) as compared to sleep control (SC; ∼1%) and sleep recovery (SR; ∼6%), suggesting that they were more active during waking with SD and less active or inactive during sleep with SC and SR. The density of GABAARs and AChM2Rs on the plasma membrane of the GABAergic neurons was significantly increased after SD and restored to control levels after SR. We conclude that the density of these receptors is increased on RFMes GABAergic neurons during presumed enhanced activity with SD and is restored to control levels during presumed lesser or inactivity with SR. Such increases in GABAAR and AChM2R with sleep deficits would be associated with increased susceptibility of the wake-active GABAergic neurons to inhibition from GABAergic and cholinergic sleep-active neurons and to thus permitting the onset of sleep and PS with muscle atonia.


Assuntos
Neurônios GABAérgicos/metabolismo , Homeostase/fisiologia , Receptores de GABA/metabolismo , Receptores Muscarínicos/metabolismo , Formação Reticular/metabolismo , Privação do Sono/metabolismo , Animais , Neurônios GABAérgicos/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Formação Reticular/patologia , Privação do Sono/patologia
2.
Brain Struct Funct ; 221(1): 217-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25304399

RESUMO

The recognition of head orientation in the adult involves multi-level integration of inputs within the central vestibular circuitry. How the different inputs are recruited during postnatal development remains unclear. We hypothesize that glutamatergic transmission at the vestibular nucleus contributes to developmental registration of head orientations along the vestibulo-olivary pathway. To investigate the maturation profile by which head rotational signals are registered in the brainstem, we used sinusoidal rotations on the orthogonal planes of the three pairs of semicircular canals. Fos expression was used as readout of neurons responsive to the rotational stimulus. Neurons in the vestibular nucleus and prepositus hypoglossal nucleus responded to all rotations as early as P4 and reached adult numbers by P21. In the reticular formation and inferior olive, neurons also responded to horizontal rotations as early as P4 but to vertical rotations not until P21 and P25, respectively. Neuronal subpopulations that distinguish between rotations activating the orthogonally oriented vertical canals were identifiable in the medial and spinal vestibular nuclei by P14 and in the inferior olivary subnuclei IOß and IOK by P25. Neonatal perturbation of glutamate transmission in the vestibular nucleus was sufficient to derange formation of this distribution in the inferior olive. This is the first demonstration that developmental refinement of glutamatergic synapses in the central vestibular circuitry is essential for developmental registration of head rotational signals in the brainstem.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Rotação , Canais Semicirculares/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Maleato de Dizocilpina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Masculino , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Olivar/crescimento & desenvolvimento , Núcleo Olivar/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Formação Reticular/metabolismo , Formação Reticular/fisiologia , Canais Semicirculares/crescimento & desenvolvimento , Núcleos Vestibulares/crescimento & desenvolvimento , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/lesões
3.
PLoS One ; 10(7): e0130939, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26154308

RESUMO

Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300 µl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The external lateral and superior lateral subnuclei of the parabrachial nuclear complex were consistently labeled in experimental data, but they also were labeled in many control cases. The internal lateral subnucleus of the parabrachial complex was labeled moderately. Few immunolabeled neurons were found in the medial reticular formation, however, but the rostroventromedial medulla was labeled consistently. These data are discussed in terms of an interoceptive, multisynaptic spinoreticulothalamic path, with its large receptive fields and role in the motivational-affective components of pain perceptions.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Nociceptividade/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Formação Reticular/metabolismo , Animais , Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Núcleo Celular/metabolismo , Concentração de Íons de Hidrogênio , Bulbo/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Dor , Percepção da Dor , Ponte/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia
4.
Eur J Neurosci ; 38(7): 3008-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23869620

RESUMO

The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin-induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail-immersion test. The selective glutamate receptor antagonists MK801 (N-methyl-D-aspartate receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre-treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c-Fos-like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin-induced secondary allodynia.


Assuntos
Hiperalgesia/metabolismo , Receptores de Glutamato/metabolismo , Formação Reticular/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Formaldeído , Compostos Heterocíclicos com 3 Anéis/farmacologia , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Imuno-Histoquímica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Formação Reticular/efeitos dos fármacos , Tato
5.
Anesthesiology ; 118(2): 327-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263018

RESUMO

BACKGROUND: Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. METHODS: Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. RESULTS: First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. CONCLUSIONS: Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.


Assuntos
Acetilcolina/metabolismo , Período de Recuperação da Anestesia , Ponte/metabolismo , Receptor A1 de Adenosina/efeitos dos fármacos , Respiração/efeitos dos fármacos , Formação Reticular/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Anestesia , Animais , Nível de Alerta/fisiologia , Cromatografia Líquida de Alta Pressão , Condicionamento Operante/efeitos dos fármacos , Eletroquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Microinjeções , Ponte/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos
6.
Artigo em Russo | MEDLINE | ID: mdl-22690551

RESUMO

The ontogeny of defensive behavior of laboratory rodents underlying many experimental models has been still poorly understood. In this study, we investigated the age-related features of behavior of 8- and 12-day-old laboratory mice in response to presentation of the predator odor using olfactory discrimination method and determination of sleep and wakefulness states. Transcription factor c-Fos was used as a molecular marker to map the activity of the reticular formation. Neither preference nor avoidance of the predator odor was detected, as assessed by the proportion of time spent in the compartment with this odor. However, a reduction of locomotor activity and an increase in the proportion of sleep were found in 8-day-old mice, which corresponded to the c-Fos expression in the oral pontine reticular nucleus. The increase in the proportion of passive wakefulness was found in 12-day-old mice, it could be regarded as an early form of freezing. Thus, we identified age-specific features of the defensive behavior of early postnatal mice as well as the dynamics of its formation.


Assuntos
Reação de Congelamento Cataléptica/fisiologia , Odorantes , Comportamento Predatório , Proteínas Proto-Oncogênicas c-fos/metabolismo , Formação Reticular/metabolismo , Olfato/fisiologia , Fatores Etários , Animais , Ansiedade/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/análise , Sono/fisiologia , Fatores de Tempo , Vigília/fisiologia
7.
Brain Struct Funct ; 217(2): 323-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22081168

RESUMO

The paralemniscal area, situated between the pontine reticular formation and the lateral lemniscus in the pontomesencephalic tegmentum contains some tuberoinfundibular peptide of 39 residues (TIP39)-expressing neurons. In the present study, we measured a 4 times increase in the level of TIP39 mRNA in the paralemniscal area of lactating mothers as opposed to nulliparous females and mothers deprived of pups using real-time RT-PCR. In situ hybridization histochemistry and immunolabeling demonstrated that the induction of TIP39 in mothers takes place within the medial paralemniscal nucleus, a cytoarchitectonically distinct part of the paralemniscal area, and that the increase in TIP39 mRNA levels translates into elevated peptide levels in dams. The paralemniscal area has been implicated in maternal control as well as in pain perception. To establish the function of induced TIP39, we investigated the activation of TIP39 neurons in response to pup exposure as maternal, and formalin injection as noxious stimulus. Both stimuli elicited c-fos expression in the paralemniscal area. Subsequent double labeling demonstrated that 95% of neurons expressing Fos in response to pup exposure also contained TIP39 immunoreactivity and 91% of TIP39 neurons showed c-fos activation by pup exposure. In contrast, formalin-induced Fos does not co-localize with TIP39. Instead, most formalin-activated neurons are situated medial to the TIP39 cell group. Our data indicate that paralemniscal neurons may be involved in the processing of maternal and nociceptive information. However, two different groups of paralemniscal neurons participate in the two functions. In particular, TIP39 neurons may participate in the control of maternal functions.


Assuntos
Lactação/fisiologia , Neuropeptídeos/metabolismo , Nociceptividade/fisiologia , Ponte/metabolismo , Formação Reticular/metabolismo , Tegmento Mesencefálico/metabolismo , Animais , Feminino , Formaldeído/farmacologia , Hibridização In Situ , Masculino , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ponte/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Formação Reticular/patologia , Tegmento Mesencefálico/patologia
8.
PLoS One ; 6(9): e24499, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957454

RESUMO

Neurons in the caudalmost ventrolateral medulla (cmVLM) respond to noxious stimulation. We previously have shown most efferent projections from this locus project to areas implicated either in the processing or modulation of pain. Here we show the cmVLM of the rat receives projections from superficial laminae of the medullary dorsal horn (MDH) and has neurons activated with capsaicin injections into the temporalis muscle. Injections of either biotinylated dextran amine (BDA) into the MDH or fluorogold (FG)/fluorescent microbeads into the cmVLM showed projections from lamina I and II of the MDH to the cmVLM. Morphometric analysis showed the retrogradely-labeled neurons were small (area 88.7 µm(2)±3.4) and mostly fusiform in shape. Injections (20-50 µl) of 0.5% capsaicin into the temporalis muscle and subsequent immunohistochemistry for c-Fos showed nuclei labeled in the dorsomedial trigeminocervical complex (TCC), the cmVLM, the lateral medulla, and the internal lateral subnucleus of the parabrachial complex (PBil). Additional labeling with c-Fos was seen in the subnucleus interpolaris of the spinal trigeminal nucleus, the rostral ventrolateral medulla, the superior salivatory nucleus, the rostral ventromedial medulla, and the A1, A5, A7 and subcoeruleus catecholamine areas. Injections of FG into the PBil produced robust label in the lateral medulla and cmVLM while injections of BDA into the lateral medulla showed projections to the PBil. Immunohistochemical experiments to antibodies against substance P, the substance P receptor (NK1), calcitonin gene regulating peptide, leucine enkephalin, VRL1 (TPRV2) receptors and neuropeptide Y showed that these peptides/receptors densely stained the cmVLM. We suggest the MDH- cmVLM projection is important for pain from head and neck areas. We offer a potential new pathway for regulating deep pain via the neurons of the TCC, the cmVLM, the lateral medulla, and the PBil and propose these areas compose a trigeminoreticular pathway, possibly the trigeminal homologue of the spinoreticulothalamic pathway.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Dor/patologia , Dor/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Capsaicina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Dor/induzido quimicamente , Dor/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Formação Reticular/efeitos dos fármacos , Formação Reticular/metabolismo , Formação Reticular/patologia , Formação Reticular/fisiopatologia , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Tálamo/patologia , Tálamo/fisiopatologia , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia , Núcleo Espinal do Trigêmeo/fisiopatologia
9.
Anesthesiology ; 115(4): 743-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21857500

RESUMO

BACKGROUND: Buprenorphine, a partial µ-opioid receptor agonist and κ-opioid receptor antagonist, is an effective analgesic. The effects of buprenorphine on sleep have not been well characterized. This study tested the hypothesis that an antinociceptive dose of buprenorphine decreases sleep and decreases adenosine concentrations in regions of the basal forebrain and pontine brainstem that regulate sleep. METHODS: Male Sprague Dawley rats were implanted with intravenous catheters and electrodes for recording states of wakefulness and sleep. Buprenorphine (1 mg/kg) was administered systemically via an indwelling catheter and sleep-wake states were recorded for 24 h. In additional rats, buprenorphine was delivered by microdialysis to the pontine reticular formation and substantia innominata of the basal forebrain while adenosine was simultaneously measured. RESULTS: An antinociceptive dose of buprenorphine caused a significant increase in wakefulness (25.2%) and a decrease in nonrapid eye movement sleep (-22.1%) and rapid eye movement sleep (-3.1%). Buprenorphine also increased electroencephalographic delta power during nonrapid eye movement sleep. Coadministration of the sedative-hypnotic eszopiclone diminished the buprenorphine-induced decrease in sleep. Dialysis delivery of buprenorphine significantly decreased adenosine concentrations in the pontine reticular formation (-14.6%) and substantia innominata (-36.7%). Intravenous administration of buprenorphine significantly decreased (-20%) adenosine in the substantia innominata. CONCLUSIONS: Buprenorphine significantly increased time spent awake, decreased nonrapid eye movement sleep, and increased latency to sleep onset. These disruptions in sleep architecture were mitigated by coadministration of the nonbenzodiazepine sedative-hypnotic eszopiclone. The buprenorphine-induced decrease in adenosine concentrations in basal forebrain and pontine reticular formation is consistent with the interpretation that decreasing adenosine in sleep-regulating brain regions is one mechanism by which opioids disrupt sleep.


Assuntos
Adenosina/metabolismo , Analgésicos Opioides/farmacologia , Química Encefálica/efeitos dos fármacos , Buprenorfina/farmacologia , Sono/efeitos dos fármacos , Sono/fisiologia , Animais , Compostos Azabicíclicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Zopiclona , Hipnóticos e Sedativos/farmacologia , Masculino , Microdiálise , Medição da Dor/efeitos dos fármacos , Piperazinas/farmacologia , Polissonografia/efeitos dos fármacos , Ponte/efeitos dos fármacos , Ponte/metabolismo , Ratos , Ratos Sprague-Dawley , Formação Reticular/efeitos dos fármacos , Formação Reticular/metabolismo , Substância Inominada/efeitos dos fármacos , Substância Inominada/metabolismo , Vigília/efeitos dos fármacos
10.
J Neurosci Methods ; 198(1): 62-9, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21439321

RESUMO

Neonatal anoxia is a worldwide clinical problem that has serious and lasting consequences. The diversity of models does not allow complete reproducibility, so a standardized model is needed. In this study, we developed a rat model of neonatal anoxia that utilizes a semi-hermetic system suitable for oxygen deprivation. The validity of this model was confirmed using pulse oximetry, arterial gasometry, observation of skin color and behavior and analysis of Fos immunoreactivity in brain regions that function in respiratory control. For these experiments, 87 male albino neonate rats (Rattus norvegicus, lineage Wistar) aged approximate 30 postnatal hours were divided into anoxia and control groups. The pups were kept in an euthanasia polycarbonate chamber at 36±1 °C, with continuous 100% nitrogen gas flow at 3 L/min and 101.7 kPa for 25 min. The peripheral arterial oxygen saturation of the anoxia group decreased 75% from its initial value. Decreased pH and partial pressure of oxygen and increased partial pressure of carbon dioxide were observed in this group, indicating metabolic acidosis, hypoxia and hypercapnia, respectively. Analysis of neuronal activation showed Fos immunoreactivity in the solitary tract nucleus, the lateral reticular nucleus and the area postrema, confirming that those conditions activated areas related to respiratory control in the nervous system. Therefore, the proposed model of neonatal anoxia allows standardization and precise control of the anoxic condition, which should be of great value in indentifying both the mechanisms underlying neonatal anoxia and novel therapeutic strategies to combat or prevent this widespread public health problem.


Assuntos
Modelos Animais de Doenças , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Proteínas Oncogênicas v-fos/metabolismo , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Artérias , Gasometria/instrumentação , Gasometria/métodos , Hipóxia/mortalidade , Masculino , Atividade Motora/fisiologia , Pressão Parcial , Ratos , Ratos Wistar , Respiração , Formação Reticular/metabolismo , Pele/patologia
11.
J Pain ; 11(6): 535-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20015707

RESUMO

UNLABELLED: Clinical and preclinical data concur that sleep disruption causes hyperalgesia, but the brain mechanisms through which sleep and pain interact remain poorly understood. Evidence that pontine components of the ascending reticular activating system modulate sleep and nociception encouraged the present study testing the hypothesis that hypocretin-1 (orexin-A) and an adenosine receptor agonist administered into the pontine reticular nucleus, oral part (PnO) each alter thermal nociception. Adult male rats (n = 23) were implanted with microinjection guide tubes aimed for the PnO. The PnO was microinjected with saline (control), hypocretin-1, the adenosine A(1) receptor agonist N(6)-p-sulfophenyladenosine (SPA), the hypocretin receptor-1 antagonist N-(2-Methyl-6-benzoxazolyl)-N''-1,5-naphthyridin-4-yl-urea (SB-334867), and hypocretin-1 plus SB-334867. As an index of antinociceptive behavior, the latency (in seconds) to paw withdrawal away from a thermal stimulus was measured following each microinjection. Compared to control, antinociception was significantly increased by hypocretin-1 and by SPA. SB-334867 increased nociceptive responsiveness, and administration of hypocretin-1 plus SB-334867 blocked the antinociception caused by hypocretin-1. These results suggest for the first time that hypocretin receptors in rat PnO modulate nociception. PERSPECTIVE: Widely distributed and overlapping neural networks regulate states of sleep and pain. Specifying the brain regions and neurotransmitters through which pain and sleep interact is an essential step for developing adjunctive therapies that diminish pain without disrupting states of sleep and wakefulness.


Assuntos
Agonistas do Receptor A1 de Adenosina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ponte/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Envelhecimento , Animais , Benzoxazóis/farmacologia , Temperatura Alta , Masculino , Microinjeções , Naftiridinas , Receptores de Orexina , Orexinas , Medição da Dor , Ponte/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Formação Reticular/metabolismo , Fatores de Tempo , Ureia/análogos & derivados , Ureia/farmacologia
12.
Anesthesiology ; 111(6): 1327-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19934879

RESUMO

BACKGROUND: Opioids disrupt sleep and adenosine promotes sleep, but no studies have characterized the effects of opioids on adenosine levels in brain regions known to regulate states of arousal. Delivering opioids to the pontine reticular formation (PRF) and substantia innominata (SI) region of the basal forebrain disrupts sleep. In contrast, administering adenosine agonists to the PRF or SI increases sleep. These findings encouraged the current study testing the hypothesis that microdialysis delivery of opioids to the PRF or SI decreases adenosine levels in the PRF or SI, respectively. METHODS: A microdialysis probe was placed in the PRF of isoflurane anesthetized rats and perfused with Ringer's solution (control) followed by Ringer's solution containing morphine (0, 10, 30, 100, or 300 microm), fentanyl (100 microm), morphine (100 microm) and the adenosine deaminase inhibitor EHNA (100 microm), or naloxone (10 microm) and morphine (100 microm). Additional experiments measured adenosine levels in the SI before and during microdialysis delivery of morphine, fentanyl, and morphine plus EHNA. RESULTS: Morphine caused a significant (P < 0.05) concentration-dependent decrease in PRF adenosine levels. The significant decrease (-20%) in adenosine caused by 100 microm morphine was blocked by coadministration of naloxone. Fentanyl also significantly decreased (-13.3%) PRF adenosine. SI adenosine levels were decreased by morphine (-26.8%) and fentanyl (-27.4%). In both PRF and SI, coadministration of morphine and EHNA prevented the significant decrease in adenosine levels caused by morphine alone. CONCLUSIONS: These data support the interpretation that decreased adenosine levels in sleep-regulating brain regions may be one of the mechanisms by which opioids disrupt sleep.


Assuntos
Inibidores de Adenosina Desaminase , Adenosina/metabolismo , Analgésicos Opioides/farmacologia , Química Encefálica/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Cognição/efeitos dos fármacos , Masculino , Microdiálise , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Ratos Sprague-Dawley , Formação Reticular/efeitos dos fármacos , Formação Reticular/metabolismo , Sono/efeitos dos fármacos , Espectrofotometria Ultravioleta
13.
Neuroscience ; 163(1): 329-38, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19501631

RESUMO

The rostral ventrolateral medulla (RVLM), a region critical for the tonic and reflex control of arterial pressure, contains a group of adrenergic (C1) neurons that project to the spinal cord and directly modulate pre-ganglionic sympathetic neurons. Epidemiological data suggest that there are gender differences in the regulation of blood pressure. One factor that could be involved is angiotensin II signaling and the associated production of reactive oxygen species (ROS) by NADPH oxidase, which is emerging as an important molecular substrate for central autonomic regulation and dysregulation. In this study dual electron microscopic immunolabeling was used to examine the subcellular distribution of the angiotensin type 1 (AT(1)) receptor and two NADPH oxidase subunits (p47 and p22) in C1 dendritic processes, in tissue from male, proestrus (high estrogen) and diestrus (low estrogen) female rats. Female dendrites displayed significantly more AT(1) labeling and significantly less p47 labeling than males. While elevations in AT(1) labeling primarily resulted from higher levels of receptor on the plasma membrane, p47 labeling was reduced both on the plasma membrane and in the cytoplasm. Across the estrous cycle, proestrus females displayed significantly higher levels of AT(1) labeling than diestrus females, which resulted exclusively from plasma membrane density differences. In contrast, p47 labeling did not change across the estrous cycle, indicating that ROS production might reflect AT(1) receptor membrane density. No significant differences in p22 labeling were observed. These findings demonstrate that both sex and hormonal levels can selectively affect the expression and subcellular distribution of components of the angiotensin II signaling pathway within C1 RVLM neurons. Such effects could reflect differences in the capacity for ROS production, potentially influencing short term excitability and long term gene expression in a cell group which is critically involved in blood pressure regulation, potentially contributing to gender differences in the risk of cardiovascular disease.


Assuntos
Dendritos/metabolismo , Bulbo/metabolismo , NADPH Oxidases/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Formação Reticular/metabolismo , Caracteres Sexuais , Angiotensina II/metabolismo , Animais , Pressão Sanguínea/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Dendritos/ultraestrutura , Ciclo Estral/fisiologia , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Bulbo/ultraestrutura , Microscopia Imunoeletrônica , NADPH Oxidases/química , Estresse Oxidativo/fisiologia , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reprodução/fisiologia , Formação Reticular/ultraestrutura , Regulação para Cima/fisiologia
14.
Neuroscience ; 163(1): 397-414, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19540313

RESUMO

Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis indicated that pCREB activation in approximately 98% of PPT cholinergic neurons, was caused by REM sleep. Moreover the results indicate that during REM sleep, PPT intracellular PKA activation and a transcriptional cascade involving pCREB occur exclusively in the cholinergic neurons.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Ponte/metabolismo , Formação Reticular/metabolismo , Sono REM/fisiologia , Animais , Biomarcadores/metabolismo , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Imuno-Histoquímica , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Masculino , Núcleo Tegmental Pedunculopontino/citologia , Núcleo Tegmental Pedunculopontino/metabolismo , Fosforilação , Ponte/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/citologia , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Análise de Regressão , Formação Reticular/citologia
15.
Brain Res ; 1276: 22-30, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19393633

RESUMO

Oxidative stress is implicated in the pathogenesis of many neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. The depletion of glutathione (GSH) a powerful antioxidant renders cells particularly vulnerable to oxidative stress. Isolated neuronal and glial cell culture studies suggest that glia rather than neurons have greatest reserves of GSH, implying that neurons are most sensitive to oxidative stress. However, pathological in vivo studies suggest that GSH associated enzymes are elevated in neurons rather than astrocytes. The active, reduced form of GSH is rapidly degraded thus making it difficult to identify the location of GSH in post-mortem tissue. Therefore, to determine whether GSH is more highly expressed in neurons or astrocytes we perfused mouse brains with a solution containing NEM which reacts with the sulfhydryl group of GSH, thus locking the active form in situ, prior to immunostaining with an anti-GS-NEM antibody. We obtained brightfield and fluorescent digital images of sections stained with DAPI and antibodies directed against GS-NEM, glial fibrillary acidic protein (GFAP) in regions containing the hippocampus, striatum, frontal cortex, midbrain nuclei, cerebellum and reticular formation neurons. GSH was most abundant in neurons and white matter in all brain regions, and only in occasional astrocytes lining the third and fourth ventricles. High levels of GSH in neurons and white matter, suggests astrocytes rather than neurons may be particularly vulnerable to oxidative stress.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Glutationa/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Animais , Cerebelo/metabolismo , Ventrículos Cerebrais/metabolismo , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Degeneração Neural , Estresse Oxidativo , Fotomicrografia , Formação Reticular/metabolismo
16.
Brain Res ; 1271: 49-59, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19281800

RESUMO

The linear nucleus (Li) is a prominent cell group in the caudal hindbrain, which was first described in a study of cerebellar afferents in the rat by [Watson, C.R.R., Switzer, R.C. III, 1978. Trigeminal projections to cerebellar tactile areas in the rat origin mainly from N. interpolaris and N. principalis. Neurosci. Lett. 10, 77-82.]. It was named for its elongated appearance in transverse sections. Since this original description in the rat, reference to the nucleus seems to have been largely absent from experimental studies of mammalian precerebellar nuclei. We therefore set out to define the cytoarchitecture, cerebellar connections, and molecular characteristics of Li in the mouse. In coronal Nissl sections at the level of the rostral inferior olive, it consists of two parallel bands of cells joined at their dorsal apex by a further band of cells, making the shape of the Greek capital letter pi. Our three-dimensional reconstruction demonstrated that the nucleus is continuous with the lateral reticular nucleus (LRt) and that the ambiguus nucleus sits inside the arch of Li. Cerebellar horseradish peroxidase injections confirmed that the cells of Li project to cerebellum. We have shown that Li cells express Atoh1 and Wnt1 lineage markers that are known to label the rhombic lip derived precerebellar nuclei. We have examined the relationship of Li cells to a number of molecular markers, and have found that many of the cells express a nonphosphorylated epitope in neurofilament H (SMI 32), a feature they share with the LRt. The mouse Li therefore appears to be a rostrodorsal extension of the LRt.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Bulbo/citologia , Bulbo/metabolismo , Formação Reticular/citologia , Formação Reticular/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/análise , Mapeamento Encefálico , Linhagem da Célula/fisiologia , Cerebelo/embriologia , Galactosídeos , Expressão Gênica , Genes Reporter , Peroxidase do Rábano Silvestre , Processamento de Imagem Assistida por Computador , Indóis , Bulbo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Proteínas de Neurofilamentos/análise , Proteínas de Neurofilamentos/genética , Formação Reticular/embriologia , Rombencéfalo/citologia , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Coloração e Rotulagem , Proteína Wnt1/análise , Proteína Wnt1/genética
17.
Brain Res ; 1247: 79-91, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18955037

RESUMO

Little is known about the chemical coding of the brain neuronal circuitry activated by nociceptive signals of visceral origin. We characterized brain nuclei activated during isovolumetric phasic distension of the proximal colon (10 ml, 30 s on/off for 10 min) in conscious male rats, using Fos as a marker of neuronal activation and dual immunohistochemistry to visualize co-localization of Fos expression and oxytocin (OT), arginine-vasopressin (AVP), corticotrophin-releasing factor (CRF) or tyrosine hydroxylase (TH). Proximal colon distension, compared with sham distension, induced a robust increase in Fos-like immunoreactive (IR) neurons in the paraventricular nucleus (PVN), supraoptic nucleus (SON) and accessory neurosecretory nuclei of the hypothalamus, nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM), and to a lower extent, in the locus coeruleus (LC) and Barrington nucleus. Fos-IR neurons in the PVN after colon distension were identified in 81% of OT-IR, 18% AVP-IR and 16% CRF-IR neurons, while in the SON it represented 36% of OT-IR and 16% AVP-IR. Catecholaminergic cell groups in the pons (LC) and medulla (VLM, NTS) were also activated by proximal colon distension. Of the TH-IR neurons in VLM and NTS, 74% and 42% respectively were double labeled. These results indicate that colon distension stimulates OT-, AVP- and CRF-containing hypothalamic neurons, likely involved in the integration of colonic sensory information to modulate autonomic outflow and pain-related responses. Activation of medullary catecholaminergic centers might reflect the afferent and efferent limbs of the functional responses associated to visceral pain.


Assuntos
Encéfalo/metabolismo , Catecolaminas/metabolismo , Colo/inervação , Neuropeptídeos/metabolismo , Dor/metabolismo , Fibras Aferentes Viscerais/metabolismo , Animais , Vias Autônomas/citologia , Vias Autônomas/metabolismo , Encéfalo/citologia , Mapeamento Encefálico , Colo/fisiopatologia , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Ocitocina/metabolismo , Dor/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Formação Reticular/citologia , Formação Reticular/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Vasopressinas/metabolismo , Fibras Aferentes Viscerais/citologia
18.
Auton Neurosci ; 142(1-2): 20-4, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18650132

RESUMO

The involvement of reactive oxygen species such as superoxide is implicated in the pathogenesis of hypertension. The brain contains a high concentration of polyunsaturated fatty acids in its cell membranes. These fatty acids are targets of oxygen-derived free radicals. Thiobarbituric acid-reactive substances (TBARS), an indirect marker of oxidative stress, are increased in the brainstem of stroke-prone spontaneously hypertensive rats (SHRSP) compared with those of Wistar-Kyoto rats (WKY). In addition, the intensity of electron spin resonance signals taken from the rostral ventrolateral medulla (RVLM), a cardiovascular center, decreases more rapidly in SHRSP than in WKY. To confirm the role of reactive oxygen species in the RVLM or the nucleus tractus solitarius (NTS) in SHRSP, we transfected adenovirus vectors encoding the manganese superoxide dismutase (MnSOD) gene (AdMnSOD) or Cu/Zn-SOD gene (AdCu/ZnSOD) bilaterally into the RVLM or the NTS. After the gene transfer, blood pressure and heart rate of SHRSP, monitored by radio-telemetry system, were significantly decreased compared with non-treated SHRSP, but not WKY. Urinary norepinephrine excretion was significantly decreased in AdMnSOD- or AdCu/ZnSOD-transfected SHRSP, but not in WKY. Furthermore, we found that activation of NAD(P)H oxidase via Rac1 is a source of reactive oxygen species generation in the brain of hypertensive rats. Taken together, these results suggest that the increased oxidative stress in the RVLM and the NTS contribute to the central nervous system mechanisms underlying hypertension in SHRSP. We also found that atorvastatin has actions of reducing oxidative stress in the brain associated with sympatho-inhibitory effects.


Assuntos
Hipertensão/metabolismo , Bulbo/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Bulbo/anatomia & histologia , Bulbo/fisiopatologia , NADPH Oxidases/metabolismo , Ratos , Formação Reticular/anatomia & histologia , Formação Reticular/metabolismo , Formação Reticular/fisiopatologia , Núcleo Solitário/anatomia & histologia , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia
19.
Neuropsychopharmacology ; 33(13): 3164-75, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18354384

RESUMO

We have previously demonstrated that pallidotegmental GABAergic neurons play a crucial role in prepulse inhibition (PPI) of the startle reflex in mice through the activation of GABA(B) receptors in pedunculopontine tegmental neurons. In this study, we investigated whether PPI disruption induced by methamphetamine (METH) or MK-801 is associated with the dysfunction of pallidotegmental neurons. Furthermore, we examined the effects of baclofen, a GABA(B) receptor agonist, on METH- and MK-801-induced PPI impairment. Acute treatment with METH (3 mg/kg, subcutaneouly (s.c.)) and MK-801 (>0.3 mg/kg, s.c.) significantly disrupted PPI, accompanied by the suppression of c-Fos expression in lateral globus pallidus induced by PPI. Furthermore, acute treatment with METH and MK-801 stimulated c-Fos expression in the caudal pontine reticular nucleus (PnC) in mice subjected to the PPT test, although PPI alone had no effect on c-Fos expression. Repeated treatment with 1 mg/kg METH for 7 days, which did not affect PPI acutely, showed similar effects on PPI and c-Fos expression to acute treatment with METH (3 mg/kg). Baclofen dose-dependently ameliorated PPI impairment induced by acute treatment with METH (3 mg/kg) and MK-801 (1 mg/kg), and decreased METH- and MK-801-stimulated c-Fos expression in PnC to the basal level. These results suggest that dysfunction of pallidotegmental neurons is involved in PPI disruption caused by METH and MK-801 in mice. GABA(B) receptor may constitute a putative target in treating neuropsychiatric disorders with sensorimotor gating deficits, such as schizophrenia and METH psychosis.


Assuntos
Baclofeno/farmacologia , Agonistas dos Receptores de GABA-B , Globo Pálido/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Antagonistas de Aminoácidos Excitatórios/farmacologia , Globo Pálido/metabolismo , Imuno-Histoquímica , Masculino , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Ponte/efeitos dos fármacos , Ponte/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de GABA-B/metabolismo , Formação Reticular/metabolismo , Filtro Sensorial/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
20.
Sleep Med ; 8(4): 302-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468046

RESUMO

This paper presents an overview of the current knowledge of the neurophysiology and cellular pharmacology of sleep mechanisms. It is written from the perspective that recent years have seen a remarkable development of knowledge about sleep mechanisms, due to the capability of current cellular neurophysiological, pharmacological and molecular techniques to provide focused, detailed, and replicable studies that have enriched and informed the knowledge of sleep phenomenology and pathology derived from electroencephalographic (EEG) analysis. This chapter has a cellular and neurophysiological/neuropharmacological focus, with an emphasis on rapid eye movement (REM) sleep mechanisms and non-REM (NREM) sleep phenomena attributable to adenosine. The survey of neuronal and neurotransmitter-related brainstem mechanisms of REM includes monoamines, acetylcholine, the reticular formation, a new emphasis on GABAergic mechanisms and a discussion of the role of orexin/hypcretin in diurnal consolidation of REM sleep. The focus of the NREM sleep discussion is on the basal forebrain and adenosine as a mediator of homeostatic control. Control is through basal forebrain extracellular adenosine accumulation during wakefulness and inhibition of wakefulness-active neurons. Over longer periods of sleep loss, there is a second mechanism of homeostatic control through transcriptional modification. Adenosine acting at the A1 receptor produces an up-regulation of A1 receptors, which increases inhibition for a given level of adenosine, effectively increasing the gain of the sleep homeostat. This second mechanism likely occurs in widespread cortical areas as well as in the basal forebrain. Finally, the results of a new series of experimental paradigms in rodents to measure the neurocognitive effects of sleep loss and sleep interruption (modeling sleep apnea) provide animal model data congruent with those in humans.


Assuntos
Sono REM/fisiologia , Acetilcolina/metabolismo , Adenosina/metabolismo , Tronco Encefálico/metabolismo , Fibras Colinérgicas/metabolismo , Eletroencefalografia , Homeostase/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Núcleos da Rafe/metabolismo , Formação Reticular/metabolismo , Fases do Sono/fisiologia , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA