Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Sci Rep ; 14(1): 13670, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871968

RESUMO

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicogênio , Células-Tronco Neoplásicas , Fosfoenolpiruvato Carboxiquinase (GTP) , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Glicogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicogenólise , Via de Pentose Fosfato/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Sci Rep ; 14(1): 14051, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890507

RESUMO

Mitochondrial phosphoenolpyruvate carboxykinase (PCK2), a mitochondrial isoenzyme, supports the growth of cancer cells under glucose deficiency conditions in vitro. This study investigated the role and potential mechanism of PCK2 in the occurrence and development of Hepatocellular carcinoma (HCC). The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and other databases distinguish the expression of PCK2 and verified by qRT-PCR and Western blotting. Kaplan-Meier was conducted to assess PCK2 survival in HCC. The potential biological function of PCK2 was verified by enrichment analysis and gene set enrichment analysis (GSEA). The correlation between PCK2 expression and immune invasion and checkpoint was found by utilizing Tumor Immune Estimation Resource (TIMER). Lastly, the effects of PCK2 on the proliferation and metastasis of hepatocellular carcinoma cells were evaluated by cell tests, and the expressions of Epithelial mesenchymal transformation (EMT) and apoptosis related proteins were detected. PCK2 is down-regulated in HCC, indicating a poor prognosis. PCK2 gene mutation accounted for 1.3% of HCC. Functional enrichment analysis indicated the potential of PCK2 as a metabolism-related therapeutic target. Subsequently, we identified several signaling pathways related to the biological function of PCK2. The involvement of PCK2 in immune regulation was verified and key immune checkpoints were predicted. Ultimately, after PCK2 knockdown, cell proliferation and migration were significantly increased, and N-cadherin and vimentin expression were increased. PCK2 has been implicated in immune regulation, proliferation, and metastasis of hepatocellular carcinoma, and is emerging as a novel predictive biomarker and metabolic-related clinical target.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Humanos , Prognóstico , Linhagem Celular Tumoral , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Transição Epitelial-Mesenquimal/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Feminino , Apoptose , Movimento Celular/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética
3.
Cell Metab ; 36(6): 1371-1393.e7, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38718791

RESUMO

The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.


Assuntos
Carcinoma Hepatocelular , Jejum , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , PPAR alfa , Fosfoenolpiruvato Carboxiquinase (GTP) , PPAR alfa/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Camundongos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Transdução de Sinais , Jejum Intermitente
4.
Cell Signal ; 120: 111198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697449

RESUMO

BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis, glycolysis, and the tricarboxylic acid cycle by converting oxaloacetate into phosphoenolpyruvate. Two distinct isoforms of PEPCK, specifically cytosolic PCK1 and mitochondrial PCK2, have been identified. Nevertheless, the comprehensive understanding of their dysregulation in pan-cancer and their potential mechanism contributing to signaling transduction pathways remains elusive. METHODS: We conducted comprehensive analyses of PEPCK gene expression across 33 diverse cancer types using data from The Cancer Genome Atlas (TCGA). Multiple public databases such as HPA, TIMER 2.0, GEPIA2, cBioPortal, UALCAN, CancerSEA, and String were used to investigate protein levels, prognostic significance, clinical associations, genetic mutations, immune cell infiltration, single-cell sequencing, and functional enrichment analysis in patients with pan-cancer. PEPCK expression was analyzed about different clinical and genetic factors of patients using data from TCGA, GEO, and CGGA databases. Furthermore, the role of PCK2 in Glioma was examined using both in vitro and in vivo experiments. RESULTS: The analysis we conducted revealed that the expression of PEPCK is involved in both clinical outcomes and immune cell infiltration. Initially, we verified the high expression of PCK2 in GBM cells and its role in metabolic reprogramming and proliferation in GBM. CONCLUSION: Our study showed a correlation between PEPCK (PCK1 and PCK2) expression with clinical prognosis, gene mutation, and immune infiltrates. These findings identified two possible predictive biomarkers across different cancer types, as well as a comprehensive analysis of PCK2 expression in various tumors, with a focus on GBM.


Assuntos
Neoplasias , Fosfoenolpiruvato Carboxiquinase (GTP) , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Prognóstico , Proliferação de Células
5.
FASEB J ; 38(8): e23618, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651689

RESUMO

Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.


Assuntos
Células Epiteliais , Mucosa Intestinal , Pancreatite , Fosfoenolpiruvato Carboxiquinase (GTP) , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Homeostase , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/tratamento farmacológico , Fosfoenolpiruvato Carboxiquinase (GTP)/antagonistas & inibidores , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ácidos Picolínicos/farmacologia
6.
Pharmacogenomics J ; 24(2): 5, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378770

RESUMO

OBJECTIVE: To explore the role of p300 in the context of paclitaxel (PTX) resistance in triple-negative breast cancer (TNBC) cells, focusing on its interaction with the phosphoenolpyruvate carboxykinase 1 (PCK1)/adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS: The expression of p300 and PCK1 at the messenger ribonucleic acid (mRNA) level was detected using a quantitative polymerase chain reaction. The GeneCards and GEPIA databases were used to investigate the relationship between p300 and PCK1. The MDA-MB-231/PTX cell line, known for its PTX resistance, was chosen to understand the specific role of p300 in such cells. The Lipofectamine™ 3000 reagent was used to transfer the p300 small interfering RNA and the overexpression of PCK1 plasmid into MDA-MB-231/PTX. The expression levels of p300, PCK1, 5'AMPK and phosphorylated AMPK (p-AMPK) were determined using the western blot test. RESULTS: In TNBC cancer tissue, the expression of p300 was increased compared with TNBC paracancerous tissue (P < 0.05). In the MDA-MB-231 cell line of TNBC, the expression of p300 was lower than in the PTX-resistant TNBC cells (MDA-MB-231/PTX) (P < 0.05). The PCK1 expression was decreased in the TNBC cancer tissue compared with TNBC paracancerous tissue, and the PCK1 expression was reduced in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05) indicating that PCK1 was involved in the resistance function. Additionally, p-AMPK was decreased in MDA-MB-231/PTX compared with MDA-MB-231 (P < 0.05). The adenosine triphosphate (ATP) level was also detected and was significantly lower in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05). Additionally, cell proliferation increased significantly in MDA-MB-231/PTX at 48 and 72 h (P < 0.05) suggesting that MDA-MB-231/PTX cells obtained the resistance function which was associated with AMPK and ATP level. When p300 was inhibited, p-AMPK and ATP levels elevated in MDA-MB-231/PTX (P < 0.05). When PCK1 was suppressed, the ATP consumption rate decreased, and cell proliferation increased (P < 0.05). However, there were no changes in p300. CONCLUSIONS: In MDA-MB-231/PTX, p300 can inhibit p-AMPK and ATP levels by inhibiting PCK1 expression. Our findings suggest that targeting p300 could modulate the PCK1/AMPK axis, offering a potential therapeutic avenue for overcoming PTX resistance in TNBC.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Trifosfato de Adenosina/uso terapêutico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima
7.
J Transl Med ; 21(1): 861, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017546

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most prevalent RNA modification. Although hnRNPA2B1, as a reader of m6A modification, has been reported to promote tumorigenesis in a few types of tumors, its role in hepatocellular carcinoma (HCC) and the underlying molecular mechanism remains unclear. METHODS: Multiple public databases were used to analyze the expression of hnRNPA2B1 in HCC and its correlation with survival prognosis. We employed a CRISPR-Cas9 sgRNA editing strategy to knockout hnRNPA2B1 expression in HCC cells. The biological function of hnRNPA2B1 in vitro in HCC cells was measured by CCK8, colony formation, migration, and invasion assay. The tumorigenic function of hnRNPA2B1 in vivo was determined by a subcutaneous tumor formation experiment and a HCC mouse model via tail injection of several plasmids into the mouse within 5s-7s. RNA binding protein immunoprecipitation (RIP) experiment using hnRNPA2B1 was performed to test the target genes of hnRNPA2B1 and methylated RNA immunoprecipitation (MeRIP) assay was performed to explore the m6A methylated mRNA of target genes. RESULTS: hnRNPA2B1 highly expressed in HCC tissues, correlated with high grades and poor prognosis. Its knockout reduced HCC cell proliferation, migration, and invasion in vitro, while overexpression promoted these processes. hnRNPA2B1-knockout cells inhibited tumor formation in graft experiments. In HCC mice, endogenous knockout attenuated hepatocarcinogenesis. RNA-seq showed downregulated gluconeogenesis with high hnRNPA2B1 expression. hnRNPA2B1 negatively correlated with PCK1, a key enzyme. RIP assay revealed hnRNPA2B1 binding to PCK1 mRNA. hnRNPA2B1 knockout increased m6A-methylation of PCK1 mRNA. Interestingly, PCK1 knockout partially counteracted tumor inhibition by hnRNPA2B1 knockout in mice. CONCLUSION: Our study indicated that hnRNPA2B1 is highly expressed in HCC and correlated with a poor prognosis. hnRNPA2B1 promotes the tumorigenesis and progression of HCC both in vitro and in vivo. Moreover, hnRNPA2B1 downregulates the expression of PCK1 mRNA via a m6A methylation manner. More importantly, the ability of hnRNPA2B1 to induce tumorigenesis and progression in HCC is dependent on its ability to decrease the expression of PCK1. Therefore, this study suggested that hnRNPA2B1 might be a diagnostic marker of poor prognosis of HCC and a potential therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Metilação , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , RNA/metabolismo , RNA Guia de Sistemas CRISPR-Cas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
9.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166978

RESUMO

Deciphering the crosstalk between metabolic reprogramming and epigenetic regulation is a promising strategy for cancer therapy. In this study, we discovered that the gluconeogenic enzyme PCK1 fueled the generation of S-adenosylmethionine (SAM) through the serine synthesis pathway. The methyltransferase SUV39H1 catalyzed SAM, which served as a methyl donor to support H3K9me3 modification, leading to the suppression of the oncogene S100A11. Mechanistically, PCK1 deficiency-induced oncogenic activation of S100A11 was due to its interaction with AKT1, which upregulated PI3K/AKT signaling. Intriguingly, the progression of hepatocellular carcinoma (HCC) driven by PCK1 deficiency was suppressed by SAM supplement or S100A11 KO in vivo and in vitro. These findings reveal the availability of the key metabolite SAM as a bridge connecting the gluconeogenic enzyme PCK1 and H3K9 trimethylation in attenuating HCC progression, thus suggesting a potential therapeutic strategy against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , S-Adenosilmetionina/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
10.
J Cell Physiol ; 237(8): 3421-3432, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35822903

RESUMO

Hepatic glucose production (HGP) is crucial for the maintenance of normal glucose homeostasis. Although hepatic insulin resistance contributes to excessive glucose production, its mechanism is not well understood. Here, we show that inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate biosynthesis, plays a role in regulating hepatic insulin signaling and gluconeogenesis both in vitro and in vivo. IPMK-deficient hepatocytes exhibit decreased insulin-induced activation of Akt-FoxO1 signaling. The expression of messenger RNA levels of phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose 6-phosphatase (G6pc), key enzymes mediating gluconeogenesis, are increased in IPMK-deficient hepatocytes compared to wild type hepatocytes. Importantly, re-expressing IPMK restores insulin sensitivity and alleviates glucose production in IPMK-deficient hepatocytes. Moreover, hepatocyte-specific IPMK deletion exacerbates hyperglycemia and insulin sensitivity in mice fed a high-fat diet, accompanied by an increase in HGP during pyruvate tolerance test and reduction in Akt phosphorylation in IPMK deficient liver. Our results demonstrate that IPMK mediates insulin signaling and gluconeogenesis and may be potentially targeted for treatment of diabetes.


Assuntos
Glucose , Resistência à Insulina , Insulina , Fígado , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Crit Rev Eukaryot Gene Expr ; 32(1): 35-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377979

RESUMO

Herein, we explored effects of miR-93-5p and gluconeogenic rate-limiting enzyme PCK1 on HCC cells. Bioinformatics analysis and cell experiments confirmed that, compared with expression in normal tissue and cells, miR-93-5p in HCC was abnormally upregulated while PCK1 expression was remarkably downregulated. PCK1 overexpression repressed proliferation, migration, and invasion of HCC cells, and blocked cell cycle in G0/G1 phase. During this process, glucose production was boosted while the production of pyruvate, lactic acid, citric acid, and malic acid was reduced, suggesting that the effect was related to inhibition of glycolysis and induction of gluconeogenic pathways. Elevated miR-93-5p level promoted proliferation, migration, and invasion of HCC cells, accelerated development of cell cycle, activated glycolysis, and suppressed gluconeogenesis. In addition, when miR-93-5p and PCK1 were concurrently upregulated, the abovementioned promoting effects were canceled out. These investigations demonstrated that promoting effect of miR-93-5p on HCC cell growth may be carried out by inhibiting the PCK1 expression, suggesting that miR-93-5p and PCK1 could be applied as new biomarkers or novel therapeutic targets for HCC diagnosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/genética , Glicólise/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
12.
Sci Rep ; 11(1): 18999, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556771

RESUMO

Growth hormone (GH) is one of the critical factors in maintaining glucose metabolism. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are key regulators of diverse metabolic processes. In this study, we investigated the link between GH and BTG2-YY1 signaling pathway in glucose metabolism. GH treatment elevated the expression of hepatic Btg2 and Yy1 in primary mouse hepatocytes and mouse livers. Glucose production in primary mouse hepatocytes and serum blood glucose levels were increased during GH exposure. Overexpression of hepatic Btg2 and Yy1 induced key gluconeogenic enzymes phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6 phosphatase (G6PC) as well as glucose production in primary mouse hepatocytes, whereas this phenomenon was markedly diminished by knockdown of Btg2 and Yy1. Here, we identified the YY1-binding site on the Pck1 and G6pc gene promoters using reporter assays and point mutation analysis. The regulation of hepatic gluconeogenic genes induced by GH treatment was clearly linked with YY1 recruitment on gluconeogenic gene promoters. Overall, this study demonstrates that BTG2 and YY1 are novel regulators of GH-dependent regulation of hepatic gluconeogenic genes and glucose production. BTG2 and YY1 may be crucial therapeutic targets to intervene in metabolic dysfunction in response to the GH-dependent signaling pathway.


Assuntos
Gluconeogênese/genética , Hormônio do Crescimento/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Glucose/biossíntese , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hormônio do Crescimento/administração & dosagem , Hepatócitos , Humanos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Modelos Animais , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Mutação Puntual , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais/genética
13.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417460

RESUMO

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Restrição Calórica , Linhagem Celular , Colforsina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucocorticoides/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicosilação , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
14.
Cancer Res ; 81(19): 4949-4963, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348966

RESUMO

Hypoxia is known to be commonly present in breast tumor microenvironments. Stem-like cells that repopulate breast tumors, termed tumor-repopulating cells (TRC), thrive under hypoxic conditions, but the underlying mechanism remains unclear. Here, we show that hypoxia promotes the growth of breast TRCs through metabolic reprogramming. Hypoxia mobilized transcription factors HIF1α and FoxO1 and induced epigenetic reprogramming to upregulate cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme that initiates gluconeogenesis. PCK1 subsequently triggered retrograde carbon flow from gluconeogenesis to glycogenesis, glycogenolysis, and the pentose phosphate pathway. The resultant NADPH facilitated reduced glutathione production, leading to a moderate increase of reactive oxygen species that stimulated hypoxic breast TRC growth. Notably, this metabolic mechanism was absent in differentiated breast tumor cells. Targeting PCK1 synergized with paclitaxel to reduce the growth of triple-negative breast cancer (TNBC). These findings uncover an altered glycogen metabolic program in breast cancer, providing potential metabolic strategies to target hypoxic breast TRCs and TNBC. SIGNIFICANCE: Hypoxic breast cancer cells trigger self-growth through PCK1-mediated glycogen metabolism reprogramming that leads to NADPH production to maintain a moderate ROS level.


Assuntos
Neoplasias da Mama/metabolismo , Gluconeogênese , Glicogênio/metabolismo , Hipóxia/metabolismo , Animais , Biomarcadores , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Redes e Vias Metabólicas , Camundongos , NADP/biossíntese , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
FEBS J ; 288(23): 6683-6699, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34227245

RESUMO

Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC), and recent findings have demonstrated independent and nonredundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that the expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS, and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1 supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.


Assuntos
Ácido Aspártico/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Ácido Aspártico/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolômica/métodos , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
16.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33690219

RESUMO

Although cancer cells are frequently faced with a nutrient- and oxygen-poor microenvironment, elevated hexosamine-biosynthesis pathway (HBP) activity and protein O-GlcNAcylation (a nutrient sensor) contribute to rapid growth of tumor and are emerging hallmarks of cancer. Inhibiting O-GlcNAcylation could be a promising anticancer strategy. The gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) is downregulated in hepatocellular carcinoma (HCC). However, little is known about the potential role of PCK1 in enhanced HBP activity and HCC carcinogenesis under glucose-limited conditions. In this study, PCK1 knockout markedly enhanced the global O-GlcNAcylation levels under low-glucose conditions. Mechanistically, metabolic reprogramming in PCK1-loss hepatoma cells led to oxaloacetate accumulation and increased de novo uridine triphosphate synthesis contributing to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. Meanwhile, deletion of PCK1 also resulted in AMPK-GFAT1 axis inactivation, promoting UDP-GlcNAc synthesis for elevated O-GlcNAcylation. Notably, lower expression of PCK1 promoted CHK2 threonine 378 O-GlcNAcylation, counteracting its stability and dimer formation, increasing CHK2-dependent Rb phosphorylation and HCC cell proliferation. Moreover, aminooxyacetic acid hemihydrochloride and 6-diazo-5-oxo-L-norleucine blocked HBP-mediated O-GlcNAcylation and suppressed tumor progression in liver-specific Pck1-knockout mice. We reveal a link between PCK1 depletion and hyper-O-GlcNAcylation that underlies HCC oncogenesis and suggest therapeutic targets for HCC that act by inhibiting O-GlcNAcylation.


Assuntos
Carcinoma Hepatocelular , Quinase do Ponto de Checagem 2/metabolismo , Gluconeogênese/efeitos dos fármacos , Glucose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neoplasias Hepáticas , Fosfoenolpiruvato Carboxiquinase (GTP)/deficiência , Acilação/efeitos dos fármacos , Acilação/genética , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Quinase do Ponto de Checagem 2/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
17.
Gene ; 768: 145263, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33122078

RESUMO

Translationally controlled tumor protein (TCTP) has various cellular functions and molecular interactions, many related to its growth-promoting and antiapoptotic properties. Recently, TCTP expression was reported to increases in insulin-resistant mice fed with high-fat diet. TCTP is a multifunctional protein, but its role in liver metabolism is unclear. Here, we investigated the function and mechanism of TCTP in HepG2 cells. Knock-down of TCTP led to 287 differentially expressed genes (DEGs) that were highly associated with cellular apoptosis and signal response, TNF and NF-κB signaling pathways, glycolysis/gluconeogenesis, insulin resistance, FoxO and insulin signaling pathways, adipocytokine and AMPK signaling pathways. shTCTP downregulated the expression of the key gluconeogenesis enzyme phosphoenolpyruvate carboxykinase (PCK1). Furthermore, TCTP regulated the alternative splicing of genes enriched in the phospholipid biosynthetic process and glycerophospholipid metabolism. We further showed that shTCTP down-regulated the intracellular levels of triglyceride and total cholesterol. Our results showed that TCTP regulates the liver cell transcriptome at both the transcriptional and alternative splicing levels. The TCTP regulatory network predicts the biological functions of TCTP in glucose and lipid metabolism, and also insulin resistance, which may be associated with liver metabolism and diseases such as nonalcoholic fatty liver disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação da Expressão Gênica/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Processamento Alternativo/genética , Apoptose/genética , Glicemia/genética , Linhagem Celular Tumoral , Colesterol/sangue , Dieta Hiperlipídica , Gluconeogênese/genética , Glucose/metabolismo , Glicerofosfolipídeos/metabolismo , Glicólise/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Ativação Transcricional/genética , Transcriptoma/genética , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/genética , Proteína Tumoral 1 Controlada por Tradução
18.
Nutrients ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036430

RESUMO

Fructose consumption by rodents modulates both hepatic and intestinal lipid metabolism and gluconeogenesis. We have previously demonstrated that in utero exposure to dexamethasone (DEX) interacts with fructose consumption during adult life to exacerbate hepatic steatosis in rats. The aim of this study was to clarify if adult rats born to DEX-treated mothers would display differences in intestinal gluconeogenesis after excessive fructose intake. To address this issue, female Wistar rats were treated with DEX during pregnancy and control (CTL) mothers were kept untreated. Adult offspring born to CTL and DEX-treated mothers were assigned to receive either tap water (Control-Standard Chow (CTL-SC) and Dexamethasone-Standard Chow (DEX-SC)) or 10% fructose in the drinking water (CTL-fructose and DEX-fructose). Fructose consumption lasted for 80 days. All rats were subjected to a 40 h fasting before sample collection. We found that DEX-fructose rats have increased glucose and reduced lactate in the portal blood. Jejunum samples of DEX-fructose rats have enhanced phosphoenolpyruvate carboxykinase (PEPCK) expression and activity, higher facilitated glucose transporter member 2 (GLUT2) and facilitated glucose transporter member 5 (GLUT5) content, and increased villous height, crypt depth, and proliferating cell nuclear antigen (PCNA) staining. The current data reveal that rats born to DEX-treated mothers that consume fructose during adult life have increased intestinal gluconeogenesis while recapitulating metabolic and morphological features of the neonatal jejunum phenotype.


Assuntos
Dexametasona/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Células Epiteliais/patologia , Frutose/efeitos adversos , Gluconeogênese , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Exposição Materna/efeitos adversos , Troca Materno-Fetal/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Feminino , Transportador de Glucose Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Gravidez , Ratos Wistar
19.
Food Funct ; 11(9): 7696-7706, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32914810

RESUMO

Monk fruit extract (MFE) is a natural sweetener that has been used as an ingredient of food and pharmaceutical products. The effects of feeding synbiotic yogurt fortified with MFE to rats with type 2 diabetes induced by high-fat diet and streptozotocin on serum lipid levels and hepatic AMPK signaling pathway were evaluated. Results showed that oral administration of the synbiotic yogurt fortified with MFE could improve serum lipid levels, respiratory exchange rate, and heat level in type 2 diabetic rats. Transcriptome analysis showed that synbiotic yogurt fortified with MFE may affect the expression of genes involved in binding, catalytic activity, and transporter activity. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these differentially expressed genes were related to AMPK signaling pathway, linoleic acid metabolism, and α-linolenic acid metabolism. Western blotting confirmed that synbiotic yogurt fortified with MFE could activate AMPK signaling and improve the protein level of the hepatic gluconeogenic enzyme G6Pase in diabetic rats. The results indicated that MFE could be a novel sweetener for functional yogurt and related products.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cucurbitaceae , Diabetes Mellitus Tipo 2/metabolismo , Lipídeos/sangue , Fígado/enzimologia , Simbióticos , Iogurte , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/prevenção & controle , Perfilação da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Linoleico/metabolismo , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Extratos Vegetais , Ratos , Respiração , Transdução de Sinais , Edulcorantes , Ácido alfa-Linolênico/metabolismo
20.
Cancer Commun (Lond) ; 40(9): 389-394, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32809272

RESUMO

Highly active lipogenesis is essential for rapid tumor growth. Sterol regulatory element-binding protein (SREBP) is a key transcriptional factor for lipogenesis and activated by reduced sterol and oxysterol levels. However, the mechanism by which cancer cells activate SREBP without altering these sterol/oxysterol levels remains elusive. In one of our recent studies published in Nature entitled "The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis", we demonstrated that activated AKT-mediated phosphoenolpyruvate carboxykinase 1 (PCK1) S90 phosphorylation reduces the gluconeogenic activity of PCK1 and triggers its translocation to the endoplasmic reticulum (ER), where PCK1 acts as a protein kinase and uses GTP, rather than ATP, as a phosphate donor to phosphorylate Insig1/2 thereby reducing oxysterol's binding to Insig1/2 and activating SREBP-mediated lipogenesis for tumor growth. These findings elucidate a coordinated regulation between gluconeogenesis and lipogenesis and uncover a critical role of the protein kinase activity of PCK1 in SREBP-dependent lipid synthesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipogênese , Neoplasias , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Humanos , Neoplasias/patologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosforilação , Proteínas Quinases , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA