Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(8): e23796, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087923

RESUMO

5-fluorouracil (5-FU) is an inexpensive treatment for colon cancer; however, its efficacy is limited by chemoresistance. This study investigates the combination therapy approach of 5-FU with Sitagliptin (Sita), a diabetic drug with potential cancer-modulating effects. The combination was evaluated in vitro and in silico, focusing on the effects of Sita and 5-FU on colon cancer cells. The results showed that the addition of Sita significantly decreased the IC50 of 5-FU compared to 5-Fu monotherapy. The study also found that Sita and 5-FU interact synergistically, with a combination index below 1. Sita successfully lowered the 5-FU dosage reduction index, decreasing the expression of MDR1 mRNA and p-AKT and NFκB2 subunits p100/p52 protein. Molecular docking analyses confirmed Sita's antagonistic action on MDR1 and thymidylate synthase proteins. The study concludes that sitagliptin can target MDR1, increase apoptosis, and significantly reduce the expression of p-AKT and NFκB2 cell-survival proteins. These effects sensitize colon cancer cells to 5-FU. Repurposing sitagliptin may enhance the anticancer effects of 5-FU at lower dosages.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Neoplasias do Colo , Sinergismo Farmacológico , Fluoruracila , Proteínas Proto-Oncogênicas c-akt , Fosfato de Sitagliptina , Humanos , Fosfato de Sitagliptina/farmacologia , Fluoruracila/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Regulação para Baixo/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
2.
Int J Biol Macromol ; 269(Pt 2): 132146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734342

RESUMO

In this research, a sitagliptin-lignin biopolymer (SL) containing zinc selenide quantum dots (ZnSe QDs) and doxorubicin (doxo) was synthesized. The fabricated polymeric drug delivery system was characterized via FTIR, XRD, SEM, TGA, IR, and DSC. SLQD-Doxo exhibited an irregular surface with a 32 nm diameter and well-defined surface chemistry. Drug loading efficiency was assessed at different concentrations, pH levels, time intervals, and temperatures, and drug kinetics were calculated. Maximum drug release was observed at 6 µmol concentration after 24 h, pH of 6.5 and 45 °C. The maximum drug encapsulation efficiency was 81.75 %. SLQD-Doxo demonstrated 24.4 ± 1.04 % anti-inflammatory activity, and the maximum lipoxygenase inhibition in a concentration-dependent manner was 71.45 ± 2.02 %, compared to indomethacin, a standard anticancer drug. The designed system was applied to breast cancer MCF-7 cells to evaluate anticancer activity. Cytotoxicity of SLQD-Doxo resulted in 24.48 ± 1.64 dead cells and 74.39 ± 4.12 viable cells. Lignin's polyphenolic nature resulted in good antioxidant activity of LLQD-Doxo. The combination of SLQD-Doxo was appropriate for drug delivery at high temperatures and acidic pH of tumor cells compared to healthy cells.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Lignina , Fosfato de Sitagliptina , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Lignina/química , Lignina/farmacologia , Células MCF-7 , Fosfato de Sitagliptina/química , Fosfato de Sitagliptina/farmacologia , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Polímeros/química , Pontos Quânticos/química , Concentração de Íons de Hidrogênio , Antioxidantes/farmacologia , Antioxidantes/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
3.
Georgian Med News ; (348): 132-143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38807407

RESUMO

Changing the vision, understanding, interpretation and analysis of certain data or scientific dilemmas is what is able to change the status quo and revitalize a mission, an impulse or important thoughts, thus creating the conditions for it to increase immensely the chances of bringing it to success. Or, following Albert Einstein's postulate: ˝We cannot solve our problems with the same thinking we used when we created them˝, we should think: ˝Where does the road to success start? How do we solve or neutralize a problem? ˝ And the answer is: ˝ By taking a consistent and systematic approach, analyzing each component! And we eliminate every possibility of negative influence.˝ These thoughts apply with full force to cancer rates in general, but also to melanoma rates in particular: the murderous tempo of globalization and modernization in medicine has not yet led to the desired decrease in these rates; on the contrary, they are rising headlong and remain largely unpredictable and difficult to regulate. The conclusion is that a solution should be sought by refracting light through another prism: that of Nitrosogenesis and Pharmaco-Oncogenesis. A step-by-step and systematic approach to solving a problem requires patience, determination, and perseverance. As this perseverance is needed mainly to overcome the general ignorance, neglect, disinterest, uneducation and uncertainty of others, rather than doubt in one's own thesis, analysis, and the need for an active approach. Careful analysis of concepts such as ˝Drug Mediated Nitrosogenesis˝ and ˝Onco-pharmacogenesis/Pharmaco-oncogenesis˝ of skin cancer would certainly contribute to the elucidation of skin carcinogenesis in the context of polymedication of the contamination and polymorbidity worldwide. The FDA has already in 2019 taken this much needed first step of universal awareness and its ˝arm˝ has been taken seriously and responsibly solely by dermatologists and dermatosurgeons. It was this guild and only this guild that launched its independent, never-ending observations, logically grounded (hypo)theses, remaining to date confirmatory, unshakable, and enigmatic regarding the unit: intake of potentially contaminated medication and subsequent development of melanomas. It is this and only this branch of the medical guild that has also become the guarantor of safety and objectivity in science, and thus of safety in the fight for survival of a huge number of skin cancer patients. Contaminated oral antidiabetic drugs in the face of Metformin and Sitagliptin do not make an exception in this respect. Similarly to cutaneous melanomas occurring (and published in the scientific literature) after combined intake (or monomedication) of/ between ranitidine, valsartan, olmesartan, candesartan, telmisartan, irbesartan, losartan, enalapril, lisinopril, perindopril, hydrochlorothiazide, nifedipine, amlodipine, propafenone, bisoprolol, nebivolol, melitracen and a number of others, we inform about another rare but not unexpected clinical observation: occurrence of cutaneous melanomas after taking another class of drugs- oral antidiabetic ones. Or after the intake of nitrosamine-contaminated antidiabetic drugs. And whether this contamination is "real or potential" is left to regulators and manufacturers to decide. We accept it as `real-potential' or `potentially-real' because of the fact that neither the regulators nor the manufacturers know what it is or whether it is there or how it arose. The data shared in patients one and two in the presented scientific work are confirmatory in relation to the potential pathogenetic action of nitrosamine contaminated drugs such as 1) bisoprolol/ nebivolol/ candesartan/ hydrochlorothiazide and amlodipine, as well as 2) furosemide in the direction of cutaneous melanoma. Patient 3 in fact also represents the first formally described patient with subsequent melanoma development worldwide, having developed it following intake of potentially/actually nitrosamine-contaminated metformin and metformin/sitagliptin (both drugs are themed in the FDA's Potentially Contaminated Drug Bulletin: 1) metformin, multiple times between 2020-21, due to its contamination with NDMA and 2) sitagliptin, as of September 2022, due to its contamination with NTTP). It should not be seen as surprising to anyone that the intake of relatively similar carcinogens/nitrosamines or NDSRIs, but as an unofficial component of heterogeneous drugs, produces a relatively monomorphic clinical picture- that of cutaneous melanoma. Or to put it metaphorically: ˝The wolf changes its hair, but not its mood˝. A carcinogen remains a carcinogen, regardless of whether it is ingested in a lemonade, a tablet, a sandwich, or a bonbon. Similarly to the intake of nitrosamines in food. Future studies should address the important tasks/dilemmas to elucidate 1) the phototoxic/photocarcinogenic effect of unmetabolized nitrosamines identified in drug formulations; 2) the phototoxic/photocarcinogenic effect of DNA adducts generated after their metabolization, and 3) the availability of specific DNA adducts in lesional/tumor tissue and blood of patients after ingestion of nitroso-containing drug formulations. This level of evidence is likely to lead to a reconsideration of the arguments for the introduction of permanent elimination regimes for nitrosamines in medicines. Metabolic reprogramming (and its relationship to UVB radiation) due to the availability of nitrosamines in cigarette smoke is also currently a proven reality. Based on the available clinicopathological correlations, we believe that nitrosamines in drugs have a similar effect and are part of the key pathway activating skin carcinogenesis under the influence of solar radiation. Intake of contaminated medication is associated with skin cancer generation and progression. It is up to regulators and manufacturers to justify the merits and benefits of the self-imposed presence of carcinogens in drugs or the benefits of such drugs. Apart from the "cancer-generating benefit", of course, which is already widely known. And let us not forget that: "A lie stops being a lie and becomes a truth the moment it is officially refuted".


Assuntos
Melanoma , Metformina , Fosfato de Sitagliptina , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Carcinogênese/efeitos dos fármacos , Melanoma Maligno Cutâneo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Reprogramação Metabólica
4.
Peptides ; 177: 171218, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621590

RESUMO

G-protein coupled receptor-120 (GPR120; FFAR4) is a free fatty acid receptor, widely researched for its glucoregulatory and insulin release activities. This study aimed to investigate the metabolic advantage of FFAR4/GPR120 activation using combination therapy. C57BL/6 mice, fed a High Fat Diet (HFD) for 120 days to induce obesity-diabetes, were subsequently treated with a single daily oral dose of FFAR4/GPR120 agonist Compound A (CpdA) (0.1µmol/kg) alone or in combination with sitagliptin (50 mg/kg) for 21 days. After 21-days, glucose homeostasis, islet morphology, plasma hormones and lipids, tissue genes (qPCR) and protein expression (immunocytochemistry) were assessed. Oral administration of CpdA improved glucose tolerance (34% p<0.001) and increased circulating insulin (38% p<0.001). Addition of CpdA with the dipeptidyl peptidase-IV (DPP-IV) inhibitor, sitagliptin, further improved insulin release (44%) compared to sitagliptin alone and reduced fat mass (p<0.05). CpdA alone (50%) and in combination with sitagliptin (89%) induced marked reductions in LDL-cholesterol, with greater effects in combination (p<0.05). All treatment regimens restored pancreatic islet and beta-cell area and mass, complemented with significantly elevated beta-cell proliferation rates. A marked increase in circulating GLP-1 (53%) was observed, with further increases in combination (38%). With treatment, mice presented with increased Gcg (proglucagon) gene expression in the jejunum (130% increase) and ileum (120% increase), indicative of GLP-1 synthesis and secretion. These data highlight the therapeutic promise of FFAR4/GPR120 activation and the potential for combined benefit with incretin enhancing DPP-IV inhibitors in the regulation of beta cell proliferation and diabetes.


Assuntos
Proliferação de Células , Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV , Peptídeo 1 Semelhante ao Glucagon , Células Secretoras de Insulina , Obesidade , Receptores Acoplados a Proteínas G , Fosfato de Sitagliptina , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fosfato de Sitagliptina/farmacologia , Proliferação de Células/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Masculino , Dipeptidil Peptidase 4/metabolismo , Camundongos Endogâmicos C57BL , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Insulina/sangue , Glucose/metabolismo , Camundongos Obesos
5.
Tissue Cell ; 88: 102375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604038

RESUMO

Polycystic Ovary Syndrome (PCOS) is a multifactorial reproductive, endocrine and metabolic disturbance which is very commonly observed in females of reproductive age group. The disease is still incurable however the use of synthetic drugs in combination with lifestyle is recommended. Accordingly, the present study was conducted to investigate the possible beneficial effects of sitagliptin on PCOS induced rats on control diet (CD)/high fat- high fructose diet (HFFD). PCOS was induced by giving testosterone propionate (TP) for 28 days to both the CD/HFFD rats and treated with STG i.p. for last 15 days. At the end of the experiment lipid profile, inflammatory markers, expression of NF-κB-p65, miR-24 and miR-29a, fibrotic and apoptotic proteins from ovary tissue were examined. Moreover, lipid accumulation and fibrosis of ovary tissue was further confirmed using Sudan III and Masson's trichrome stain. STG treated rats exerted a significant decrease in levels of cholesterol, TG, LDL-C, VLDL-C, IL-6 and TNF-α and increased HDL-C level, miR-24 and miR-29a expression. STG treated groups expressed significantly decreased expression of NF-κB-p65, TGF-ß1, p-Smad 2 and p-Smad 3 followed by no significant changes in the expression of BAX, caspase-9, caspase-3 and Bcl-2 in all the PCOS induced groups. Among all the CD/ HFFD fed groups, rats on HFFD showed more devastating effect which suggests that diet plays a major role in genesis of PCOS. In conclusion, current results reflect the potential impact of STG against dyslipidaemia, inflammation and fibrosis in PCOS rats via regulating dyslipidaemia and fibrosis via DPP 4 mediated miR-29a expression.


Assuntos
Dieta Hiperlipídica , Frutose , MicroRNAs , Síndrome do Ovário Policístico , Transdução de Sinais , Fosfato de Sitagliptina , Fator de Crescimento Transformador beta , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Feminino , Frutose/efeitos adversos , Ratos , Fosfato de Sitagliptina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Ratos Wistar , Dipeptidil Peptidase 4
6.
Aging Cell ; 23(7): e14161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556837

RESUMO

Senescent cells increase in many tissues with age and induce age-related pathologies, including osteoarthritis (OA). Senescent chondrocytes (SnCs) are found in OA cartilage, and the clearance of those chondrocytes prevents OA progression. However, targeting SnCs is challenging due to the absence of a senescent chondrocyte-specific marker. Therefore, we used flow cytometry to screen and select senescent chondrocyte surface markers and cross-validated with published transcriptomic data. Chondrocytes expressing dipeptidyl peptidase-4 (DPP-4), the selected senescent chondrocyte-specific marker, had multiple senescence phenotypes, such as increased senescence-associated-galactosidase, p16, p21, and senescence-associated secretory phenotype expression, and showed OA chondrocyte phenotypes. To examine the effects of DPP-4 inhibition on DPP-4+ SnCs, sitagliptin, a DPP-4 inhibitor, was treated in vitro. As a result, DPP-4 inhibition selectively eliminates DPP-4+ SnCs without affecting DPP-4- chondrocytes. To assess in vivo therapeutic efficacy of targeting DPP-4+ SnCs, three known senolytics (ABT263, 17DMAG, and metformin) and sitagliptin were comparatively verified in a DMM-induced rat OA model. Sitagliptin treatment specifically and effectively eliminated DPP-4+ SnCs, compared to the other three senolytics. Furthermore, Intra-articular sitagliptin injection to the rat OA model increased collagen type II and proteoglycan expression and physical functions and decreased cartilage destruction, subchondral bone plate thickness and MMP13 expression, leading to the amelioration of OA phenotypes. Collectively, OARSI score was lowest in the sitagliptin treatment group. Taken together, we verified DPP-4 as a surface marker for SnCs and suggested that the selective targeting of DPP-4+ chondrocytes could be a promising strategy to prevent OA progression.


Assuntos
Senescência Celular , Condrócitos , Dipeptidil Peptidase 4 , Progressão da Doença , Osteoartrite , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Ratos , Senescência Celular/efeitos dos fármacos , Humanos , Masculino , Fosfato de Sitagliptina/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Ratos Sprague-Dawley
7.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458637

RESUMO

BACKGROUND: Dendritic cell (DC)-mediated antigen presentation is essential for the priming and activation of tumor-specific T cells. However, few drugs that specifically manipulate DC functions are available. The identification of drugs targeting DC holds great promise for cancer immunotherapy. METHODS: We observed that type 1 conventional DCs (cDC1s) initiated a distinct transcriptional program during antigen presentation. We used a network-based approach to screen for cDC1-targeting therapeutics. The antitumor potency and underlying mechanisms of the candidate drug were investigated in vitro and in vivo. RESULTS: Sitagliptin, an oral gliptin widely used for type 2 diabetes, was identified as a drug that targets DCs. In mouse models, sitagliptin inhibited tumor growth by enhancing cDC1-mediated antigen presentation, leading to better T-cell activation. Mechanistically, inhibition of dipeptidyl peptidase 4 (DPP4) by sitagliptin prevented the truncation and degradation of chemokines/cytokines that are important for DC activation. Sitagliptin enhanced cancer immunotherapy by facilitating the priming of antigen-specific T cells by DCs. In humans, the use of sitagliptin correlated with a lower risk of tumor recurrence in patients with colorectal cancer undergoing curative surgery. CONCLUSIONS: Our findings indicate that sitagliptin-mediated DPP4 inhibition promotes antitumor immune response by augmenting cDC1 functions. These data suggest that sitagliptin can be repurposed as an antitumor drug targeting DC, which provides a potential strategy for cancer immunotherapy.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 2 , Neoplasias , Camundongos , Animais , Humanos , Dipeptidil Peptidase 4/metabolismo , Células Dendríticas , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Fosfato de Sitagliptina/metabolismo , Apresentação de Antígeno , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Geroscience ; 46(5): 4397-4414, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38532069

RESUMO

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Incretinas , Doenças Neurodegenerativas , Fosfato de Sitagliptina , Fosfato de Sitagliptina/administração & dosagem , Fosfato de Sitagliptina/farmacologia , Animais , Administração Oral , Peptídeo 1 Semelhante ao Glucagon/sangue , Doenças Neurodegenerativas/tratamento farmacológico , Masculino , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Polipeptídeo Inibidor Gástrico/sangue , Humanos , Macaca fascicularis , Relação Dose-Resposta a Droga
9.
Diabetes ; 73(5): 671-681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295385

RESUMO

Dipeptidyl peptidase 4 (DPP-4) and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice, allowing reliable measurement with sensitive commercially available ELISA kits. Nonanesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 min after the glucose load. Samples taken at 5 and 10 min after the OGTT showed a minor increase in total, but not intact, GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without an NEP-inhibitor (sacubitril), 30 min before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline but were 5- to 10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to sevenfold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps NEP. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.


Assuntos
Aminobutiratos , Compostos de Bifenilo , Inibidores da Dipeptidil Peptidase IV , Peptídeo 1 Semelhante ao Glucagon , Masculino , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicemia/metabolismo , Dipeptidil Peptidase 4/metabolismo , Glucose/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fosfato de Sitagliptina/farmacologia
10.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203779

RESUMO

Despite significant advances in treatment modalities, colorectal cancer (CRC) remains a poorly understood and highly lethal malignancy worldwide. Cancer stem cells (CSCs) and the tumor microenvironment (TME) have been shown to play critical roles in initiating and promoting CRC progression, metastasis, and treatment resistance. Therefore, a better understanding of the underlying mechanisms contributing to the generation and maintenance of CSCs is crucial to developing CSC-specific therapeutics and improving the current standard of care for CRC patients. To this end, we used a bioinformatics approach to identify increased CD24/SOX4 expression in CRC samples associated with poor prognosis. We also discovered a novel population of tumor-infiltrating CD24+ cancer-associated fibroblasts (CAFs), suggesting that the CD24/SOX4-centered signaling hub could be a potential therapeutic target. Pathway networking analysis revealed a connection between the CD24/SOX4-centered signaling, ß-catenin, and DPP4. Emerging evidence indicates that DPP4 plays a role in CRC initiation and progression, implicating its involvement in generating CSCs. Based on these bioinformatics data, we investigated whether sitagliptin, a DPP4 inhibitor and diabetic drug, could be repurposed to inhibit colon CSCs. Using a molecular docking approach, we demonstrated that sitagliptin targeted CD24/SOX4-centered signaling molecules with high affinity. In vitro experimental data showed that sitagliptin treatment suppressed CRC tumorigenic properties and worked in synergy with 5FU and this study thus provided preclinical evidence to support the alternative use of sitagliptin for treating CRC.


Assuntos
Neoplasias Colorretais , Fosfato de Sitagliptina , Humanos , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Dipeptidil Peptidase 4 , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , beta Catenina , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Microambiente Tumoral , Fatores de Transcrição SOXC/genética , Antígeno CD24
11.
J Clin Endocrinol Metab ; 109(6): 1517-1525, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38127960

RESUMO

CONTEXT: Dipeptidyl peptidase-4 (DPP4) is originally described as a surface protein in lymphocytes. Lymphocyte infiltration and subsequent destruction of thyroid tissue have been considered as the central pathological mechanism in Hashimoto thyroiditis (HT). OBJECTIVE: The present study aimed to investigate DPP4 expression in peripheral blood and thyroid tissue in HT patients, and explore the role of DPP4 in the pathophysiological process of HT. METHODS: This case-control study recruited 40 drug-naive HT patients and 81 control individuals. Peripheral blood and thyroid specimens were collected for assessing the expression and activity of DPP4. Moreover, single-cell RNA sequencing (scRNA-seq) analysis of 6 "para-tumor tissues" samples from scRNA-seq data set GSE184362 and in vitro cell experiments were also conducted. RESULTS: The HT patients had similar DPP4 serum concentration and activity as the controls. However, the expression and activity of DPP4 was significantly increased in the thyroid of the HT group than in the control group. The scRNA-seq analysis showed that DPP4 expression was significantly increased in the HT group, and mainly expressed in T cells. Further in vitro studies showed that inhibition of lymphocyte DPP4 activity with sitagliptin downregulated the production of inflammatory factors in co-cultured thyroid cells. CONCLUSION: DPP4 expression was significantly increased in the thyroid of the HT group compared with the control group, and was mainly localized in the lymphocytes. Inhibition of lymphocyte DPP4 activity reduced the production of inflammatory factors in co-cultured thyroid cells. Therefore, inhibition of DPP4 may have a beneficial effect by alleviating inflammatory reactions in HT patients.


Assuntos
Dipeptidil Peptidase 4 , Doença de Hashimoto , Inflamação , Glândula Tireoide , Humanos , Doença de Hashimoto/metabolismo , Doença de Hashimoto/genética , Doença de Hashimoto/sangue , Doença de Hashimoto/patologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Feminino , Masculino , Estudos de Casos e Controles , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Adulto , Pessoa de Meia-Idade , Inflamação/metabolismo , Inflamação/genética , Fosfato de Sitagliptina/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA