Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.159
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 3452-3459, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723150

RESUMO

A two-photon nanoparticle probe was designed and developed based on the principle of intermolecular interaction of the aggregation-induced locally excited emission luminescence mechanism. The probe has the advantages of simple synthesis, convenient use, strong atomic economy, good biocompatibility, and photobleaching resistance. It can produce a specific and sensitive response to formaldehyde, help detect FA in normal cells and cancer cells, and is expected to become a specific detection probe for FA in vitro and in vivo.


Assuntos
Materiais Biocompatíveis , Formaldeído , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Fótons , Formaldeído/química , Formaldeído/análise , Humanos , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Luminescência , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular
2.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678702

RESUMO

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Exposição por Inalação , Formaldeído/análise , Formaldeído/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Medição de Risco , Humanos
3.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602359

RESUMO

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Assuntos
Peixes , Formaldeído , Limite de Detecção , Compostos de Tritil , Formaldeído/análise , Formaldeído/química , Animais , Compostos de Tritil/química , Compostos de Tritil/análise , Gases/química , Gases/análise , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Soluções , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Espectrometria de Fluorescência/métodos
5.
J Environ Sci (China) ; 142: 142-154, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527880

RESUMO

Formaldehyde (HCHO) is considered one of the most abundant gas-phase carbonyl compounds in the atmosphere, which can be directly emitted through transportation sources. Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) was used to observe HCHO in the river channel of Wusong Wharf in Shanghai, China for the whole year of 2019. Due to the impact of ship activity, the annual average HCHO level in the channel is about 2.5 times higher than that in the nearby campus environment. To explain the sources of HCHO under different meteorological conditions, the tracer-pair of CO and Ox (NO2+O3) was used on the clustered air masses. The results of the source appointment show that primary, secondary and background account for 24.14% (3.34 ± 1.19 ppbv), 44.78% (6.20 ± 2.04 ppbv) and 31.09% (4.31 ± 2.33 ppbv) of the HCHO in the channel when the air masses were from the mixed direction of the city and channel, respectively. By performing background station subtraction at times of high primary HCHO values and resolving the plume peaks, directly emitted HCHO/NO2 in the channel environment and plume were determined to be mainly distributed between 0.2 and 0.3. General cargo ships with higher sailing speeds or main engine powers tend to have higher HCHO/NO2 levels. With the knowledge of NO2 (or NOx) emission levels from ships, this study may provide data support for the establishment of HCHO emission factors.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Navios , Dióxido de Nitrogênio/análise , China , Monitoramento Ambiental/métodos , Formaldeído/análise
6.
Environ Sci Technol ; 58(10): 4680-4690, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412365

RESUMO

Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.


Assuntos
Poluentes Atmosféricos , Formaldeído/efeitos adversos , Petróleo , Hipersensibilidade Respiratória , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Texas , Gás Natural , Monitoramento Ambiental , Formaldeído/análise
7.
J Natl Cancer Inst ; 116(5): 737-744, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38180898

RESUMO

BACKGROUND: Industrial facilities are not located uniformly across communities in the United States, but how the burden of exposure to carcinogenic air emissions may vary across population characteristics is unclear. We evaluated differences in carcinogenic industrial pollution among major sociodemographic groups in the United States and Puerto Rico. METHODS: We evaluated cross-sectional associations of population characteristics including race and ethnicity, educational attainment, and poverty at the census tract level with point-source industrial emissions of 21 known human carcinogens using regulatory data from the US Environmental Protection Agency. Odds ratios and 95% confidence intervals comparing the highest emissions (tertile or quintile) to the referent group (zero emissions [ie, nonexposed]) for all sociodemographic characteristics were estimated using multinomial, population density-adjusted logistic regression models. RESULTS: In 2018, approximately 7.4 million people lived in census tracts with nearly 12 million pounds of carcinogenic air releases. The odds of tracts having the greatest burden of benzene, 1,3-butadiene, ethylene oxide, formaldehyde, trichloroethylene, and nickel emissions compared with nonexposed were 10%-20% higher for African American populations, whereas White populations were up to 18% less likely to live in tracts with the highest emissions. Among Hispanic and Latino populations, odds were 16%-21% higher for benzene, 1,3-butadiene, and ethylene oxide. Populations experiencing poverty or with less than high school education were associated with up to 51% higher burden, irrespective of race and ethnicity. CONCLUSIONS: Carcinogenic industrial emissions disproportionately impact African American and Hispanic and Latino populations and people with limited education or experiencing poverty thus representing a source of pollution that may contribute to observed cancer disparities.


Assuntos
Poluentes Atmosféricos , Humanos , Estados Unidos/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos Transversais , Exposição Ambiental/efeitos adversos , Carcinógenos/análise , Butadienos/análise , Butadienos/efeitos adversos , Benzeno/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Fatores Socioeconômicos , Fatores Sociodemográficos , Formaldeído/análise , Formaldeído/efeitos adversos , Níquel/análise , Níquel/efeitos adversos , Indústrias/estatística & dados numéricos , Porto Rico/epidemiologia
8.
Food Chem ; 443: 138520, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290296

RESUMO

Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg-1 Lcm-2) in linearity range 0.03-0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde.


Assuntos
Frutas , Verduras , Humanos , Frutas/química , Reprodutibilidade dos Testes , Colorimetria/métodos , Formaldeído/análise
9.
J Air Waste Manag Assoc ; 74(2): 131-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059786

RESUMO

Indoor air pollution remains a major concern, with formaldehyde (HCHO) a primary contributor due to its long emission period and associated health risks, including skin allergies, coughing, and bronchitis. This study evaluated the adsorption performance and economic efficiency of various adsorbents (biochar, activated carbon, zeolites A, X, and Y) selected for HCHO removal. The impact of thermal treatment on adsorbent regeneration was also assessed. The experimental apparatus featured an adsorption column and HCHO concentration meter with an electrochemical sensor designed for adsorption analysis. Zeolite X exhibited the highest adsorption performance, followed by zeolite A, zeolite Y, activated carbon, and biochar. All adsorbents displayed increased HCHO removal rates with an extended length/diameter (L/D) ratio of the adsorption column. Zeolite A demonstrated the highest economic efficiency, followed by zeolite X, activated carbon, zeolite Y, and biochar. Higher L/D ratios improved economic efficiency and prolonged the replacement cycle (the optimal timing for adsorbent replacement to maintain high adsorption performance). Sensitivity analysis of adsorbent regeneration under varying thermal treatment conditions (150, 120, and 80°C) and durations (60, 45, and 30 min) revealed minimal changes in adsorption efficiency (±3%). The results indicated the potential of adsorbent regeneration under energy-efficient thermal treatment conditions (80°C, 30 min). In conclusion, this study underscores the importance of a comprehensive assessment, considering factors such as adsorption performance, replacement cycle, economic efficiency, and regeneration performance for the selection of optimal adsorbents for HCHO adsorption and removal.Implications: This study underscores the importance of adsorption technology for the removal of formaldehyde and similar volatile organic compounds (VOCs), highlighting the potential of alternative adsorbents, such as environmentally friendly biochar, in addition to traditional strategies, such as activated carbon and zeolites. Our findings demonstrate the feasibility of adsorbent regeneration under energy-efficient thermal treatment conditions. These results hold promise for improving indoor air quality, reducing environmental pollutants, and enhancing responses to air contaminants like fine dust and VOCs.


Assuntos
Carvão Vegetal , Zeolitas , Carvão Vegetal/química , Zeolitas/química , Adsorção , Formaldeído/análise
11.
Chemosphere ; 349: 140962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104739

RESUMO

Formaldehyde (HCHO) is a key carcinogen and plays an important role in atmospheric chemistry. Both field measurements and Positive Matrix Factorization (PMF) modeling have been employed to investigate the concentrations and sources of HCHO in the Lewiston-Clarkston (LC) valley of the mountainous northwestern U.S. Different instruments were deployed to measure surface formaldehyde and other related compounds in July of 2016 and 2017. The measurements reveal that the average HCHO concentrations have significantly decreased to 2-5 ppb in the LC valley in comparison to its levels (10-20 ppb) observed in July 2006. This discovery with surface measurements deserves attention given that satellite retrievals showed an increasing long-term trend from 2005 to 2014 in total vertical column density of HCHO in the region, suggesting that satellite instruments may not adequately resolve small valleys in the mountainous region. Our PMF modeling identified four major sources of HCHO in the valley: (1) emissions from a local paper mill, (2) secondary formation and background, (3) biogenic sources, and (4) traffic. This study reveals that the emissions from the paper mill cause high HCHO spikes (6-19 ppb) in the early morning. It is found that biogenic volatile organic compounds (VOCs) in the area are influenced by national forests surrounding the region (e.g., Nez Perce-Clearwater, Umatilla, Wallowa-Whitman, and Idaho Panhandle National Forests). The results provide useful information for developing strategies to control HCHO levels and have implications for future HCHO studies in atmospheric chemistry, which affects secondary aerosols and ozone formation.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Formaldeído/análise , Ozônio/análise , Meio Ambiente , Noroeste dos Estados Unidos , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos
12.
BMC Public Health ; 23(1): 2136, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907892

RESUMO

OBJECTIVE: To explore comprehensive interventions to reduce occupational hazards among medical staff in the pathology department of five primary hospitals. METHODS: The indoor air quality in the pathology department of five primary hospitals and the health status of staff were investigated and analyzed. Formaldehyde and benzene concentrations in the technical and diagnostic rooms of the pathology departments were analyzed before and after comprehensive interventions. The Environmental Protection Agency risk assessment paradigm was used to assess the health risks from occupational exposure to benzene and formaldehyde. Consequently, considering the local environment, targeted comprehensive intervention measures were developed, including optimizing management, raising awareness, updating equipment, and replacing reagents. RESULTS: Eye discomfort was higher among technicians in the pathology department than among clinical medical staff (P < 0.05). Before comprehensive interventions, formaldehyde concentrations were higher in the technical room than in the diagnostic room at the five primary hospitals (P < 0.05). However, compared to before interventions, formaldehyde and benzene concentrations in both rooms were significantly lower after comprehensive interventions. Furthermore, although medium risks of occupational exposure to benzene and formaldehyde remained in both rooms before and after comprehensive interventions, the risk values before interventions were higher than after comprehensive interventions. The staff of the technical rooms showed higher risk values that those of the diagnostic rooms before and after comprehensive interventions. Similarly, although hazard quotient (HQ) values for occupational exposure to benzene and formaldehyde were < 1 in both the technical and diagnostic rooms before and after comprehensive interventions, with lower noncarcinogenic risks, the values were higher before than after comprehensive interventions. Moreover, staff in the technical room had higher HQ values before and after comprehensive interventions than those in the diagnostic room. The use of environmentally friendly reagents for the preparation of frozen sections was effective. CONCLUSION: Comprehensive interventions significantly reduced occupational hazards among staff at the pathology department of five primary hospitals, which is of great practical significance to protect the health of staff.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ocupacional , Humanos , Benzeno , Monitoramento Ambiental , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Formaldeído/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Hospitais
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(11): 1748-1751, 2023 Nov 06.
Artigo em Chinês | MEDLINE | ID: mdl-38008558

RESUMO

Formaldehyde, as an important pollutant in indoor air, has always been of great concern. In the newly issued "Standards for indoor air quality (GB/T 18883-2022)", the standard limit of formaldehyde has been restricted to 0.08 mg/m3. In order to better promote the implementation and application of this new standard, this study reviewed and interpreted the relevant technical content for determining the standard limit, including the indoor concentration and human exposure levels of formaldehyde, the health effects of formaldehyde, and the derivation of safety reference values. It also proposed prospect for the future development and revision of quality standards for formaldehyde in indoor air.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/análise , Formaldeído/análise , China
14.
Environ Sci Technol ; 57(43): 16489-16499, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844299

RESUMO

We analyzed two data sets of atmospheric formaldehyde (FA) at an urban site in the Shanghai megacity during the summer of 2017 and the winter of 2017/18, with the primary objective of determining the emission ratio of formaldehyde versus carbon monoxide (CO). Through the photochemical age method and the minimum R squared (MRS) method, we derived the summer urban formaldehyde release ratios of 3.37 ppbv (ppmv of CO)-1 and 4.04 ppbv (ppmv of CO)-1, respectively. The error of both estimations is within ±20%, indicating the consistency of the results. We recognized the hourly minimum emission ratios determined from the MRS method to be indicative of actual formaldehyde emission ratios. Similarly, the emission ratio in winter is determined to be 2.10 ppbv (ppmv of CO)-1 utilizing the MRS method. The findings provide significant insights into the potential impact of motor vehicle exhaust on formaldehyde emissions in urban areas. This work demonstrates that the formaldehyde emission ratio determined by the MRS method can be used to represent the emissions of the freshest air mass. Formaldehyde photolysis contributed an average of 9% to the free radical primary reaction rate (P(ROx)) as a single chemical species during the daytime in summer, which was lower than the 11% recorded in winter. Formaldehyde emission reduction positively impacts local ozone production, so models describing ozone formation in Shanghai during summer need to reflect these emissions accurately. Evidence of the crucial catalytic role of formaldehyde in particulate matter formation has been confirmed by recent research. A potentially effective way to decrease the incidence of haze days in autumn and winter in the future is therefore to focus on reducing formaldehyde emissions.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , China , Emissões de Veículos/análise , Formaldeído/análise , Ozônio/análise
15.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827760

RESUMO

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Assuntos
Poluentes Atmosféricos , Neoplasias , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Ozônio/análise , Tolueno/análise , Medição de Risco , Acetaldeído/análise , Formaldeído/análise , China
16.
Anal Methods ; 15(38): 5095-5101, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37750010

RESUMO

Formaldehyde is a harmful substance that can cause sick building syndrome and other diseases, such as contact allergy, asthma, leukemia, cancer, and brain/neuron disorders. Formaldehyde is a ubiquitous chemical owing to its use in many common products, including as a preservative in household and personal care products. To prevent overexposure to formaldehyde, a simple method for determining and controlling the formaldehyde content in commercial products is required. In this study, 3-aminoquinoline (3-AQ) was used to derivatize formaldehyde under mild conditions (2 min at 30 °C) without the use of catalysts or activators. The derivatized sample solutions were separated using narrow-bore liquid chromatography with an ultraviolet (UV) detector in a run time of only 5 min. All sample extraction and derivatization protocols were performed on the microliter scale to reduce the use of organic solvents. The linear range for the determination was 5-1000 µg mL-1, with a detection limit of approximately 1 µg mL-1 (2 ng per 2 µL injection). The proposed microscale method was successfully applied to the analysis of formaldehyde in commercial household products.


Assuntos
Formaldeído , Produtos Domésticos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Solventes/química , Produtos Domésticos/análise , Formaldeído/análise
17.
Chemosphere ; 342: 140096, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683950

RESUMO

Indoor air pollution resulting from volatile organic compounds (VOCs) is a significant health concern, especially formaldehyde. Therefore, predicting indoor formaldehyde concentration is essential for environmental control. In this research, the authors develop a thermal and wet coupling calculation model of porous fabric that considers the influence of different phases of wet components and the coupling effect of heat and humidity on formaldehyde migration. We propose a modified calculation method of the formaldehyde mass transfer characteristic parameters of fabric to obtain the diffusion coefficient D and partition coefficient K. The heat and humidity coupling model and formaldehyde mass transfer model of fabric are simultaneously solved, and the authors analyze the influence mechanism of fabric loading rate, fabric type, temperature, and humidity on indoor formaldehyde mass transfer characteristics. We study the variation trend of fabric formaldehyde mass transfer characteristics coefficient and the temporal and spatial distribution of indoor formaldehyde concentration. The theoretical model is applied to practical problems by pre-evaluating the indoor formaldehyde concentration of decorated residential buildings in typical climate areas of China before occupancy. The authors obtain the variation rule of indoor formaldehyde concentration of residential buildings under typical hot and humid climate conditions, building materials, furniture, and fabrics. To provide theoretical support for indoor environmental control and human health protection.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Umidade , Temperatura , Formaldeído/análise , Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
18.
Arch Anim Nutr ; 77(4): 290-307, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37553987

RESUMO

This study was conducted to evaluate the effect of substitution of soybean meal (SBM) for formaldehyde-treated sesame meal (FTSM) on nutrient intake and digestibility, ruminal and blood parameters and milk production and composition in lactating Murciano-Granadina goats. Forty lactating goats were randomly assigned to one of the following four treatments: (1) diet with 16.5% CP, containing SBM (CON); (2) diet with 16.5% CP, containing untreated SM (USM); (3) diet with 16.5% CP, containing FTSM (FT); and (4) diet with 14.5% CP containing FTSM (LPFT). The results showed that nutrient intake was highest in the FT group (p < 0.001), while it was similar between the CON and LPFT groups, except for the intake of CP, which was higher in the CON group. The FT and LPFT had lower ruminal pH compared to CON and USM groups (p < 0.001), with goats in group FT having the highest volatile fatty acids (VFA) production (p < 0.001). The highest propionate concentration was observed in the LPFT treatment (p < 0.001), followed by the FT, CON, and USM treatments. Goats offered USM and LPFT treatments presented the highest and lowest acetate: propionate values, respectively, among the experimental groups (p < 0.001). The results also showed that LPFT goats had the lowest blood urea nitrogen (BUN) level (p = 0.004), while FT goats presented a lower non-esterified FA (NEFA) level compared with CON and LPFT goats (p = 0.01). Goats offered the FT diet had the highest milk yield (p = 0.002) and energy-corrected milk yield (p < 0.001) among all dietary groups. The highest milk fat (p < 0.001), protein (p = 0.001), lactose (p = 0.007), total solids (p = 0.003), and solids-not-fat (SNF) (p = 0.003) contents were observed in FT goats, which didn't differ from USM goats. The inclusion of formaldehyde-treated SM increased the percentage of C18:3 (p < 0.001) and C20:1 (p = 0.04) FAs compared with USM and CON treatments. Milk from USM, FT, and LPFT goats had lower levels of saturated (p < 0.001) and medium-chain FAs (p = 0.014) compared with CON goats, whereas milk from CON goats had lower levels of unsaturated, monounsaturated, and long-chain FAs compared to other groups (p < 0.001). The lowest and the highest concentrations of polyunsaturated FAs were observed in CON and LPFT goats, respectively (p = 0.001). It can be concluded that SBM can be advantageously replaced by formaldehyde-treated SM in the diet as a feasible alternative to improve feed intake and production performance of dairy goats.


Assuntos
Leite , Sesamum , Feminino , Animais , Leite/química , Dieta/veterinária , Lactação , Propionatos/análise , Propionatos/metabolismo , Propionatos/farmacologia , Farinha , Ração Animal/análise , Ingestão de Alimentos , Glycine max/química , Formaldeído/análise , Formaldeído/metabolismo , Formaldeído/farmacologia , Cabras , Rúmen/metabolismo , Digestão
19.
Environ Sci Pollut Res Int ; 30(45): 101627-101636, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37653197

RESUMO

Schoolchildren are sensitive to airborne aldehyde exposures. The knowledge regarding inhalation exposure to aldehydes and the factors influencing exposure in schoolchildren is limited. This study aimed to assess the variability and potential health risks of exposure to aldehydes (including formaldehyde) in schoolchildren. The important factors affecting personal exposure to aldehydes were also explored. Forty schoolchildren were recruited from the urban and suburban areas of Taiwan for aldehyde samplings and questionnaire surveys. Personal and indoor home samples of aldehydes were collected simultaneously during warm and cold seasons. We also identified the potential variables associated with aldehyde exposure based on the participant's responses to the questionnaires using mixed-effects models. The dominant three abundant aldehydes identified in personal exposure samples were formaldehyde (geometric mean, GM = 12.2 µg/m3), acetaldehyde (GM = 5.53 µg/m3), and hexaldehyde (GM = 8.79 µg/m3), accounting for approximately 80% of the total selected aldehydes. Higher personal exposure to aldehydes was observed during the warm season. Moreover, the within-subject variance was predominant, accounting for 66.6 to > 99.9% of the total variance in exposure. Schoolchildren had a high probability of overexposure to formaldehyde and acrolein, which resulted in an incremental lifetime cancer risk of 1.59 × 10-4 (95th percentile = 4.64 × 10-4). Season, location, household refurbishment, and indoor ventilation variables were significantly associated with personal exposure to aldehydes. The results can improve our understanding of aldehyde exposure among schoolchildren to propose mitigation strategies. These findings may be applied to further epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Criança , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Aldeídos/análise , Formaldeído/análise , Inquéritos e Questionários
20.
Food Chem ; 427: 136761, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406446

RESUMO

Formaldehyde is added illegally to food to extend its shelf life due to its antiseptic and preservation properties. Several research has been conducted to examine the consequences of adulteration with formaldehyde in food items. These findings suggest that adding formaldehyde to food is considered harmful as it accumulates in the body with long-term consumption. In this review includes study findings on food adulteration with formaldehyde and their assessment of food safety based on the analytical method applied to various geographical regions, food matrix types, and their sources in food items. Additionally, this review sought to assess the risk of formaldehyde-tainted food and the understanding of its development in food and its impacts on food safety in light of the widespread formaldehyde adulteration. Finally, the study would be useful as a manual for implementing adequate and successful risk assessment to increase food safety.


Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Contaminação de Alimentos/análise , Formaldeído/análise , Contaminação de Medicamentos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA