Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Int J Nanomedicine ; 19: 9175-9193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263632

RESUMO

Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke. Methods: MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs. Results: In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies. Conclusion: MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.


Assuntos
Inflamassomos , AVC Isquêmico , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Piroptose , Animais , Camundongos , AVC Isquêmico/tratamento farmacológico , Células RAW 264.7 , Piroptose/efeitos dos fármacos , Nanopartículas/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Polietilenoglicóis/química , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/tratamento farmacológico , Fosfatidiletanolaminas/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
2.
AAPS PharmSciTech ; 25(7): 213, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266895

RESUMO

To overcome the challenges associated with the co-delivery of AuNPs (gold nanoparticles) and miRNA as an anti-breast cancer combination therapy, niosomal systems were developed using Span 60, cholesterol, and a cationic lipid (CTAB), and the formulations were optimized using Box-Behnken experimental design. The niosomal formulations with the smallest size were selected for further optimization of size, surface charge, entrapment efficiency, and stability. To achieve this, AuNPs and DSPE-PEG2000 (2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000)were added to the formulation. The optimized niosomal formulation could effectively encapsulate AuNPs with an entrapment efficiency of 34.49% ± 0.84 and a spherical particle size of 153.6 ± 4.62 nm. The incorporation of PEG and CTAB led to notable enhancements in the overall characteristics of the delivery system. To evaluate the effectiveness of the combination therapy, various assessments such as cytotoxicity, apoptosis, and gene expression properties were conducted. The results demonstrated that the combination delivery using the new C-PEG-Nio-AuNPs (cationic pegylated niosomal gold nanoparticles) system and miRNA had the lowest IC50, the highest apoptosis rate, and the most significant upregulation of miRNA and BAX/BCL2 expression in MCF-7 cell growth. In conclusion, this innovative co-delivery approach represents a promising breakthrough in the development of therapeutic agents for breast cancer treatment. By combining multiple therapeutic agents within a single delivery system, this method has the potential to enhance treatment efficacy, reduce side effects, and improve patient outcomes.


Assuntos
Neoplasias da Mama , Ouro , Lipossomos , Nanopartículas Metálicas , MicroRNAs , Tamanho da Partícula , Polietilenoglicóis , Ouro/química , Humanos , MicroRNAs/administração & dosagem , Células MCF-7 , Polietilenoglicóis/química , Nanopartículas Metálicas/química , Lipossomos/química , Neoplasias da Mama/tratamento farmacológico , Feminino , Cátions/química , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Fosfatidiletanolaminas/química
3.
Drug Dev Res ; 85(5): e22241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104176

RESUMO

The role of KRAS mutation in non-small cell lung cancer (NSCLC) initiation and progression is well-established. However, "undruggable" KRAS protein poses the research of small molecule inhibitors a significant challenge. Addressing this, proteolysis-targeting chimeras (PROTACs) have become a cutting-edge treatment method, emphasizing protein degradation. A modified ethanol injection method was employed in this study to formulate liposomes encapsulating PROTAC drug LC-2 (LC-2 LPs). Precise surface modifications using cell-penetrating peptide R8 yielded R8-LC-2 liposomes (R8-LC-2 LPs). Comprehensive cellular uptake and cytotoxicity studies unveiled that R8-LC-2 LPs depended on concentration and time, showcasing the superior performance of R8-LC-2 LPs compared to normal liposomes. In vivo pharmacokinetic profiles demonstrated the capacity of DSPE-PEG2000 to prolong the circulation time of LC-2, leading to higher plasma concentrations compared to free LC-2. In vivo antitumor efficacy research underscored the remarkable ability of R8-LC-2 LPs to effectively suppress tumor growth. This study contributed to the exploration of enhanced therapeutic strategies for NSCLC, specifically focusing on the development of liposomal PROTACs targeting the "undruggable" KRAS protein. The findings provide valuable insights into the potential of this innovative approach, offering prospects for improved drug delivery and heightened antitumor efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lipossomos , Neoplasias Pulmonares , Proteólise , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Peptídeos Penetradores de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Proteólise/efeitos dos fármacos , Quimera de Direcionamento de Proteólise/administração & dosagem , Quimera de Direcionamento de Proteólise/farmacocinética , Quimera de Direcionamento de Proteólise/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos
4.
ACS Nano ; 18(33): 22122-22138, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39119697

RESUMO

Binding of anti-PEG antibodies to poly(ethylene glycol) (PEG) on the surface of PEGylated liposomal doxorubicin (PLD) in vitro and in rats can activate complement and cause the rapid release of doxorubicin from the liposome interior. Here, we find that irinotecan liposomes (IL) and L-PLD, which have 16-fold lower levels of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG2000 in their liposome membrane as compared to PLD, generate less complement activation but remain sensitive to destabilization and drug release by anti-PEG antibodies. Complement activation and liposome destabilization correlated with the theoretically estimated number of antibody molecules bound per liposome. Drug release from liposomes proceeded through the alternative complement pathway but was accelerated by the classical complement pathway. In contrast to PLD destabilization by anti-PEG immunoglobulin G (IgG), which proceeded by the insertion of membrane attack complexes in the lipid bilayer of otherwise intact PLD, anti-PEG IgG promoted the fusion of L-PLD, and IL to form unilamellar and oligo-vesicular liposomes. Anti-PEG immunoglobulin M (IgM) induced drug release from all liposomes (PLD, L-PLD, and IL) via the formation of unilamellar and oligo-vesicular liposomes. Anti-PEG IgG destabilized both PLD and L-PLD in rats, indicating that the reduction of PEG levels on liposomes is not an effective approach to prevent liposome destabilization by anti-PEG antibodies.


Assuntos
Doxorrubicina , Lipossomos , Polietilenoglicóis , Polietilenoglicóis/química , Lipossomos/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Animais , Ratos , Anticorpos/química , Anticorpos/imunologia , Ativação do Complemento/efeitos dos fármacos , Fosfatidiletanolaminas/química , Liberação Controlada de Fármacos
5.
Int J Biol Macromol ; 278(Pt 2): 134772, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154682

RESUMO

The clinical utility of raloxifene (RLX), a selective estrogen receptor modulator (SERM), has been compromised by severe side effects and unfavorable drug properties. To address these, a transferrin (Tf) conjugated graphene oxide nanoribbon (GONR) platform was tried for RLX. The stability of GONRs in biological media was improved by surface modification with 1, 2-Distearoyl-sn-glycero-3 phosphoethanolamine-Poly (ethylene glycol) (DSPE-PEG). The Tf molecule was covalently attached to DSPE-PEG (DPT) using EDC-NHS chemistry. The surface of GONR was then modified with DSPE-PEG (DP) or DPT and loaded with RLX (GDP-RLX and GDPT-RLX). The final formulations were characterized for drug loading and stability. The anticancer activities of pure RLX, GDP-RLX, and GDPT-RLX were evaluated and compared in all the in vitro and in vivo studies. In vitro cell line studies showed that GDPT-RLX have significantly high cytotoxicity, cellular uptake, apoptosis induction, G2/M phase arrest, anti-migration properties, and apoptotic protein expression, followed by GDP-RLX and RLX. Pharmacokinetics and tumor biodistribution were also found to be excellent with GDPT-RLX. The in vivo tumor therapy and tumor evaluation outcomes were also consistent with the in vitro data. The Tf conjugated GDPT-RLX represents a promising approach for targeted and sustained delivery of RLX with enhanced therapeutic efficacy.


Assuntos
Neoplasias da Mama , Grafite , Fosfatidiletanolaminas , Polietilenoglicóis , Cloridrato de Raloxifeno , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Polietilenoglicóis/química , Feminino , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/química , Grafite/química , Camundongos , Fosfatidiletanolaminas/química , Transferrina/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos
6.
Food Chem ; 459: 140376, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39002334

RESUMO

The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1µg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.


Assuntos
Cor , Euphausiacea , Armazenamento de Alimentos , Euphausiacea/química , Animais , Simulação de Acoplamento Molecular , Oxirredução , Xantofilas/química , Fosfatidiletanolaminas/química , Regiões Antárticas
7.
Int J Pharm ; 662: 124540, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39074646

RESUMO

This study compared the effects of polyethylene glycol (PEG) shielding and mannose-conjugated ligands density on lipid nanoparticles (LNPs) for intracellular uptake to macrophages in vitro and accumulation in spleens in vivo. Fabricated phosphatidyl serine-incorporated LNPs (sLNPs) was physically decorated with mannose-conjugated DSPE-PEG (DPM) at different DPM/LNP molar ratios achieving the DPM density from 0 to 0.6 PEGs/nm2. We demonstrated that low PEG shielding sLNPs with mannose ligands (sLNP-DPMs) displayed superior uptake to macrophages (RAW 264.7 cells) compared with high PEG shielding sLNP-DPMs in vitro. However, high PEG shielding sLNP-DPMs showed significant spleen accumulation compared with low PEG shielding sLNP-DPMs in vivo after intravenous injection. In particular, high PEG shielding sLNPs coated with DSPE-methoxyPEG (DP) and DPM mixture at DP/DPM molar ratios of 5/5 exhibited greater accumulation in red pulp of spleens than naked sLNPs by 2.7-folds in vivo. These results suggested that the optimal PEG shielding and mannose densities per a particle might be different between in vitro cellular uptake to macrophages and in vivo spleen accumulation after systemic administration. Taken together, precision-tailored LNP-surface modifications achieved through optimization of PEG shielding and mannose density can greatly enhance accumulation of LNPs in red pulp of spleens, which could be applied for the delivery of nucleic acid-based drugs and vaccines to spleens in vivo.


Assuntos
Macrófagos , Manose , Nanopartículas , Polietilenoglicóis , Baço , Animais , Manose/química , Polietilenoglicóis/química , Camundongos , Baço/metabolismo , Baço/efeitos dos fármacos , Células RAW 264.7 , Nanopartículas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lipídeos/química , Masculino , Portadores de Fármacos/química , Fosfatidiletanolaminas/química , Distribuição Tecidual , Lipossomos
8.
Adv Healthc Mater ; 13(22): e2400225, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888972

RESUMO

Lipid nanoparticles (LNPs) are proven safe and effective delivery systems on a global scale. However, their efficacy has been limited primarily to liver and immune cell targets. To extend the applicability of mRNA drugs, 580 ionizable lipidoids are synthesized and tested for delivery to extrahepatocellular targets. Of these, over 40 enabled protein expression in mice, with the majority transfecting the liver. Beyond the liver, several LNPs containing new, branched-tail ionizable lipidoids potently delivered mRNA to the lungs, with cell-level specificity depending on helper lipid chemistry. Incorporation of the neutral helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) at 16 mol% enabled highly specific delivery to natural killer and dendritic cells within the lung. Although inclusion of the cationic lipid 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP) improved lung tropism, it decreased cell specificity, resulting in equal transfection of endothelial and lymphoid cells. DOTAP formulations are also less favorable than DOPE formulations because they elevated liver enzyme and cytokine levels. Together, these data identify a new branched-tailed LNP with a unique ability to selectively transfect lung immune cell populations without the use of toxicity-prone cationic helper lipids. This novel vehicle may unlock RNA therapies for lung diseases associated with immune cell dysregulation, including cancer, viral infections, and autoimmune disorders.


Assuntos
Pulmão , Nanopartículas , RNA Mensageiro , Animais , Camundongos , Nanopartículas/química , Pulmão/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatidiletanolaminas/química , Lipídeos/química , Camundongos Endogâmicos C57BL , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Lipossomos
9.
J Pharm Sci ; 113(8): 2420-2432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705465

RESUMO

Chloraluminium phthalocyanine (ClAlPc) has potential therapeutic effect for the treatment of cancer; however, the molecule is lipophilic and may present self-aggregation which limits its clinical success. Thus, nanocarriers like liposomes can improve ClAlPc solubility, reduce off-site toxicity and increase circulation time. For this purpose, developing suitable liposomes requires the evaluation of different lipid compositions. Herein, we aimed to develop liposomes containing soy phosphatidylcholine (SPC), 1,2-distearoyl-sn-glycero- 3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPEPEG2000), cholesterol and oleic acid loaded with ClAlPc using the surface response methodology and the Box-Behnken design. Liposomes with particle size from 110.93 to 374.97 nm and PdI from 0.265 to 0.468 were obtained. The optimized formulation resulted in 69.09 % of ClAlPc encapsulated, with particle size and polydispersity index, respectively, at 153.20 nm and 0.309, providing stability and aggregation control. Atomic force microscopy revealed vesicles in a spherical or almost spherical shape, while the analyzes by Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR) suggested that the drug was adequately incorporated into the lipid bilayer of liposomes, in its amorphous state or molecularly dispersed. In vitro studies conducted in breast cancer cells (4T1) showed that liposome improved phototoxicity compared to the ClAlPc solution. ClAlPc-loaded liposomes also enhanced the production of ROS 3-fold compared to the ClAlPc solution. Finally, confocal microscopy and flow cytometry demonstrated the ability of the liposomes to enter cells and deliver the fluorescent ClAlPc photosensitizer with dose and time-dependent effects. Thus, this work showed that Box-Behnken factorial design was an effective strategy for optimizing formulation development. The obtained ClAlPc liposomes can be applied for photodynamic therapy in breast cancer cells.


Assuntos
Neoplasias da Mama , Indóis , Lipossomos , Compostos Organometálicos , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Indóis/química , Indóis/administração & dosagem , Feminino , Compostos Organometálicos/química , Compostos Organometálicos/administração & dosagem , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Polietilenoglicóis/química , Fosfatidiletanolaminas/química , Fosfatidilcolinas/química , Colesterol/química , Ácido Oleico/química
10.
J Chem Inf Model ; 64(9): 3874-3883, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652138

RESUMO

The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood. We recently explored the carrier-membrane fusion dynamics of PEG-DPPE micelles in delivering doxorubicin (DOX). Based on the phase-segregated membrane model composed of DPPC/DIPC/CHOL/GM1/PIP2, we aim to explore the dynamic mechanism of the PEG-DPPE micelle-encapsulating DOXs in association with the raft-included cell membrane modulated by C8 acyl tail CERs. The results show that the lipid raft remains integrated and DOX-resistant subjected to free DOXs and the micelle-encapsulating ones. Addition of CERs disorganizes the lipid raft by pushing CHOL aside from DPPC. It subsequently allows for a good permeability for PEG-DPPE micelle-encapsulated DOXs, which penetrate deeper as CER concentration increases. GM1 is significant in guiding drugs' redistributing between bilayer phases, and the anionic PIP2 further helps DOXs attain the inner bilayer surface. These results elaborate on the perturbing effect of CERs on lipid raft stability, which provides a new comprehensive approach for further design of drug delivery systems.


Assuntos
Ceramidas , Microdomínios da Membrana , Micelas , Simulação de Dinâmica Molecular , Polietilenoglicóis , Humanos , Ceramidas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química
11.
ChemMedChem ; 19(14): e202400124, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38632079

RESUMO

Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.


Assuntos
Ciclotídeos , Ciclotídeos/química , Ciclotídeos/farmacologia , Animais , Relação Estrutura-Atividade , Bicamadas Lipídicas/química , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Fosfatidiletanolaminas/química
12.
Antonie Van Leeuwenhoek ; 117(1): 56, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489089

RESUMO

A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75-76% and digital DNA-DNA hybridisation values in the range of 13.1-13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-ß-D-glucosamine. Optimal growth occurred at 25-30 °C, within a salinity range of 2-6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).


Assuntos
Flavobacteriaceae , Poríferos , Animais , Água do Mar , Fosfatidiletanolaminas/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Vitamina K 2/química , Ácidos Graxos/química
13.
Food Chem ; 448: 139145, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555692

RESUMO

This study aimed to prepare an all-natural water-in-oil high internal phase Pickering emulsion (W/O-HIPPE) using diosgenin/soybean phosphatidylethanolamine complex (DGSP) and investigate the 3D printing performance. Results suggested that the self-assembly of diosgenin crystal was modified by SP in DGSP (diosgenin-SP ratios at 3:1 and 1:1), revealing a variation from large-size outward radiating needle-like to small-size granular-like shape, which facilitated closely packing at the interface. Hydrophilicity of DGSP was also increased (contact angle varying from 133.3 o to 106.4 o), ensuring more adequate interfacial adsorption to reduce interfacial tension more largely (6.5 mN/m). Thus, the W/O-HIPPE made by DGSP with diosgenin-SP = 1:1, exhibited smaller droplets and better freeze/thawing stability. The W/O-HIPPE was also measured improved rheological properties for 3D printing: satisfied shear-thinning behavior, higher recovery and self-supporting (viscoelasticity and deformation resistance). Consequently, the W/O-HIPPE allowed for printing more delicate patterns. This work provided guidance to prepare W/O-HIPPE for 3D printing.


Assuntos
Diosgenina , Emulsões , Fosfatidiletanolaminas , Impressão Tridimensional , Água , Emulsões/química , Diosgenina/química , Fosfatidiletanolaminas/química , Água/química , Glycine max/química , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas , Reologia
14.
Biochimie ; 221: 1-12, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38215931

RESUMO

Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against BCR-ABL1, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model. The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG2000-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Ð¥3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Ð¥3-DOPE-DSPE-PEG2000 (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (BCR-ABL1) and cancer cell proliferation. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.


Assuntos
Peptídeos Penetradores de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva , Lipossomos , RNA Interferente Pequeno , Humanos , Lipossomos/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Polietilenoglicóis/química , Células K562 , Fosfatidiletanolaminas/química , Cátions/química
15.
Biochim Biophys Acta Biomembr ; 1866(3): 184267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159877

RESUMO

NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Bicamadas Lipídicas , Fosfatidiletanolaminas , Proteolipídeos , Humanos , Bicamadas Lipídicas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Peptídeos/química
16.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37942742

RESUMO

Two novel rod-shaped, Gram-stain-negative, aerobic and non-motile bacterial strains, designated M39T and C2-7T, were isolated from the coastal sediment of Xiaoshi Island, Weihai, PR China. Growth of strain M39T occurred at 15-37 °C, at pH 6.0-9.0 and in the presence of 1.0-9.0 % (w/v) NaCl. Strain C2-7T grew at 15-40 °C, at pH 6.0-8.0 and in the presence of 0.5-8.0 % (w/v) NaCl. Phylogenetic analysis based 16S rRNA gene sequences revealed that strains M39T and C2-7T belong to the phylum Bacteroidota. Based on the results of 16S rRNA gene sequence analysis, the closest relative of strain M39T was Robiginitalea marina KCTC 92035T (95.4 %), and the closest relative of strain C2-7T was Algoriphagus namhaensis DPG-3T (97.0 %). The percentage of conserved protein and average nucleotide identity values between strain M39T and some species of the genus Robiginitalea were 66.9-77.6% and 69.3-71.0 %, respectively, while those between strain C2-7T and some species of the genus Algoriphagus were 68.0-70.1% and 56.1-72.6 %, respectively. The major cellular fatty acids (>10 %) of strain M39T consisted of iso-C15 : 1 F, iso-C15 : 0 and iso-C17 : 0 3-OH, while those of strain C2-7T were iso-C15 : 0 and C16 : 1 ω7c/C16 : 1 ω6c. MK-6 was the only respiratory quinone that was compatible with the genus of strain M39T. The predominant menaquinone of strain C2-7T was MK-7. The major polar lipids of strain M39T were phosphatidylethanolamine and glycolipids, and those of strain C2-7T were phosphatidylethanolamine, one unidentified aminolipid and four unidentified lipids. The DNA G+C contents of strains M39T and C2-7T were 46.9 and 40.8 mol%, respectively. Based upon the results presented in this study, strains M39T and C2-7T represent novel species of the genera Robiginitalea and Algoriphagus, respectively, for which the names Robiginitalea aurantiaca sp. nov. and Algoriphagus sediminis sp. nov. are proposed with the type strains M39T (=MCCC 1H00498T=KCTC 92014T) and C2-7T (=MCCC 1H00414T=KCTC 92027T).


Assuntos
Flavobacteriaceae , Fosfatidiletanolaminas , Fosfatidiletanolaminas/química , Ácidos Graxos/química , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Flavobacteriaceae/genética
17.
Biophys Chem ; 300: 107061, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307659

RESUMO

Alzheimer's disease remains largely unknown, and currently there is no complete cure for the disease. New synthetic approaches have been developed to create multi-target agents, such as RHE-HUP, a rhein-huprine hybrid which can modulate several biological targets that are relevant to the development of the disease. While RHE-HUP has shown in vitro and in vivo beneficial effects, the molecular mechanisms by which it exerts its protective effect on cell membranes have not been fully clarified. To better understand RHE-HUP interactions with cell membranes, we used synthetic membrane models and natural models of human membranes. For this purpose, human erythrocytes and molecular model of its membrane built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. The latter correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry (DSC) results indicated that RHE-HUP was able to interact mainly with DMPC. In addition, scanning electron microscopy (SEM) analysis showed that RHE-HUP modified the normal biconcave shape of erythrocytes inducing the formation of echinocytes. Moreover, the protective effect of RHE-HUP against the disruptive effect of Aß(1-42) on the studied membrane models was tested. X-ray diffraction experiments showed that RHE-HUP induced a recovery in the ordering of DMPC multilayers after the disruptive effect of Aß(1-42), confirming the protective role of the hybrid.


Assuntos
Doença de Alzheimer , Membrana Eritrocítica , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Dimiristoilfosfatidilcolina/química , Fosfatidiletanolaminas/química , Eritrócitos , Microscopia Eletrônica de Varredura , Peptídeos/metabolismo , Difração de Raios X , Bicamadas Lipídicas/química
18.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232973

RESUMO

Targeted delivery of drugs or other therapeutic agents through internal or external triggers has been used to control and accelerate the release from liposomal carriers in a number of studies, but relatively few utilize energy of therapeutic X-rays as a trigger. We have synthesized liposomes that are triggered by ionizing radiation (RTLs) to release their therapeutic payload. These liposomes are composed of natural egg phosphatidylethanolamine (PE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG-2000), and the mean size of the RTL was in the range of 114 to 133 nm, as measured by nanoparticle tracking analysis (NTA). The trigger mechanism is the organic halogen, chloral hydrate, which is known to generate free protons upon exposure to ionizing radiation. Once protons are liberated, a drop in internal pH of the liposome promotes destabilization of the lipid bilayer and escape of the liposomal contents. In proof of principle studies, we assessed RTL radiation-release of fluorescent tracers upon exposure to a low pH extracellular environment or exposure to X-ray irradiation. Biodistribution imaging before and after irradiation demonstrated a preferential uptake and release of the liposomes and their cargo at the site of local tumor irradiation. Finally, a potent metabolite of the commonly used chemotherapy irinotecan, SN-38, was loaded into RTL along with near infrared (NIR) fluorescent dyes for imaging studies and measuring tumor cell cytotoxicity alone or combined with radiation exposure, in vitro and in vivo. Fully loaded RTLs were found to increase tumor cell killing with radiation in vitro and enhance tumor growth delay in vivo after three IV injections combined with three, 5 Gy local tumor radiation exposures compared to either treatment modality alone.


Assuntos
Lipossomos , Neoplasias , Hidrato de Cloral , Colesterol/química , Corantes Fluorescentes , Halogênios , Humanos , Irinotecano , Bicamadas Lipídicas/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Prótons , Distribuição Tecidual
19.
Colloids Surf B Biointerfaces ; 220: 112886, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183636

RESUMO

Drug resistance is known to depend on the interactions with cell membranes and other molecules such as human cytochromes P450 (CYPs) which are anchored on the endoplasmic reticulum (ER) membrane and involved in the metabolism of anticancer drugs. In this study, we determined the influence from cytochrome P450 3A4 (CYP3A4) on the interaction between the drug doxorubicin (DOX) and Langmuir monolayers mimicking cell membranes. The lipid composition was varied by changing the relative concentrations of cholesterol (Chol), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and L-α-phosphatidylinositol (PI). Three compositions were studied in detail which represented a healthy cell membrane and cancerous cell membranes. DOX induced an expansion in the surface pressure isotherms for all monolayers, with stronger effect for the composition of cancerous cell with a high Chol content, thus confirming the relevance of lipid composition. This effect decreased considerably when CYP3A4 was incorporated with the formation of CYP3A4-DOX complexes, according to results from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) measurements. Taken together, these results support the hypothesis of CYP3A4 being involved in drug resistance, which may be exploited to design strategies to enhance chemotherapy efficacy.


Assuntos
Citocromo P-450 CYP3A , Lipídeos de Membrana , Humanos , Lipídeos de Membrana/química , Doxorrubicina/farmacologia , Fosfatidiletanolaminas/química , Colesterol/química
20.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36208420

RESUMO

A lemon-chiffon strain, designated QH1ED-6-2T, was isolated from a soil sample collected from Qinghai Virgin Forests, Qinghai Province, PR China. The strain was Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain QH1ED-6-2T belongs to the family Fulvivirgaceae, and has the highest similarity values of 93.6-92.0 % to Ohtaekwangia koreensis CCUG 58939T, Ohtaekwangia kribbensis CCUG 58938T, Chryseolinea flava SDU1-6T and Chryseolinea serpens DSM 24574T, respectively. The major cellular fatty acids included iso-C15 : 0, C16 : 1 ω5c, iso-C17 : 0 3-OH and summed feature 3. The major polar lipid was phosphatidylethanolamine. The predominant respiratory quinone was menaquinone-7. The average amino acid identity values and percentages of conserved proteins between QH1ED-6-2T and its closely related genera were 66.4-69.6 % and 58.9-64.9 %, respectively, which are interspersed in the intra-genera cutoff values. The digital DNA-DNA hybridization values were 17.6-19.2 %. The draft genome size of strain QH1ED-6-2T was 7.98 Mbp with a DNA G+C content of 51.4 mol%. Based on phenotypic, chemotaxonomic, phylogenetic data, genomic DNA G+C content, as well as AAI, POCP and dDDH results, strain QH1ED-6-2T represents a novel species of a new genus in the family Fulvivirgaceae, for which the name Parachryseolinea silvisoli sp. nov. is proposed. The type strain is QH1ED-6-2T (=GDMCC 1.2318T=JCM 35041T). We also propose the reclassification of Chryseolinea flava as Pseudochryseolinea flava gen. nov., comb. nov. (type strain SDU1-6T=CGMCC 1.13492T=JCM 32520T).


Assuntos
Fosfatidiletanolaminas , Solo , Aminoácidos , Técnicas de Tipagem Bacteriana , Bacteroidetes , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , Fosfatidiletanolaminas/química , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA