Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
ACS Appl Mater Interfaces ; 14(1): 104-122, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958199

RESUMO

In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 µm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.


Assuntos
Ligas/química , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Implantes Absorvíveis , Ligas/toxicidade , Animais , Cálcio/química , Cálcio/toxicidade , Fosfatos de Cálcio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Corrosão , Módulo de Elasticidade , Gálio/química , Gálio/toxicidade , Humanos , Magnésio/química , Magnésio/toxicidade , Teste de Materiais , Camundongos , Molhabilidade , Zinco/química , Zinco/toxicidade
2.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298988

RESUMO

This study evaluated the biocompatibility and biological performance of novel additive-manufactured bioabsorbable iron-based porous suture anchors (iron_SAs). Two types of bioabsorbable iron_SAs, with double- and triple-helical structures (iron_SA_2_helix and iron_SA_3_helix, respectively), were compared with the synthetic polymer-based bioabsorbable suture anchor (polymer_SAs). An in vitro mechanical test, MTT assay, and scanning electron microscope (SEM) analysis were performed. An in vivo animal study was also performed. The three types of suture anchors were randomly implanted in the outer cortex of the lateral femoral condyle. The ultimate in vitro pullout strength of the iron_SA_3_helix group was significantly higher than the iron_SA_2_helix and polymer_SA groups. The MTT assay findings demonstrated no significant cytotoxicity, and the SEM analysis showed cells attachment on implant surface. The ultimate failure load of the iron_SA_3_helix group was significantly higher than that of the polymer_SA group. The micro-CT analysis indicated the iron_SA_3_helix group showed a higher bone volume fraction (BV/TV) after surgery. Moreover, both iron SAs underwent degradation with time. Iron_SAs with triple-helical threads and a porous structure demonstrated better mechanical strength and high biocompatibility after short-term implantation. The combined advantages of the mechanical superiority of the iron metal and the possibility of absorption after implantation make the iron_SA a suitable candidate for further development.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis , Âncoras de Sutura , Alanina Transaminase/sangue , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Fenômenos Biomecânicos , Nitrogênio da Ureia Sanguínea , Fosfatos de Cálcio/química , Fosfatos de Cálcio/toxicidade , Sulfato de Cálcio/administração & dosagem , Sulfato de Cálcio/química , Sulfato de Cálcio/toxicidade , Creatinina/sangue , Desenho de Equipamento , Fêmur/diagnóstico por imagem , Fêmur/ultraestrutura , Ferro , Lasers , Teste de Materiais , Microscopia Eletrônica de Varredura , Estrutura Molecular , Osseointegração , Polímeros/química , Polímeros/toxicidade , Porosidade , Coelhos , Distribuição Aleatória , Resistência à Tração , Vísceras , Microtomografia por Raio-X
3.
Regul Toxicol Pharmacol ; 117: 104776, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871170

RESUMO

When extrapolating data from animal toxicological studies a default factor (dUF) of 100 is applied to derive a heath based guidance value. The UF takes into account the interspecies differences (ID) and the intraspecies variability (IV). When re-evaluating the safety of phosphates used as food additives nephrocalcinosis was identified as the critical endpoint. The underlying mechanism for nephrocalcinosis was attributed to the precipitation of calcium phosphate in the kidney, depending on its solubility, irrespective of the species and the population. Based on the mechanism, the volume of primary urine, for which the glomerular filtration rate (GFR) was used as a proxy, was considered to be the only parameter relevant for ID and IV. Median value of GFR in rats was 4.0 ml/min/kg bw. In humans it was 1.6 ml/min/kg bw in healthy adults and 0.9 in elderly. These values were calculated from the distribution of the GFR data from 8 studies in rats (n = 191), 16 studies in adults (n = 1540) and 5 studies in elderly (n = 2608). Multiplying the distribution of the ratio rat/healthy humans (ID) with the distribution of the ratio healthy humans/elderly human (IV) resulted in a phosphate specific factor of 4.5 (3.3-6.7) (median; 25th - 75th percentile).


Assuntos
Fosfatos de Cálcio/toxicidade , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/efeitos dos fármacos , Nefrocalcinose/induzido quimicamente , Animais , Fosfatos de Cálcio/metabolismo , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/metabolismo , Nefrocalcinose/metabolismo , Nefrocalcinose/fisiopatologia , Ratos , Medição de Risco , Especificidade da Espécie
4.
J Am Heart Assoc ; 8(18): e012341, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31512549

RESUMO

Background We have developed a peptide vaccine named ATRQß-001, which was proved to retard signal transduction initiated by angiotensin II (Ang II). Ang II was implicated in abdominal aortic aneurysm (AAA) progression, but whether the ATRQß-001 vaccine would prevent AAA is unknown. Methods and Results Ang II-infused ApoE-/- mice and calcium phosphate-induced AAA in C57BL/6 mice were used to verify the efficiency of ATRQß-001 vaccine in AAA. Results demonstrated that the vaccine effectively restrained the aneurysmal dilation and vascular wall destruction of aorta in both animal models, beyond anti-hypertensive effects. In Ang II-induced AAA vascular sections, Immunohistochemical staining showed that the vaccine notably constrained vascular inflammation and vascular smooth muscle cell (VSMC) phenotypic transition, concurrently reduced macrophages infiltration. In cultured VSMC, the anti-ATR-001 antibody inhibited osteopontin secretion induced by Ang II, thereby impeded macrophage migration while co-culture. Furthermore, metalloproteinases and other matrix proteolytic enzymes were also found to be limited by the vaccine in vivo and in vitro. Conclusions ATRQß-001 vaccine prevented AAA initiation and progression in both Ang II and calcium phosphate-induced AAA models. And the beneficial effects were played beyond decrease of blood pressure, which provided a novel and promising method to take precautions against AAA.


Assuntos
Aorta/efeitos dos fármacos , Aneurisma da Aorta Abdominal/patologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Angiotensina II/toxicidade , Animais , Aorta/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Fosfatos de Cálcio/toxicidade , Modelos Animais de Doenças , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout para ApoE , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteopontina/efeitos dos fármacos , Osteopontina/metabolismo , Distribuição Aleatória , Vasoconstritores/toxicidade
5.
Mater Sci Eng C Mater Biol Appl ; 97: 1036-1051, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678895

RESUMO

Tissue engineered products (TEPs), which mean biomaterials containing either cells or growth factors or both cells and growth factors, may be used as an alternative to the autografts taken directly from the bone of the patients. Nevertheless, the use of TEPs needs much more understanding of biointeractions between biomaterials and eukaryotic cells. Despite the possibility of the use of in vitro cellular models for initial evaluation of the host response to the implanted biomaterial, it is observed that most researchers use cell cultures only for the evaluation of cytotoxicity and cell proliferation on the biomaterial surface, and then they proceed to animal models and in vivo testing of bone implants without fully utilizing the scientific potential of in vitro models. In this review, the most important biointeractions between eukaryotic cells and biomaterials were discussed, indicating molecular mechanisms of cell adhesion, proliferation, and biomaterial-induced activation of immune cells. The article also describes types of cellular models which are commonly used for biomaterial testing and highlights the possibilities and drawbacks of in vitro tests for biocompatibility evaluation of novel scaffolds. Finally, the review summarizes recent findings concerning the use of adult mesenchymal stem cells for TEP generation and compares the potential of bone marrow- and adipose tissue-derived stem cells in regenerative medicine applications.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 39(3): 446-458, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651000

RESUMO

Objective- Inflammation occurs during the progression of abdominal aortic aneurysm (AAA). IL (interleukin)-33 is a pleiotropic cytokine with multiple immunomodulatory effects, yet its role in AAA remains unknown. Approach and Results- Immunoblot, immunohistochemistry, and immunofluorescent staining revealed increased IL-33 expression in adventitia fibroblasts from mouse AAA lesions. Daily intraperitoneal administration of recombinant IL-33 or transgenic IL-33 expression ameliorated periaorta CaPO4 injury- and aortic elastase exposure-induced AAA in mice, as demonstrated by blunted aortic expansion, reduced aortic wall elastica fragmentation, enhanced AAA lesion collagen deposition, attenuated T-cell and macrophage infiltration, reduced inflammatory cytokine production, skewed M2 macrophage polarization, and reduced lesion MMP (matrix metalloproteinase) expression and cell apoptosis. Flow cytometry analysis, immunostaining, and immunoblot analysis showed that exogenous IL-33 increased CD4+Foxp3+ regulatory T cells in spleens, blood, and aortas in periaorta CaPO4-treated mice. Yet, ST2 deficiency muted these IL-33 activities. Regulatory T cells from IL-33-treated mice also showed significantly stronger activities in suppressing smooth muscle cell inflammatory cytokine and chemokine expression, macrophage MMP expression, and in increasing M2 macrophage polarization than those from vehicle-treated mice. In contrast, IL-33 failed to prevent AAA and lost its beneficial activities in CaPO4-treated mice after selective depletion of regulatory T cells. Conclusions- Together, this study established a role of IL-33 in protecting mice from AAA formation by enhancing ST2-dependent aortic and systemic regulatory T-cell expansion and their immunosuppressive activities.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Interleucina-33/fisiologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Aorta/imunologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/imunologia , Fosfatos de Cálcio/toxicidade , Células Cultivadas , Citocinas/biossíntese , Avaliação Pré-Clínica de Medicamentos , Injeções Intraperitoneais , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Proteína 1 Semelhante a Receptor de Interleucina-1/fisiologia , Interleucina-33/genética , Interleucina-33/farmacologia , Interleucina-33/uso terapêutico , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Elastase Pancreática/toxicidade , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Linfócitos T Reguladores/imunologia , Remodelação Vascular
7.
Int J Toxicol ; 37(3): 216-222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29727252

RESUMO

The aim of this study was to investigate the genotoxicity of aluminum oxide (Al2O3), ß-tricalcium phosphate (ß-TCP) (Ca3(PO4)2), and zinc oxide (ZnO) nanoparticles (NPs) that were 4.175, 9.058, and 19.8 nm sized, respectively, on human peripheral blood lymphocytes using micronucleus (MN) and chromosome aberration (CA) techniques. Aluminum oxide and ß-TCP NPs did not show genotoxic effects on human peripheral blood cultures in vitro, even at the highest concentrations; therefore, these materials may be suitable for use as biocompatible materials. It was observed that, even at a very low dose (≥12.5 ppm), ZnO NPs had led to genotoxicity. In addition, at high concentrations (500 ppm and above), ZnO NPs caused mortality of lymphocytes. For these reasons, it was concluded that ZnO NPs are not appropriate for using as a biocompatible biomaterial.


Assuntos
Óxido de Alumínio/toxicidade , Fosfatos de Cálcio/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Linfócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Materiais Biocompatíveis/toxicidade , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Masculino , Testes para Micronúcleos , Adulto Jovem
8.
Biomed Pharmacother ; 97: 26-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29080455

RESUMO

Lactoferrin has been known to have antimicrobial properties. This research was conducted to investigate the toxicity of Alginate/EUDRAGIT® S 100-enclosed chitosan-calcium phosphate-loaded Fe-bLf nanocapsules (NCs) by in vitro and in vivo assays. Brine shrimp lethality assay showed that the LC50 value of NCs was more than 1mg/mL which indicated that NCs was not toxic to Brine shrimp. However, the LC50 values for the positive control potassium dichromate at 24h is 64.15µg/mL, which was demostrated the toxic effect against the brine shrimp. MTT cytotoxicity assay also revealed that NCs was not toxic against non-cancerous Vero cell line with IC50 values of 536µg/mL. Genotoxicity studies by comet assay on Vero cells revealed that NCs exerted no significant genotoxic at 100µg/mL without tail or shorter comet tail. Allium cepa root assay carried out at 125, 250, 500 and 1000µg/mL for 24h revealed that the NCs was destitute of significant genotoxic effect under experimental conditions. The results show that there is no significant difference (p>0.05) in mitotic index between the deionized water and NCs treated Allium cepa root tip cells. In conclusion, no toxicity was observed in NCs in this study. Therefore, nontoxic NCs has the good potential to develop as a therapeutic agent.


Assuntos
Alginatos/toxicidade , Fosfatos de Cálcio/toxicidade , Quitosana/toxicidade , Lactoferrina/toxicidade , Nanocápsulas , Ácidos Polimetacrílicos/toxicidade , Alginatos/administração & dosagem , Allium/citologia , Allium/efeitos dos fármacos , Animais , Artemia , Fosfatos de Cálcio/administração & dosagem , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Quitosana/administração & dosagem , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/toxicidade , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/toxicidade , Ferro/administração & dosagem , Ferro/toxicidade , Lactoferrina/administração & dosagem , Dose Letal Mediana , Mitose/efeitos dos fármacos , Mitose/fisiologia , Nanocápsulas/administração & dosagem , Ácidos Polimetacrílicos/administração & dosagem , Células Vero
9.
Sci Rep ; 7(1): 15523, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138474

RESUMO

In crystallopathies, crystals or crystalline particles of environmental and metabolic origin deposit within tissues, induce inflammation, injury and cell death and eventually lead to organ-failure. The NLRP3-inflammasome is involved in mediating crystalline particles-induced inflammation, but pathways leading to cell death are still unknown. Here, we have used broad range of intrinsic and extrinsic crystal- or crystalline particle-sizes and shapes, e.g. calcium phosphate, silica, titanium dioxide, cholesterol, calcium oxalate, and monosodium urate. As kidney is commonly affected by crystallopathies, we used human and murine renal tubular cells as a model system. We showed that all of the analysed crystalline particles induce caspase-independent cell death. Deficiency of MLKL, siRNA knockdown of RIPK3, or inhibitors of necroptosis signaling e.g. RIPK-1 inhibitor necrostatin-1s, RIPK3 inhibitor dabrafenib, and MLKL inhibitor necrosulfonamide, partially protected tubular cells from crystalline particles cytotoxicity. Furthermore, we identify phagocytosis of crystalline particles as an upstream event in their cytotoxicity since a phagocytosis inhibitor, cytochalasin D, prevented their cytotoxicity. Taken together, our data confirmed the involvement of necroptosis as one of the pathways leading to cell death in crystallopathies. Our data identified RIPK-1, RIPK3, and MLKL as molecular targets to limit tissue injury and organ failure in crystallopathies.


Assuntos
Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Necrose/genética , Material Particulado/toxicidade , Fagocitose/efeitos dos fármacos , Animais , Apoptose/genética , Oxalato de Cálcio/química , Oxalato de Cálcio/toxicidade , Fosfatos de Cálcio/química , Fosfatos de Cálcio/toxicidade , Linhagem Celular , Colesterol/química , Colesterol/toxicidade , Cristalização , Citocalasina D/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Camundongos , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia , Oximas/farmacologia , Tamanho da Partícula , Material Particulado/química , Cultura Primária de Células , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Titânio/química , Titânio/toxicidade , Ácido Úrico/química , Ácido Úrico/toxicidade
10.
Curr Opin Rheumatol ; 28(2): 122-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26720903

RESUMO

PURPOSE OF REVIEW: Basic calcium phosphate (BCP) crystals have long been associated with the pathogenesis of osteoarthritis. As our knowledge concerning BCP crystals in osteoarthritis expands, so does the potential to develop targeted therapies. The present review discusses recent advances in this field and attempts to summarize our current understanding regarding the role of BCP crystals in osteoarthritis pathogenesis. RECENT FINDINGS: BCP crystals injected into the knees of mice induce osteoarthritis-like changes, further evidence of their pathogenic properties. Interleukin-6 has emerged as a key cytokine involved in BCP crystal-induced inflammation that could represent a potential therapeutic target. The role of BCP crystal-induced osteoclastogenesis has also recently been explored and may also hold the key to future targeted therapies. Although tools to detect BCP crystals remain limited, dual energy computerized tomography scanning has emerged as a useful noninvasive means of quantifying intra-articular calcium crystal deposition. SUMMARY: BCP crystals can activate a number of inflammatory pathways which in turn may lead to cartilage degradation and osteoarthritis. Understanding of these pathways may ultimately yield targeted therapies for osteoarthritis, for which none currently exists.


Assuntos
Fosfatos de Cálcio/metabolismo , Osteoartrite/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/toxicidade , Cristalização , Humanos , Inflamação/metabolismo , Interleucina-6/fisiologia , Osteoartrite/etiologia , Osteogênese/efeitos dos fármacos
11.
Circ Res ; 117(2): 129-41, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25940549

RESUMO

RATIONALE: Histological examination of abdominal aortic aneurysm (AAA) tissues demonstrates extracellular matrix destruction and infiltration of inflammatory cells. Previous work with mouse models of AAA has shown that anti-inflammatory strategies can effectively attenuate aneurysm formation. Thrombospondin-1 is a matricellular protein involved in the maintenance of vascular structure and homeostasis through the regulation of biological functions, such as cell proliferation, apoptosis, and adhesion. Expression levels of thrombospondin-1 correlate with vascular disease conditions. OBJECTIVE: To use thrombospondin-1-deficient (Thbs1(-/-)) mice to test the hypothesis that thrombospondin-1 contributes to pathogenesis of AAAs. METHODS AND RESULTS: Mouse experimental AAA was induced through perivascular treatment with calcium phosphate, intraluminal perfusion with porcine elastase, or systemic administration of angiotensin II. Induction of AAA increased thrombospondin-1 expression in aortas of C57BL/6 or apoE-/- mice. Compared with Thbs1(+/+) mice, Thbs1(-/-) mice developed significantly smaller aortic expansion when subjected to AAA inductions, which was associated with diminished infiltration of macrophages. Thbs1(-/-) monocytic cells had reduced adhesion and migratory capacity in vitro compared with wild-type counterparts. Adoptive transfer of Thbs1(+/+) monocytic cells or bone marrow reconstitution rescued aneurysm development in Thbs1(-/-) mice. CONCLUSIONS: Thrombospondin-1 expression plays a significant role in regulation of migration and adhesion of mononuclear cells, contributing to vascular inflammation during AAA development.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Macrófagos/fisiologia , Trombospondina 1/fisiologia , Transferência Adotiva , Angiotensina II/toxicidade , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas E/deficiência , Transplante de Medula Óssea , Fosfatos de Cálcio/toxicidade , Linhagem Celular , Movimento Celular , Modelos Animais de Doenças , Inflamação , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/fisiologia , Monócitos/transplante , Elastase Pancreática/toxicidade , Quimera por Radiação , Proteínas Recombinantes/uso terapêutico , Trombospondina 1/biossíntese , Trombospondina 1/deficiência , Trombospondina 1/uso terapêutico , Regulação para Cima
12.
Biomed Mater ; 10(2): 025009, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25886478

RESUMO

New insight on the conversion of amorphous calcium phosphate (ACP) to nano-sized alpha tricalcium phosphate (α-TCP) provides a faster pathway to calcium phosphate bone cements. In this work, synthesized ACP powders were treated with either water or ethanol, dried, crystallized between 700 and 800 °C, and then cooled at different cooling rates. Particle size was measured in a scanning electron microscope, but crystallite size calculated by Rietveld analysis. Phase composition and bonding in the crystallized powder was assessed by x-ray diffraction and Fourier-transform infrared spectroscopy. Results showed that 50 nm sized α-TCP formed after crystallization of lyophilized powders. Water treated ACP retained an unstable state that may allow ordering to nanoapatite, and further transition to ß-TCP after crystallization and subsequent decomposition. Powders treated with ethanol, favoured the formation of pure α-TCP. Faster cooling limited the growth of ß-TCP. Both the initial contact with water and the cooling rate after crystallization dictated ß-TCP formation. Nano-sized α-TCP reacted faster with water to an apatite bone cement than conventionally prepared α-TCP. Water treated and freeze-dried powders showed faster apatite cement formation compared to ethanol treated powders. Good biocompatibility was found in pure α-TCP nanoparticles made from ethanol treatment and with a larger crystallite size. This is the first report of pure α-TCP nanoparticles with a reactivity that has not required additional milling to cause cementation.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Nanopartículas/química , Apatitas/química , Cimentos Ósseos/toxicidade , Fosfatos de Cálcio/toxicidade , Células Cultivadas , Cristalização , Temperatura Alta , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Tamanho da Partícula , Difração de Pó , Pós , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biointerphases ; 9(3): 031004, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25280845

RESUMO

A Mg-Zn-tricalcium phosphate composite with a chitosan coating was prepared in this investigation to study its biodegradation performance both in vitro and in vivo conditions. The in vitro test results show that the immersion corrosion rate, the pH values of the simulated body fluids and the released metal ion concentration of the chitosan coated composite are all lower than those of the uncoated composite. The in vitro cytotoxicity test shows that the chitosan coated specimens is safe for cellular applications. When the chitosan coated composite is tested in vivo, the concentration of metal ions from the composite observed in the venous blood of Zelanian rabbits is less than the uncoated composite specimens. The chitosan coating slows down the in vivo degradation of the composite after surgery. In vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys, and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. The chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.


Assuntos
Biotransformação , Fosfatos de Cálcio/metabolismo , Quitosana/metabolismo , Materiais Revestidos Biocompatíveis/metabolismo , Magnésio/metabolismo , Próteses e Implantes/efeitos adversos , Zinco/metabolismo , Animais , Líquidos Corporais/química , Líquidos Corporais/metabolismo , Fosfatos de Cálcio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/toxicidade , Materiais Revestidos Biocompatíveis/efeitos adversos , Corrosão , Concentração de Íons de Hidrogênio , Magnésio/toxicidade , Camundongos , Coelhos , Zinco/toxicidade
14.
Biomed Mater ; 9(5): 055005, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25167539

RESUMO

Biocompatible ceramic fillers are capable of sustaining bone formation in the proper environment. The major drawback of these scaffolding materials is the absence of osteoinductivity. To overcome this limitation, bioengineered scaffolds combine osteoconductive components (biomaterials) with osteogenic features such as cells and growth factors. The bone marrow mesenchymal stromal cells (BMMSCs) and the ß-tricalcium phosphate (ß-TCP) are well-known and characterized in this regard. The present study was conducted to compare the properties of novel octacalcium phosphate ceramic (OCP) granules with ß-TCP (Cerasorb(®)), gingiva-derived mesenchymal stromal cells (GMSCs) properties with the BMMSCs and osteogenic and angiogenic properties of a bioengineered composite based on OCP granules and the GMSCs. This study demonstrates that GMSCs and BMMSСs have a similar osteogenic capacity. The usage of OCP ceramic granules in combination with BMMSCs/GMSCs significantly affects the osteo- and angiogenesis in bone grafts of ectopic models.


Assuntos
Substitutos Ósseos/química , Fosfatos de Cálcio/química , Cerâmica/química , Gengiva/citologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adipogenia , Animais , Substitutos Ósseos/toxicidade , Fosfatos de Cálcio/toxicidade , Diferenciação Celular , Proliferação de Células , Cerâmica/toxicidade , Condrogênese , Feminino , Gengiva/metabolismo , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual
15.
Curr Pharm Biotechnol ; 14(10): 918-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24372244

RESUMO

Nucleic acid drugs are promising new therapeutics for the treatment of various diseases including genetic diseases, viral diseases, and cancer. However, their poor intracellular bioavailability and rapid degradation hinder their development as drugs. Therefore, the main challenge is to develop an efficient delivery system. Calcium phosphate has been widely used to transfect cultured cells for 40 years, due to its safety, simply of production and noticeable efficacy of transfection. Unfortunately, calcium phosphate particles show poor colloidal stability because of uncontrolled growth, which impedes their practical use. Recently, investigators have designed a variety of biodegradable calcium phosphate nanocarriers and achieved efficient gene delivery both in vitro and in vivo with low toxicity. In this review, we focus on the current research activity in the development of calcium phosphate nanoparticlss for gene delivery. Calcium phosphate nanoparticles are mainly classified into lipid coated and polymer coated ones for discussion. In addition, cellular uptake and intracellular trafficking of calcium phosphate nanoparticles are also mentioned.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Nanopartículas/química , Animais , Materiais Biocompatíveis/toxicidade , Fosfatos de Cálcio/toxicidade , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/administração & dosagem , DNA/genética , Portadores de Fármacos/toxicidade , Endocitose , Endossomos/metabolismo , Humanos , Nanopartículas/toxicidade , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
16.
Sci Rep ; 3: 2203, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23857555

RESUMO

Zn-, and Mg-containing tricalcium phosphates (TCPs) loaded with a hydrothermal extract of a human tubercle bacillus (HTB) were prepared by immersing Zn-TCP and Mg-TCP in HTB-containing supersaturated calcium phosphate solutions. The in vitro and in vivo immunogenic activities of the HTB-loaded Zn-, and Mg-TCPs (Zn-Ap-HTB and Mg-Ap-HTB, respectively) were evaluated as potential immunopotentiating adjuvants for cancer immunotherapy. The Zn-Ap-HTB and Mg-Ap-HTB adjuvants showed no obvious cytotoxicity and more effectively stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion by macrophage-like cells than unprocessed HTB or HTB-loaded TCP (T-Ap-HTB) in vitro. Zn-Ap-HTB and Mg-Ap-HTB mixed with liquid-nitrogen-treated tumor tissue markedly inhibited the in vivo development of rechallenged Lewis lung carcinoma (LLC) cells compared with T-Ap-HTB and the unprocessed HTB mixed liquid-nitrogen-treated tumor tissue. Zn-Ap-HTB and Mg-Ap-HTB contributed to eliciting potent systemic antitumor immunity in vivo.


Assuntos
Adjuvantes Imunológicos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/imunologia , Vacinas Anticâncer , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Bacillus/química , Bacillus/imunologia , Fosfatos de Cálcio/administração & dosagem , Fosfatos de Cálcio/toxicidade , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/toxicidade , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Magnésio/química , Camundongos , Neoplasias/mortalidade , Baço/imunologia , Baço/metabolismo , Vacinas Conjugadas , Zinco/química
17.
J. appl. oral sci ; 21(1): 37-42, 2013. ilus, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: lil-684993

RESUMO

Objective: The aim of this study was to produce dense granules of tricalcium phosphate (β-TCP) and magnesium (Mg) substituted β-TCP, also known as β-TCMP (Mg/Ca=0.15 mol), in order to evaluate the impact of Mg incorporation on the physicochemical parameters and in vitro biocompatibility of this novel material. Material and Methods: The materials were characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), electron microscopy and inductively coupled plasma (ICP). Biocompatibility was assayed according to ISO 10993-12:2007 and 7405:2008, by two different tests of cell survival and integrity (XTT and CVDE). Results: The XRD profile presented the main peaks of β-TCP (JCPDS 090169) and β-TCMP (JCPDS 130404). The characteristic absorption bands of TCP were also identified by FTIR. The ICP results of β-TCMP granules extract showed a precipitation of calcium and release of Mg into the culture medium. Regarding the cytotoxicity assays, β-TCMP dense granules did not significantly affect the mitochondrial activity and relative cell density in relation to β-TCP dense granules, despite the release of Mg from granules into the cell culture medium. Conclusion: β-TCMP granules were successfully produced and were able to release Mg into media without cytotoxicity, indicating the suitability of this promising material for further biological studies on its adequacy for bone therapy.


Assuntos
Materiais Biocompatíveis/toxicidade , Fosfatos de Cálcio/toxicidade , Magnésio/toxicidade , Análise de Variância , Materiais Biocompatíveis/farmacocinética , Substitutos Ósseos/farmacocinética , Substitutos Ósseos/toxicidade , Fosfatos de Cálcio/farmacocinética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Teste de Materiais , Microscopia Eletrônica de Varredura , Magnésio/farmacocinética , Osteoblastos/efeitos dos fármacos , Análise Espectral , Fatores de Tempo , Testes de Toxicidade , Difração de Raios X
18.
Brain Res Bull ; 89(5-6): 159-67, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22982368

RESUMO

Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120mmHg for 45min, which was followed by 15min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15min. In the RBM exposed to 3mM phosphate and/or 100µM Ca(2+), C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment.


Assuntos
Fosfatos de Cálcio/toxicidade , Isquemia/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ficocianina/farmacologia , Vasos Retinianos/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Isquemia/induzido quimicamente , Isquemia/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Ficocianina/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/metabolismo , terc-Butil Hidroperóxido/toxicidade
19.
J Endod ; 38(8): 1101-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22794214

RESUMO

INTRODUCTION: The purpose of this in vitro study was to evaluate the cytotoxicity and alkaline phosphatase (ALP) activity of a new bioceramic root repair material, EndoSequence Root Repair Material (ESRRM; Brasseler USA, Savannah, GA), and to compare these characteristics with those of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK) and Geristore (GR; Den-Mat LLC, Santa Maria, CA). METHODS: Human Saos-2 osteoblast-like cells were exposed to 1-, 3-, and 7-day elutes of the materials (100% and 50% strength) for 24 hours after which the bioactivity and ALP activity of the cells were evaluated using a methylthiazol sulfophenyl (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and para-Nitrophenylphosphate colorimetric assay, respectively. In the positive control group, Triton X-100 (Boehringer Mannheim Corp, Indianapolis, IN) was used to lyse the cells, representing 100% cytotoxicity, and in the negative control group cells received fresh culture medium only. Data were statistically analyzed using the unpaired t test and 1-way analysis of variance. RESULTS: The results revealed that the bioactivity of the cells as well as ALP activity were significantly decreased after exposure to ESRRM elutes in almost all time periods, both in 100% and 50% concentrations, with the exception of ALP activity of day 1 elutes of ESRRM at 50% concentration. MTA did not change the bioactivity or ALP activity of the cells. GR elutes of 100% concentration reduced the bioactivity on days 1 and 3, whereas GR elutes of 50% concentration affected the cells only on day 1. None of the GR elutes had any effect on ALP activity of the cells. CONCLUSIONS: It was concluded that ESRRM elutes of all time periods in general reduced the bioactivity and ALP activity of osteoblast-like cells. GR reduced bioactivity only, whereas MTA had no effect on the cells.


Assuntos
Fosfatase Alcalina/efeitos dos fármacos , Materiais Biocompatíveis/toxicidade , Fosfatos de Cálcio/toxicidade , Óxidos/toxicidade , Materiais Restauradores do Canal Radicular/toxicidade , Silicatos/toxicidade , Tantálio/toxicidade , Zircônio/toxicidade , Compostos de Alumínio/toxicidade , Compostos de Cálcio/toxicidade , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Cromogênicos , Colorimetria/métodos , Corantes , Combinação de Medicamentos , Cimentos de Ionômeros de Vidro/toxicidade , Humanos , Nitrofenóis , Compostos Organofosforados , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Resinas Sintéticas/toxicidade , Temperatura , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Água/química
20.
Toxicology ; 297(1-3): 57-67, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22522029

RESUMO

Wear debris-induced osteolysis, a major contributing factor of orthopedic implant aseptic loosening, affects long-term survival of orthopedic prostheses following joint replacement and revision surgery. Pathogenic effects of wear debris on various cell types including macrophages/monocytes, osteoblasts, and osteoclasts have been well studied. However, the interactions between wear debris particles and osteocytes, which make up over 90% of all bone cells, have not been clearly illustrated. Here, we explored the biological effects of endotoxin-free beta-tricalciumphosphate (ß-TCP) wear particles with the average diameter of 1.997 µm (range 1.3-3.2 µm) on osteocytes in vitro. Our results showed that 24 h or 48 h incubation of ß-TCP particles dose-dependently inhibited cell viability of osteocytes MLO-Y4. Alternatively, ß-TCP particles treatment for 24 h significantly increased the osteocytic marker SOST/sclerostin mRNA expression and the release of inflammatory cytokines including TNF-α and IL-1ß into the culture media, but decreased the mRNA expression of another osteocytic marker dentin matrix protein-1 (DMP-1). Furthermore, these osteocytes dysfunctions were accompanied by F-actin disassembly, cell apoptosis, sustained enhancement of intracellular reactive oxygen species (ROS) and mitochondrial injury upon ß-TCP particles stimulation. In addition, ß-TCP particles also caused Akt inactivation at Ser473 resides with a dose- and time-dependent pattern. Taken together, ß-TCP wear particles could cause osteocytes dysfunctions, which may be mediated by apoptotic death and Akt inactivation in MLO-Y4 cells. These findings strongly suggest that osteocytes may play an important role in the ß-TCP wear particles-induced osteolysis, and provide valuable insights for understanding the molecular mechanisms of osteocytes death involved in tissue damage during bone cement and intolerance of cemented prostheses.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/fisiologia , Fosfatos de Cálcio/toxicidade , Osteócitos/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Materiais Biocompatíveis/toxicidade , Células Cultivadas , Humanos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteólise/induzido quimicamente , Osteólise/metabolismo , Osteólise/patologia , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA