Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
Se Pu ; 42(1): 84-91, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38197209

RESUMO

Isomerization commonly occurs in synthetic cannabinoids (SCs). Owing to the few differences in their structure and properties, it is difficult to simultaneously separate and identify them. Thus, the identification of synthetic cannabinoids is challenging, posing a threat to public security. This study aims to separate and identify four SCs, which are 2-[1-(5-fluoropentyl)-1H-indole-3-formylamino]-3,3-dimethylbutyrate methyl ester (5F-MDMB-PICA), 2-[1-(5-fluoropentyl)-1H-indole-3-formylamino]-3-methylbutyrate ethyl ester (5F-EMB-PICA), N-(1-amino-2,2-dimethyl-1-oxobutyl-2-yl)-1-butyl-1H-indazole-3-formamide (ADB-BINACA), N-(1-carbamoyl-2-methylpropyl)-1-pentyl indazole-3-formamide (AB-PINACA).Supercritical fluid chromatography-mass spectroscopy (SFC-MS) can realize the effective separation of some cannabinoid isomers. However, most laboratories are not equipped with SFC-MS systems. Ultra-high performance liquid chromatography-high resolution mass spectroscopy (UHPLC-HRMS) effectively combines the excellent efficient separation characteristics of liquid chromatography and the powerful qualitative ability of mass spectrometry. It is a commonly used technical method for the detection of amide synthetic cannabinoids and their metabolites in vivo and in vitro because of its advantages of high accuracy and efficiency. Liquid chromatography allows the separation of tested components by exploiting the difference in the partition coefficients between the mobile and stationary phases. When the two phases are in relative motion, the tested components are divided between the two phases, facilitating the separation and analysis of each component. Although the difference in the polarities of the tested amide synthetic cannabinoid isomeric substances is extremely small, liquid chromatography can induce a strong separation effect. The advantages of UHPLC-HRMS include high resolution imparted by mass spectrometry and high sensitivity, allowing its application in the qualitative analysis of various substances. Through UHPLC-HRMS, trace analytes at the nanogram scale as well as pure drugs and their metabolites in biosamples can be detected. This study proposed a method for the determination of two pairs of amide synthetic cannabinoid isomers-5F-EMB-PICA and 5F-MDMB-PICA, ADB-BINACA and AB-PINACA-through UHPLC-HRMS. A Hypersil GOLD C18 column (100 mm×2.1 mm, 1.9 µm) was selected for separation via liquid chromatography, and gradient elution was performed with methanol containing 0.1% formic acid and a 0.1% formic acid aqueous solution containing 10 mmol/L ammonium formate. Full scan/data-dependent secondary mass spectrometry (Full MS/dd-MS2) was conducted in the positive ion mode for detection. The results indicated that the four synthetic cannabinoid isomers could be accurately detected under the abovementioned conditions. The resolution between 5F-EMB-PICA and 5F-MDMB-PICA was 2.06, while that between ADB-BINACA and AB-PINACA was 1.22, indicating the effective separation and detection of both pairs. Furthermore, method validation was conducted to ensure the accuracy of the proposed method. The relationship of the four amide synthetic cannabinoid isomers exhibited excellent linearity. The correlation coefficients (R2) were >0.99. Moreover, the matrix effects of the four SCs in hair samples were between 88.67% and 111.76% and the recoveries were 96.23%-105.11%. The intra-day and inter-day precisions (RSDs) were <10%. The proposed method was used to identify the case materials. AB-PINACA was detected in a hair sample at a content of 0.73 µg/g. 5F-MDMB-PICA was detected in a tobacco sample at a content of 11.3 mg/g. The results indicate that the proposed method can be used for the examination of practical samples conducted by public security organizations. This study provides a reference method for the identification of synthetic cannabinoid isomers.


Assuntos
Amidas , Canabinoides , Cromatografia Líquida de Alta Pressão , Isomerismo , Espectrometria de Massas , Formamidas , Ésteres , Indazóis , Indóis
2.
Sci Rep ; 14(1): 148, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167968

RESUMO

Deep eutectic solvents in the extraction of plant metabolites have found many advantages, such as low toxicity, biodegradability, low cost and ease of preparation over the conventional methods. This work aims to compare natural deep eutectic solvents in extraction and optimization of oleoresin from Ferula gummosa and determining its chemical and structure properties. Box-Behnken design was applied to optimize the extraction of oleoresin from Ferula gummosa using eutectic solvents. The variables of extraction were extraction time, temperature, and ratio of eutectic solvents. Six mixtures of eutectic solvents including choline chloride/urea, acetic acid, lactic acid, formic acid, formamide and glycerol at ratios of 2:1 and 3:1 were evaluated. The highest yields were obtained for choline chloride/formic acid, choline chloride/formamide. The quadratic regression equation was set up as a predictive model with an R2 value of 0.85. The optimum condition was 6 h, 40 °C, and ratio 12.5% (w/v). No significant difference was found between the predicted and experimental yield. The main components of the oleoresin were ß-pinene (40.27%), cylcofenchen (11.93%) and α-pinene (7.53%) as characterized by gas chromatography-mass spectrometry. The chemical structure study by spectroscopy showed that no solvents remained in the oleoresin. Therefore, F. gummosa oleoresin can be explored as a novel promising natural pharmaceutical ingredient extracted with eutectic solvents.


Assuntos
Solventes Eutéticos Profundos , Ferula , Solventes/química , Extratos Vegetais/química , Colina/química , Formamidas
3.
Chembiochem ; 24(24): e202300510, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37747702

RESUMO

3',5'-Cyclic nucleotides play a fundamental role in modern biochemical processes and have been suggested to have played a central role at the origin of terrestrial life. In this work, we suggest that a formamide-based systems chemistry might account for their availability on the early Earth. In particular, we demonstrate that in a liquid formamide environment at elevated temperatures 3',5'-cyclic nucleotides are obtained in good yield and selectivity upon intramolecular cyclization of 5'-phosphorylated nucleosides in the presence of carbodiimides.


Assuntos
Adenosina , Guanosina Monofosfato , Ciclização , Nucleosídeos/química , Nucleotídeos Cíclicos , Formamidas/química , Guanosina
4.
Luminescence ; 38(2): 127-135, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581317

RESUMO

Carbon nanodots can function as photosensitizers that have the ability to generate reactive oxygen species such as singlet oxygen, hydroxy (OH) radicals, and superoxide ions. However, most of these can only be generated upon ultraviolet light excitation. Additionally, the mechanism of reactive oxygen species generation by carbon nanodots remains unclear. The development of carbon nanodots that can photosensitize under visible light irradiation is desirable for applications such as photodynamic therapy and pollutant decomposition under visible light. Here, we report novel carbon nanodot-based photosensitizers that generate reactive oxygen species under visible light; they were synthesized using a solvothermal method with two solvents (formamide and water) and amidol as the carbon source. Carbon nanodots from the solvothermal synthesis in formamide showed blue fluorescence, while those obtained in water showed green fluorescence. The photo-excited blue-fluorescent carbon nanodots produced OH radicals, superoxide ions, and singlet oxygen, and therefore could function as both type I and type II photosensitizers. In addition, photo-excited green-fluorescent carbon nanodots generated only singlet oxygen, therefore functioning as type II photosensitizers. It is proposed that the two photosensitizers have different origins of reactive oxygen species generation: the enrichment of graphitic N for blue-fluorescent carbon nanodots and molecular fluorophores for green-fluorescent carbon nanodots.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , Espécies Reativas de Oxigênio , Oxigênio Singlete/química , Fármacos Fotossensibilizantes/química , Superóxidos , Carbono/química , Luz , Formamidas , Água
5.
Phys Chem Chem Phys ; 24(45): 28012-28018, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373648

RESUMO

The binary intermolecular complexes of amides and formaldehyde can be taken as suitable models to investigate the non-covalent interactions of a peptide with the carbonyl group. We herein studied the rotational spectra of the model complexes of 2-azetidinone-H2CO and formamide-H2CO generated in a helium supersonic jet. For each complex, one rotational spectra featuring hyperfine structures caused by the 14N quadrupole coupling effect was observed and assigned to its global minimum conformation. The detected isomers of both studied complexes are stabilized by a dominant amide hydrogen bond N-H⋯OC and a weaker C-H⋯O interaction, preferring the Cs symmetry. NBO and SAPT analyses provide quantitative estimation of the non-covalent interactions stabilizing the complexes.


Assuntos
Aldeídos , Amidas , Amidas/química , Formamidas/química , Formaldeído , Análise Espectral
6.
Angew Chem Int Ed Engl ; 61(42): e202209625, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36036435

RESUMO

Enantioselective Ni-catalyzed C(sp3 )-H bond activation remains an elusive challenge. Herein, we used phosphine oxide-ligated Ni-Al bimetallic catalyst to realize enantioselective Ni-catalyzed aliphatic C(sp3 )-H activation of formamides, providing a series of chiral N-containing heterocycles in 40-95 % yield and 70-95 % ee.


Assuntos
Formamidas , Níquel , Catálise , Formamidas/química , Níquel/química , Óxidos , Estereoisomerismo
7.
J Phys Chem A ; 126(24): 3893-3902, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35696324

RESUMO

The NH3···CO complex can be considered an important building block for cold synthetic astrochemistry leading to the formation of complex organic molecules, including key prebiotic species. In this work, we have studied the radiation-induced transformations of this complex in Ar, Kr, and Xe matrices using FTIR spectroscopy. On the basis of comparison with the quantum chemical calculations at the CCSD(T)/L2a_3 level of theory, it was found that the initial complex had the configuration with hydrogen bonding through the carbon atom of CO. Irradiation of the matrix isolated complex with X-rays at 6 K leads to the formation of a number of synthetic products, namely, HNCO (in all matrices), formamide NH2CHO, NH2CO, and HNCO-H2 (in argon and krypton). The matrix effect on the product distribution was explained by the involvement of different excited states of the complex in their formation. It was suggested that formamide results from the singlet excited states while other species mainly originate from triplet excited states. The latter states are efficiently populated through ion-electron recombination (in all matrices) and through intersystem crossing (particularly, in xenon). High yield of the recombination triplet states is a feature of the processes induced by high-energy radiation (in contrast to direct photolysis). NCO, CN, and NO were found as minor secondary products at high adsorbed doses. The astrochemical implications of the obtained results are discussed.


Assuntos
Formamidas , Xenônio , Argônio/química , Formamidas/química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Xenônio/química
8.
Chemistry ; 28(3): e202103245, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34767297

RESUMO

Metabolic activation of the human carcinogen 1,3-butadiene (BD) by cytochrome 450 monooxygenases gives rise to a genotoxic diepoxide, 1,2,3,4-diepoxybutane (DEB). This reactive electrophile alkylates guanine bases in DNA to produce N7-(2-hydroxy-3,4-epoxy-1-yl)-dG (N7-DE-dG) adducts. Because of the positive charge at the N7 position of the purine heterocycle, N7-DEB-dG adducts are inherently unstable and can undergo spontaneous depurination or base-catalyzed imidazole ring opening to give N6 -[2-deoxy-D-erythro-pentofuranosyl]-2,6-diamino-3,4-dihydro-4-oxo-5-N-1-(oxiran-2-yl)propan-1-ol-formamidopyrimidine (DEB-FAPy-dG) adducts. Here we report the first synthesis and structural characterization of DEB-FAPy-dG adducts. Authentic standards of DEB-FAPy-dG and its 15 N3 -labeled analogue were used for the development of a quantitative nanoLC-ESI+ -HRMS/MS method, allowing for adduct detection in DEB-treated calf thymus DNA. DEB-FAPy-dG formation in DNA was dependent on DEB concentration and pH, with higher numbers observed under alkaline conditions.


Assuntos
DNA , Compostos de Epóxi , Butadienos , Cromatografia Líquida de Alta Pressão , Adutos de DNA , Formamidas , Furanos , Humanos , Pirimidinas
9.
Curr Top Med Chem ; 22(14): 1189-1214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34886775

RESUMO

BACKGROUND: In this fast-growing lifestyle, humans are in the race against time to cope up with busy schedule. Less exercise, consumption of high calorie-low fiber food and stress take us one step closer towards digestive dysfunction. Dysfunctional digestive system causes various gastrointestinal disorders like constipation, IBS, UC, diarrhea, gastrointestinal tract immobility, hyperglycemia, hemorrhoids, fistula, anal fissures, stomach cancer, hepatocellular carcinoma, pancreatic cancer, colon cancer and metabolic syndrome. Amongst various natural and synthetic indazole derivatives nigellicine, nigellamine, nigellidine, zanubrutinib and SCH772984 showed prominent results to cure various gastrointestinal disorders. OBJECTIVES: In this manuscript, we focus on the importance of indazole derivatives in the treatment of various gastrointestinal diseases. RESULTS AND CONCLUSION: In the treatment of IBS, four positions (R1, R2, R3 and R4) of indazole were mainly substituted with aromatic aldehyde/substituted methyl, aromatic acid/formamide, benzamide/ sulfonamide and methyl groups, respectively. In case of diarrhea and metabolic syndrome treatment, substitutions with benzyl/isopropyl/acetaldehyde (R1 position) and carboxamide/ formamide (R2 position) of indazole play a critical role. Also, in the treatment of diabetes melitus, all six positions of indazole derivative were substituted with substituted aryl/alkyl/aromatic acid, substituted formamide, substituted acetamide/hydrazide group, halo aryl, substituted aryl/aromatic acid and a long chain of alkyl-aryl alcohol groups, respectively. In the treatment of gastrointestinal cancers, all six positions of indazole derivative were substituted with benzylamide (R1), octanediamide/ benzamide/formamide (R2), carbaldehyde (R4) and substituted phenyl (R5 and R6) groups, respectively. Six receptors (6NP0, 2YME, 4EFU, 4WZ8, 5U4W and 7KKP) associated with GI disorders (co-crystallized with indazole derivative) were identified. Analysis of the receptors showed that co-crystalized ligand molecules were well-interacted with receptors via pie-pie interaction, coordinate and sigma bonding within 4 Å distance. As per Ramachandran plot analysis, more than 90% of the amino acid residues were present in the most favored region. So, if sufficient focuses are imposed on the development of newer indazole derivatives to treat gastrointestinal diseases, it will work as a boon to society.


Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Síndrome Metabólica , Benzamidas , Diarreia , Formamidas , Gastroenteropatias/complicações , Gastroenteropatias/tratamento farmacológico , Humanos , Indazóis/química , Indazóis/farmacologia , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/metabolismo
10.
Bioorg Chem ; 116: 105361, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562672

RESUMO

The OPG/RANKL/RANK pathway is a promising target for the design of therapeutic agents used in the treatment of osteoporosis. E09241 with an N-methylpyridine-chlorofuranformamide structural skeleton was previously identified to decrease bone loss and thus protect against osteoporosis in ovariectomized rats through increasing osteoprotegerin (OPG) expression. In this study, 36 derivatives of E09241 (3a) were prepared. The synthesis, up-regulation of OPG activities, SAR (structure-activity relationship), and cytotoxicity of these compounds are presented. Compounds with good up-regulating OPG activities could inhibit RANKL (the receptor activator of nuclear factor-kappa B ligand)-induced osteoclastogenesis in RAW264.7 cells. Particularly, compounds 3c and 3i1 significantly reduced NFATc1 and MMP-9 protein expression through inhibition of the NF-κB and MAPK pathways in RANKL induced RAW264.7 cells. In addition, compounds 3c and 3v significantly promoted osteoblast differentiation in MC3T3-E1 cells in osteogenic medium, and compounds 3c, 3v, and 3i1 obviously increased OPG protein expression and secretion in MC3T3-E1 cells. Furthermore, the pharmacokinetic profiles, acute toxicity, and hERG K+ channel effects of compounds 3a, 3c, 3e, 3v, and 3i1 were investigated. Taken together, these results indicate that N-methylpyridine-chlorofuranformamide analog 3i1 could serve as a promising lead for the development of new agents for treating osteoporosis.


Assuntos
Formamidas/farmacologia , Furanos/farmacologia , Osteoprotegerina/metabolismo , Piridinas/farmacologia , Ligante RANK/antagonistas & inibidores , Células 3T3 , Animais , Relação Dose-Resposta a Droga , Formamidas/química , Furanos/química , Camundongos , Estrutura Molecular , Osteogênese/efeitos dos fármacos , Piridinas/química , Ligante RANK/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
DNA Repair (Amst) ; 108: 103213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464900

RESUMO

Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.


Assuntos
Adutos de DNA , Formamidas , Furanos , Genes p53 , Pirimidinas , Dano ao DNA , Replicação do DNA , Humanos , Cinética , Mutação , Proteína Supressora de Tumor p53/genética
12.
J Phys Chem A ; 125(16): 3457-3472, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33861935

RESUMO

The chemistry occurring in the interstellar medium (ISM) is an active area of contemporary research. New aspects of interstellar chemistry are getting unraveled regularly. In this context, the role of metal-ions in the chemistry occurring in the ISM is not well-studied so far. Herein, we highlight the role of metal-ions in interstellar chemistry. For this purpose, we choose the problem of gas-phase formamide formation in interstellar molecular clouds. Formamide is a key biomonomer and contains the simplest peptide [-(C═O)-NH-] linkage. With its two electronegative atoms ("O" and "N"), it provides an excellent platform to probe the role of the metal-ions. The metal-ions chosen are Na+, K+, Al+, Mg+, and Mg2+-all of them present in the ISM. The metal-ions are studied in three different forms as bare positively charged ions, as hydrated metal-ions co-ordinated with a molecule of water, and when the metal-ions are part of a neutral covalent molecule. With the aid of electronic structure calculations [CCSD(T) and DFT methods], we study different gas-phase pathways which result in the generation of interstellar formamide. Throughout our study, we find that metal-ions lower the barriers (with Mg+, Mg++, and Al+ offering maximal stabilization of the transition states) and facilitate the reactions. The chemical factors influencing the reactions, how we consider the putative conditions in the ISM, the astrochemical implications of this study, and its connection with terrestrial prebiotic chemistry and refractory astrochemistry are subsequently presented. Based on our results, we also recommend the detection of two new closed-shell molecules, NH2CH2OH (aminomethanol) and CH2NH2+ (iminium ion), and two open-shell molecules, CONH2 (carbamyl radical) and HCONH (an isomer of carbamyl radical), in the ISM.


Assuntos
Meio Ambiente Extraterreno/química , Formamidas/síntese química , Gases/química , Metais Leves/química , Teoria da Densidade Funcional , Modelos Químicos
13.
Arch Pharm (Weinheim) ; 354(2): e2000236, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33079446

RESUMO

Ten coumarin-3-formamido derivatives, N-benzyl-coumarin-3-carboxamide (2), N-fluorobenzyl-coumarin-3-carboxamide (3-5), N-methoxybenzyl-coumarin-3-carboxamide (6-8), N-((1-methyl-1H-imidazol-5-yl)methyl)-coumarin-3-carboxamide (9), N-(thiophen-2-ylmethyl)-coumarin-3-carboxamide (10), and N-(furan-2-ylmethyl)-coumarin-3-carboxamide (11), were synthesized and characterized. Compound 5 crystallizes in a monoclinic system P21 /c space group with four chemical formulas in a unit cell; molecules of compound 5 are self-assembled into a two-dimensional supramolecular structure by intermolecular hydrogen bonds and C⋯C π stacking. The potential anticancer effects of these compounds on HeLa (cervical carcinoma), MCF-7 (breast), A549 (lung), HepG2 (liver), and human umbilical vein (HUVEC) cells were examined. Compared with compounds 1-8 and 10-11, compound 9 exhibits potent in vitro cytotoxicity against HeLa cells and lower cytotoxicity against normal cells. Therefore, further in-depth investigations of compound 9 were performed. Absorption titration experiments and fluorescence spectroscopy studies suggested that compound 9 binds to DNA through the intercalation mode.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , DNA/efeitos dos fármacos , Formamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Formamidas/síntese química , Formamidas/química , Humanos , Masculino , Estrutura Molecular , Espermatozoides/química , Relação Estrutura-Atividade
14.
J Chem Phys ; 153(22): 224306, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317314

RESUMO

To advance our quest to understand the role of low energy electrons in biomolecular systems, we performed investigations on dissociative electron attachment (DEA) to gas-phase N-ethylformamide (NEF) and N-ethylacetamide (NEA) molecules. Both molecules contain the amide bond, which is the linkage between two consecutive amino acid residues in proteins. Thus, their electron-induced dissociation can imitate the resonant behavior of the DEA process in more complex biostructures. Our experimental results indicate that in these two molecules, the dissociation of the amide bond results in a double resonant structure with peaks at ∼5 eV and 9 eV. We also determined the energy position of resonant states for several negative ions, i.e., the other dissociation products from NEF and NEA. Our predictions of dissociation channels were supported by density functional theory calculations of the corresponding threshold energies. Our results and those previously reported for small amides and peptides imply the fundamental nature for breakage of the amide bond through the DEA process.


Assuntos
Acetamidas/química , Formamidas/química , Ânions/química , Elétrons , Gases/química , Peptídeos/química , Termodinâmica
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(6): 1892-1898, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33283716

RESUMO

OBJECTIVE: To study the effect of 5-aminoimidazole-4-formamide ribonucleotide (AICAR) combined with interferon (IFN-α-2b) on the proliferation and apoptosis of chronic myeloid leukemia K562 cells, and explore its possible mechanism. METHODS: CCK-8 method was used to detect the inhibition of cell proliferation. Wright Giemsa method was used to stain and cell morphology was observed by light microscopy. FITC Annexin V/PI double staining method was used to analyze the change of apoptosis rate. Immunocytochemistry method was used to detect the expression of wild-type P53 protein. RESULTS: Different concentration of AICAR was inhibitory effect on K562 cells at different time point of action for 24 h, 48 h, and 72 h, and the inhibition was time and dose-dependent (r=0.71, r=0.84). The combination of AICAR and IFN-α-2b could effectively inhibit the proliferation and promote apoptosis of K562 cells. The inhibition rate of K562 cells was (45.26±2.54)%, and the early apoptosis rate was (33.72±0.23)%, which was statistically significantly different from the control group, AICAR or IFN-ɑ-2b alone (P<0.05). The combination of two drugs promoted the expression of wild-type p53 protein. CONCLUSION: AICAR and/or IFN-ɑ-2b can inhibit the cell proliferation and promote the apoptosis of K562 cells. The combination of two drugs shows synergistic antitumor effect, and its mechanism may be related to the promotion of high expression of wild-type p53 protein.


Assuntos
Interferons , Leucemia Mielogênica Crônica BCR-ABL Positiva , Apoptose , Proliferação de Células , Formamidas , Humanos , Imidazóis , Células K562 , Ribonucleotídeos/farmacologia
16.
J Am Soc Mass Spectrom ; 31(1): 2-24, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32881516

RESUMO

In this article, a perspective is given of chemical dynamics simulations of collisions of biological ions with surfaces and of collision-induced dissociation (CID) of ions. The simulations provide an atomic-level understanding of the collisions and, overall, are in quite good agreement with experiment. An integral component of ion/surface collisions is energy transfer to the internal degrees of freedom of both the ion and the surface. The simulations reveal how this energy transfer depends on the collision energy, incident angle, biological ion, and surface. With energy transfer to the ion's vibration fragmentation may occur, i.e. surface-induced dissociation (SID), and the simulations discovered a new fragmentation mechanism, called shattering, for which the ion fragments as it collides with the surface. The simulations also provide insight into the atomistic dynamics of soft-landing and reactive-landing of ions on surfaces. The CID simulations compared activation by multiple "soft" collisions, resulting in random excitation, versus high energy single collisions and nonrandom excitation. These two activation methods may result in different fragment ions. Simulations provide fragmentation products in agreement with experiments and, hence, can provide additional information regarding the reaction mechanisms taking place in experiment. Such studies paved the way on using simulations as an independent and predictive tool in increasing fundamental understanding of CID and related processes.


Assuntos
Espectrometria de Massas/métodos , Modelos Químicos , Peptídeos/química , Transferência de Energia , Formamidas/química , Íons/química , Simulação de Dinâmica Molecular , Propriedades de Superfície
17.
J Chromatogr A ; 1624: 461099, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32327223

RESUMO

In this short communication, we report the use of a second-generation macrolide antibiotic, gamithromycin (Gam), as a novel chiral selector for enantioseparation in capillary electrophoresis (CE). A preliminary analysis of the experiment results shows that Gam is especially suitable for the separation of chiral primary amines. Factors influencing enantioseparations were systematically investigated including the composition of the background electrolyte (BGE), concentration of Gam, the type and proportion of organic solvents, applied voltage, etc. In particular, N-Methylformamide (NMF) was successfully used as a non-aqueous solvent for Gam, and shown to be extremely effective for the separation of primaquine (PMQ) and 1-aminoindan (AMI) when used alone or mixed with other commonly used non-aqueous solvents (e.g. methanol). To our knowledge this was also the first application of NMF as a non-aqueous solvent for antibiotic chiral selectors in CE. The best separations were obtained with 100 mM Tris, 125 mM H3BO3 and 80 mM Gam in methanol/NMF (25:75) solvent for PMQ and AMI, or 80-100 mM Gam in methanol for the other model analytes. Among the analytes, the resolution (Rs) of amlodipine (AML) reached up to 15.65, which is to our knowledge the highest value ever reported in CE studies for this compound (except for using molecularly imprinted polymers technique).


Assuntos
Antibacterianos/química , Eletroforese Capilar , Macrolídeos/química , Anlodipino/análise , Eletrólitos , Formamidas/química , Indanos/análise , Metanol/química , Primaquina/análise , Solventes/química , Estereoisomerismo
18.
Sci Total Environ ; 726: 138604, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305772

RESUMO

Dimethylformamide (DMF) is a volatile organic compound listed as one of the four toxicants with the highest priority for human field study. However, the effect of DMF exposure on lung function and the underlying mechanisms remain unknown. We aimed to investigate the exposure-response relationship and possible mechanism between internal DMF exposure and lung function alteration. We studied 3701 Chinese adults from the Wuhan-Zhuhai cohort with a 3-year follow-up. The cross-sectional relationship between urinary biomarker of DMF exposure (N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine, AMCC) and lung function, and the mediating role of plasma C-reactive protein (CRP) were assessed. We also convened a sub-cohort (N = 138) to assess the stability of AMCC in repeated urine samples collected for continuous 3 days and intervals of 1, 2 and 3 years. The longitudinal association between AMCC and lung function change in 3 years was further assessed. We found a dose-response relationship between AMCC and lung function reduction. Each 2-fold increase in AMCC was cross-sectionally associated with a 23.12-mL (95% CI: -36.68, -9.55) decrease in FVC and a 19.01-mL (95% CI: -31.08, -6.93) decrease in FEV1. Increased CRP significantly mediated 5.39% and 5.87% of the AMCC-associated FVC and FEV1 reductions, respectively. With 3-year follow-up, AMCC showed a fair to excellent stability (intra-class correlation coefficients were 0.88, 0.55, 0.60 and 0.50 for continuous 3 days, intervals of 1, 2 and 3 years, respectively) and was dose-dependently associated with longitudinal lung function decline. Compared with those with persistent low AMCC levels, participants with persistent high AMCC levels had a 101.09-mL/year (95% CI: -167.40, -34.77) decline in FVC and a 66.27-mL/year (95% CI: -114.14, -18.41) decline in FEV1 in the sub-cohort. Similar results were found in the full-cohort. Our findings suggest that exposure of general population to environmental DMF may impair lung function, and systematic inflammation may be an underlying mechanism.


Assuntos
Dimetilformamida , Exposição Ocupacional , Acetilcisteína , Adulto , Proteína C-Reativa , Estudos Transversais , Formamidas , Humanos , Inflamação , Pulmão
19.
J Nat Prod ; 83(2): 202-209, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049520

RESUMO

Dithiolopyrrolones are microbial natural products containing a disulfide or thiosulfonate bridge embedded in a unique bicyclic structure. By interfering with zinc ion homeostasis in living cells, they show strong antibacterial activity against a variety of bacterial pathogens, as well as potent cytotoxicity against human cancer cells. In the current study, two new dithiolopyrrolones, pyrroloformamide C (3) and pyrroloformamide D (4), were isolated from Streptomyces sp. CB02980, together with the known pyrroloformamides 1 and 2. The biosynthetic gene cluster for pyrroloformamides was identified from Streptomyces sp. CB02980, which shared high sequence similarity with those of dithiolopyrrolones, including holomycin and thiolutin. Gene replacement of pyfE, which encodes a nonribosomal peptide synthetase (NRPS), abolished the production of 1-4. Overexpression of pyfN, a type II thioesterase gene, increased the production of 1 and 2. Genome neighborhood network analysis of the characterized and orphan gene clusters of dithiolopyrrolones revealed a unified mechanism for their biosynthesis, involving an iterative-acting NRPS and a set of conserved tailoring enzymes for the bicyclic core formation.


Assuntos
Antibacterianos/isolamento & purificação , Proteínas de Bactérias/genética , Produtos Biológicos/química , Formamidas/isolamento & purificação , Compostos Heterocíclicos com 2 Anéis/isolamento & purificação , Lactamas/química , Peptídeo Sintases/genética , Antibacterianos/química , Proteínas de Bactérias/química , Formamidas/química , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Estrutura Molecular , Família Multigênica , Peptídeo Sintases/química , Streptomyces/química , Streptomyces/genética
20.
Bioorg Med Chem Lett ; 29(13): 1677-1681, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31053506

RESUMO

In an effort to develop a more potent anticancer therapeutic agent, a series of 2-pyridineformamide thiosemicarbazones (R = H, 4-CH3, 5-F, 6-CH3 and ) have been synthesized and evaluated for their anti-cancer activities against the cancer cells MCF-7 (breast cancer cell line), A-431 and A375 (epidermoid carcinoma cell line), and HeLa (cervical cancer cell line) using MTT assay. All these 2-pyridineformamide thiosemicarbazones exhibited anti-proliferative activities towards these cell lines. 5FAmPyrr possess most profound effects against MCF-7 cells with IC50 of 0.9 µM. In flow cytometry using Propidium Iodide, 5FAmPyrr was found to induce cell death significantly in a dose dependent manner (100 nM-3 µM) and inhibited colony formation of MCF-7 cells. This compound induced pro-apoptotic protein Bax and inhibited anti apoptotic protein Bcl-2 as well as both c-Jun and Jun N-terminal kinase (abbreviated as JNK) in concentration dependent manner. Further pro-caspase 3 and PARP were inhibited by 5FAmPyrr at concentration of 3 µM. The results suggest that 5FAmPyrr exhibit anticancer potency and induced cell death by inhibiting MAPK signaling and inducing intrinsic apoptotic pathway. All these indicate that 2-pyridineformamide thiosemicarbazones could be developed as future therapeutics agents to treat cancer.


Assuntos
Formamidas/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piridinas/uso terapêutico , Tiossemicarbazonas/uso terapêutico , Formamidas/farmacologia , Humanos , Células MCF-7 , Piridinas/farmacologia , Transdução de Sinais , Tiossemicarbazonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA