Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.355
Filtrar
1.
BMC Urol ; 24(1): 59, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481182

RESUMO

BACKGROUND: Bladder cancer (BC) is one of the most common malignancies of the genitourinary system. Phosphofructokinase 1 (PFK-1) is one of member of PFK, which plays an important role in reprogramming cancer metabolism, such as lactylation modification. Zinc finger E-box-binding homeobox 1 (ZEB1) has been demonstrated to be a oncogene in many cancers. Therefore, this study was performed to explore the effects of PFK-1 on the lactylation of ZEB1 in BC development. METHODS: Cell viability was measured using the CCK-8 kit. The glucose assay kit and lactate assay kit were used to detect glucose utilization and lactate production. The DNA was purified and quantified by qRT-PCR. RESULTS: In the present study, we found that ZEB1 expression levels were significantly elevated in bladder cancer cells. Impaired PFK-1 expression inhibits proliferation, migration, and invasion of BC cells and suppresses tumour growth in vivo. We subsequently found that knockdown of PFK-1 decreases glycolysis, including reduced glucose consumption, lactate production and total extracellular acidification rate (ECAR). Mechanistically, PFK-1 inhibits histone lactylation of bladder cancer cells, and thus inhibits the transcription activity of ZEB1. CONCLUSION: Our results suggest that PFK-1 can inhibit the malignant phenotype of bladder cancer cells by mediating the lactylation of ZEB1. These findings suggested PFK-1 to be a new potential target for bladder cancer therapy.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias da Bexiga Urinária/patologia , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Lactatos , Glucose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
2.
Cell Death Dis ; 14(12): 816, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086793

RESUMO

Metabolic reprogramming to glycolysis is closely associated with the development of chronic kidney disease (CKD). Although it has been reported that phosphofructokinase 1 (PFK) is a rate-limiting enzyme in glycolysis, the role of the platelet isoform of PFK (PFKP) in kidney fibrosis initiation and progression is as yet poorly understood. Here, we investigated whether PFKP could mediate the progression of kidney interstitial fibrosis by regulating glycolysis in proximal tubular epithelial cells (PTECs). We induced PFKP overexpression or knockdown in renal tubules via an adeno-associated virus (AAV) vector in the kidneys of mice following unilateral ureteral occlusion. Our results show that the dilated tubules, the area of interstitial fibrosis, and renal glycolysis were promoted by proximal tubule-specific overexpression of PFKP, and repressed by knockdown of PFKP. Furthermore, knockdown of PFKP expression restrained, while PFKP overexpression promoted TGF-ß1-induced glycolysis in the human PTECs line. Mechanistically, Chip-qPCR revealed that TGF-ß1 recruited the small mothers against decapentaplegic (SMAD) family member 3-SP1 complex to the PFKP promoter to enhance its expression. Treatment of mice with isorhamnetin notably ameliorated PTEC-elevated glycolysis and kidney fibrosis. Hence, our results suggest that PFKP mediates the progression of kidney interstitial fibrosis by regulating glycolysis in PTECs.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Fibrose , Glicólise , Rim/patologia , Fosfofrutoquinase-1/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia
3.
Cell Rep ; 42(11): 113426, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37967006

RESUMO

Aerobic glycolysis is critical for cancer progression and can be exploited in cancer therapy. Here, we report that the human carboxymethylenebutenolidase homolog (carboxymethylenebutenolidase-like [CMBL]) acts as a tumor suppressor by reprogramming glycolysis in colorectal cancer (CRC). The anti-cancer action of CMBL is mediated through its interactions with the E3 ubiquitin ligase TRIM25 and the glycolytic enzyme phosphofructokinase-1 platelet type (PFKP). Ectopic CMBL enhances TRIM25 binding to PFKP, leading to the ubiquitination and proteasomal degradation of PFKP. Interestingly, CMBL is transcriptionally activated by p53 in response to genotoxic stress, and p53 activation represses glycolysis by promoting PFKP degradation. Remarkably, CMBL deficiency, which impairs p53's ability to inhibit glycolysis, makes tumors more sensitive to a combination therapy involving the glycolysis inhibitor 2-deoxyglucose. Taken together, our study demonstrates that CMBL suppresses CRC growth by inhibiting glycolysis and suggests a potential combination strategy for the treatment of CMBL-deficient CRC.


Assuntos
Neoplasias , Fosfofrutoquinase-1 Tipo C , Humanos , Linhagem Celular Tumoral , Glucose/metabolismo , Glicólise , Fosfofrutoquinase-1/metabolismo , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
BMB Rep ; 56(11): 618-623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605615

RESUMO

Most cancer cells utilize glucose at a high rate to produce energyand precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly. [BMB Reports 2023; 56(11): 618-623].


Assuntos
Fosfofrutoquinase-1 , Fosfoproteínas Fosfatases , Fosforilação , Fosfoproteínas Fosfatases/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Metabolismo dos Carboidratos , Glicólise
5.
Arch Biochem Biophys ; 743: 109676, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37380119

RESUMO

The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PPi-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known. Clostridium thermocellum is an example of a microorganism that encodes for both Pfks, however, only PPi-Pfk activity has been detected in cell-free extracts and little is known about the regulation and function of both enzymes. In this study, the ATP- and PPi-Pfk of C. thermocellum were purified and biochemically characterized. No allosteric regulators were found for PPi-Pfk amongst common effectors. With fructose-6-P, PPi, fructose-1,6-bisP, and Pi PPi-Pfk showed high specificity (KM < 0.62 mM) and maximum activity (Vmax > 156 U mg-1). In contrast, ATP-Pfk showed much lower affinity (K0.5 of 9.26 mM) and maximum activity (14.5 U mg-1) with fructose-6-P. In addition to ATP, also GTP, UTP and ITP could be used as phosphoryl donors. The catalytic efficiency with GTP was 7-fold higher than with ATP, suggesting that GTP is the preferred substrate. The enzyme was activated by NH4+, and pronounced inhibition was observed with GDP, FBP, PEP, and especially with PPi (Ki of 0.007 mM). Characterization of purified ATP-Pfks originating from eleven different bacteria, encoding for only ATP-Pfk or for both ATP- and PPi-Pfk, identified that PPi inhibition of ATP-Pfks could be a common phenomenon for organisms with a PPi-dependent glycolysis.


Assuntos
Clostridium thermocellum , Fosfofrutoquinases , Fosfofrutoquinases/metabolismo , Clostridium thermocellum/metabolismo , Difosfatos , Sequência de Aminoácidos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Bactérias/metabolismo , Trifosfato de Adenosina , Guanosina Trifosfato , Cinética
6.
Cancer Sci ; 114(4): 1663-1671, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601784

RESUMO

To meet cellular bioenergetic and biosynthetic demands, cancer cells remodel their metabolism to increase glycolytic flux, a phenomenon known as the Warburg effect and believed to contribute to cancer malignancy. Among glycolytic enzymes, phosphofructokinase-1 (PFK1) has been shown to act as a rate-limiting enzyme and to facilitate the Warburg effect in cancer cells. In this study, however, we found that decreased PFK1 activity did not affect cell survival or proliferation in cancer cells. This raised a question regarding the importance of PFK1 in malignancy. To gain insights into the role of PFK1 in cancer metabolism and the possibility of adopting it as a novel anticancer therapeutic target, we screened for genes that caused lethality when they were knocked down in the presence of tryptolinamide (TLAM), a PFK1 inhibitor. The screen revealed a synthetic chemical-genetic interaction between genes encoding subunits of ATP synthase (complex V) and TLAM. Indeed, after TLAM treatment, the sensitivity of HeLa cells to oligomycin A (OMA), an ATP synthase inhibitor, was 13,000 times higher than that of untreated cells. Furthermore, this sensitivity potentiation by TLAM treatment was recapitulated by genetic mutations of PFK1. By contrast, TLAM did not potentiate the sensitivity of normal fibroblast cell lines to OMA, possibly due to their reduced energy demands compared to cancer cells. We also showed that the PFK1-mediated glycolytic pathway can act as an energy reservoir. Selective potentiation of the efficacy of ATP synthase inhibitors by PFK1 inhibition may serve as a foundation for novel anticancer therapeutic strategies.


Assuntos
Adenosina Trifosfatases , Detecção Precoce de Câncer , Neoplasias , Fosfofrutoquinase-1 , Humanos , Glicólise/genética , Células HeLa , Neoplasias/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Interferência de RNA , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
7.
Pest Manag Sci ; 79(5): 1684-1691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36602054

RESUMO

BACKGROUND: Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS: In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 µg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 µg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION: Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Buchnera , Animais , Fosfofrutoquinases/metabolismo , Fosfofrutoquinase-1/metabolismo , Trifosfato de Adenosina/metabolismo
8.
Anticancer Res ; 43(1): 75-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585185

RESUMO

BACKGROUND/AIM: Phosphofructokinase 1 platelet isoform (PFKP) catalyzes a rate-limiting reaction in glycolysis. It is highly expressed in several tumors, including breast cancer (BC). It can regulate tumor progression through metabolic reprogramming and gene transcription. In addition, overexpression of vascular endothelial growth factor (VEGF) is commonly observed in BC, which is associated with poor prognosis. However, whether PFKP regulates VEGF expression in BC remains unknown. Thus, the aim of this study was to investigate whether PFKP could regulate VEGF expression in BC. MATERIALS AND METHODS: We designed an in vitro study to investigate the role of PFKP in VEGF expression and angiogenesis using several experiments, including shRNA-mediated PFKP knock-down, RNAi-resistant PFKP restoration, qPCR, immunoblotting, luciferase reporter assay and tube formation assay. The clinical relationship between PFKP and VEGF was analyzed using The Cancer Genome Atlas (TCGA) database. RESULTS: PFKP expression was associated with VEGF expression in BC patients from the TCGA database. Importantly, PFKP played an essential role in the EGFR activation-induced VEGF expression in BC cells. Mechanistically, EGFR-phosphorylated PFKP Y64 played a critical role in AKT-mediated transcriptional expression of HIF-1α and subsequent VEGF transcription. Hence, PFKP expression played a role in human umbilical vein endothelial cells (HUVECs) tube formation by regulating VEGF expression in BC cells. CONCLUSION: These findings highlight a novel mechanism underlying the non-metabolic function of PFKP in VEGF expression in BC and provide a therapeutic potential of targeting PFKP in BC patients.


Assuntos
Neoplasias da Mama , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fosfofrutoquinase-1 , Fator A de Crescimento do Endotélio Vascular , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Receptores ErbB/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Isoformas de Proteínas/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Cell Death Dis ; 13(11): 1002, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435833

RESUMO

Glioblastoma (GBM) is a highly vascular malignant brain tumor that overexpresses vascular endothelial growth factor (VEGF) and phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis. However, whether PFKP and VEGF are reciprocally regulated during GBM tumor growth remains unknown. Here, we show that PFKP can promote EGFR activation-induced VEGF expression in HIF-1α-dependent and -independent manners in GBM cells. Importantly, we demonstrate that EGFR-phosphorylated PFKP Y64 has critical roles in both AKT/SP1-mediated transcriptional expression of HIF-1α and in the AKT-mediated ß-catenin S552 phosphorylation, to fully enhance VEGF transcription, subsequently promoting blood vessel formation and brain tumor growth. Levels of PFKP Y64 phosphorylation in human GBM specimens are positively correlated with HIF-1α expression, ß-catenin S552 phosphorylation, and VEGF expression. Conversely, VEGF upregulates PFKP expression in a PFKP S386 phosphorylation-dependent manner, leading to increased PFK enzyme activity, aerobic glycolysis, and proliferation in GBM cells. These findings highlight a novel mechanism underlying the mutual regulation that occurs between PFKP and VEGF for promoting GBM tumor growth and also suggest that targeting the PFKP/VEGF regulatory loop might show therapeutic potential for treating GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosforilação , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfofrutoquinase-1/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Encefálicas/genética , Isoformas de Proteínas/metabolismo , Receptores ErbB/metabolismo
10.
Appl Environ Microbiol ; 88(22): e0125822, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286488

RESUMO

Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.


Assuntos
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Glicólise , Termodinâmica , Trifosfato de Adenosina/metabolismo
11.
Biomed Pharmacother ; 155: 113660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095960

RESUMO

Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.


Assuntos
Resistência à Insulina , Chá de Kombucha , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citrato (si)-Sintase/metabolismo , Farneseno Álcool/metabolismo , Farneseno Álcool/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ácidos e Sais Biliares/metabolismo , Carboidratos/farmacologia , Serina/metabolismo , Serina/farmacologia , Fosfofrutoquinase-1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
12.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077431

RESUMO

Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a "metabolically abnormal system". Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the "Warburg effect". Energy-metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the "Warburg effect", tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.


Assuntos
Glicólise , Neoplasias , Hexoquinase/metabolismo , Humanos , Neoplasias/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Mutase/metabolismo , Piruvatos , Microambiente Tumoral
13.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 625-636, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35593470

RESUMO

Cartilage and subchondral bone communicate with each other through material and signal exchanges. However, direct evidence provided by experimental studies on their interactions is insufficient. In the present study, we establish a noncontact co-culture model with a transwell chamber to explore the energetic perturbations in chondrocytes influenced by osteoblasts. Our results indicate that osteoblasts induce more ATP generation in chondrocytes through an energetic shift characterized by enhanced glycolysis and impaired mitochondrial tricarboxylic acid cycle. Enhanced glycolysis is shown by an increase of secreted lactate and the upregulation of glycolytic enzymes, including glucose-6-phosphate isomerase (Gpi), liver type ATP-dependent 6-phosphofructokinase (Pfkl), fructose-bisphosphate aldolase C (Aldoc), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), triosephosphate isomerase (Tpi1), and phosphoglycerate kinase 1 (Pgk1). Impaired mitochondrial tricarboxylic acid cycle is characterized by the downregulation of cytoplasmic aspartate aminotransferase (Got1) and mitochondrial citrate synthase (Cs). Osteoblasts induce the activation of Akt and P38 signaling to mediate ATP perturbations in chondrocytes. This study may deepen our understanding of the maintenance of metabolic homeostasis in the bone-cartilage unit.


Assuntos
Frutose-Bifosfato Aldolase , Glucose-6-Fosfato Isomerase , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Triose-Fosfato Isomerase/metabolismo , Condrócitos/metabolismo , Glucose/metabolismo , Aspartato Aminotransferase Citoplasmática/metabolismo , Fosfoglicerato Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Citrato (si)-Sintase/metabolismo , Glicólise , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fosfofrutoquinase-1/metabolismo , Osteoblastos/metabolismo , Comunicação , Lactatos , Trifosfato de Adenosina/metabolismo
14.
Circ Res ; 130(11): e26-e43, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35450439

RESUMO

BACKGROUND: Mechanical forces play crucial roles in neointimal hyperplasia after vein grafting; yet, our understanding of their influences on vascular smooth muscle cell (VSMC) activation remains rudimentary. METHODS: A cuff mouse model was used to study vein graft hyperplasia. Fifteen percent to 1 Hz uniaxial cyclic stretch (arterial strain), 5% to 1 Hz uniaxial cyclic stretch or a static condition (venous strain) were applied to the cultured VSMCs. Metabolomics analysis, cell proliferation and migration assays, immunoblotting, co-immunoprecipitation, mutagenesis, pull-down and surface plasmon resonance assays were employed to elucidate the potential molecular mechanisms. RESULTS: RNA-sequencing in vein grafts and the controls identified changes in metabolic pathways and downregulation of mitochondrial protein MFN2 (mitofusin 2) in the vein grafts. Exposure of VSMCs to 15% stretch resulted in MFN2 downregulation, mitochondrial fragmentation, metabolic shift from mitochondrial oxidative phosphorylation to glycolysis, and cell proliferation and migration, as compared with that to a static condition or 5% stretch. Metabolomics analysis indicated an increased generation of fructose 1,6-bisphosphate, an intermediate in the glycolytic pathway converted by PFK1 (phosphofructokinase 1) from fructose-6-phosphate, in cells exposed to 15% stretch. Mechanistic study revealed that MFN2 physically interacts through its C-terminus with PFK1. MFN2 knockdown or exposure of cells to 15% stretch promoted stabilization of PFK1, likely through interfering the association between PFK1 and the E3 ubiquitin ligase TRIM21 (E3 ubiquitin ligase tripartite motif [TRIM]-containing protein 21), thus, decreasing the ubiquitin-protease-dependent PFK1 degradation. In addition, study of mechanotransduction utilizing pharmaceutical inhibition indicated that the MFN2 downregulation by 15% stretch was dependent on inactivation of the SP1 (specificity protein 1) and activation of the JNK (c-Jun N-terminal kinase) and ROCK (Rho-associated protein kinase). Adenovirus-mediated MFN2 overexpression or pharmaceutical inhibition of PFK1 suppressed the 15% stretch-induced VSMC proliferation and migration and alleviated neointimal hyperplasia in vein grafts. CONCLUSIONS: MFN2 is a mechanoresponsive protein that interacts with PFK1 to mediate PFK1 degradation and therefore suppresses glycolysis in VSMCs.


Assuntos
Mecanotransdução Celular , Músculo Liso Vascular , Fosfofrutoquinase-1/metabolismo , Animais , Proliferação de Células , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Hiperplasia/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Ubiquitina-Proteína Ligases/metabolismo
15.
PLoS Comput Biol ; 18(2): e1009841, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148308

RESUMO

While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic heterogeneity, not only in their presentation of the Warburg effect but also in the nutrients and the metabolic pathways they are dependent on. Moreover, tumor cells can switch between different metabolic phenotypes in response to environmental cues and therapeutic interventions. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore drive heterogeneity with respect to the presentation of the Warburg effect. Building upon this idea, we couple the metabolic phenotype of tumor cells to their migratory phenotype, and show that our model predictions are in agreement with previous experiments. Next, we report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions that are far more generalizable and interpretable as compared to previous tumor metabolism modeling approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer.


Assuntos
Glicólise , Neoplasias , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico , Humanos , Neoplasias/metabolismo , Fosfofrutoquinase-1/metabolismo
16.
Int J Biol Sci ; 18(1): 82-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975319

RESUMO

HCC has remained one of the challenging cancers to treat, owing to the paucity of drugs targeting the critical survival pathways. Considering the cancer cells are deficient in DNase activity, the increase of an autonomous apoptisis endonuclease should be a reasonable choice for cancer treatment. In this study, we investigated whether DNASE1L3, an endonuclease implicated in apoptosis, could inhibit the progress of HCC. We found DNASE1L3 was down-regulated in HCC tissues, whereas its high expression was positively associated with the favorable prognosis of patients with HCC. Besides, serum DNASE1L3 levels were lower in HCC patients than in healthy individuals. Functionally, we found that DNASE1L3 inhibited the proliferation of tumor cells by inducing G0/G1 cell cycle arrest and cell apoptosis in vitro. Additionally, DNASE1L3 overexpression suppressed tumor growth in vivo. Furthermore, we found that DNASE1L3 overexpression weakened glycolysis in HCC cells and tissues via inactivating the rate-limiting enzymes involved in PTPN2-HK2 and CEBPß-p53-PFK1 pathways. Finally, we identified the HBx to inhibit DNASE1L3 expression by up-regulating the expression of ZNF384. Collectively, our findings demonstrated that DNASE1L3 could inhibit the HCC progression through inducing cell apoptosis and weakening glycolysis. We believe DNASE1L3 could be considered as a promising prognostic biomarker and therapeutic target for HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular/metabolismo , Desoxirribonucleases/metabolismo , Glicólise , Neoplasias Hepáticas/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Xenoenxertos , Hexoquinase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfofrutoquinase-1/metabolismo
17.
Oncol Rep ; 46(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515327

RESUMO

The activation of Wnt signaling has been detected in various types of human cancer and has been shown to be associated with cancer development. In the present study, it was revealed that Wnt signaling induced the expression of phosphofructokinase 1 platelet isoform (PFKP), which has been reported to catalyze a rate­limiting reaction in glycolysis and is important for the Warburg effect, proliferation, colony formation and cancer cell migration. Moreover, it was demonstrated that Wnt3A induced PFKP expression in a ß­catenin­independent manner, resulting in increased PFK enzyme activity. Wnt3A­induced epidermal growth factor receptor transactivation activated PI3K/AKT, which stabilized PFKP through PFKP S386 phosphorylation and subsequent PFKP upregulation. Wnt3A­induced PFKP S386 phosphorylation increased PFKP expression and promoted the Warburg effect, cell proliferation, colony formation and the migratory ability of cancer cells. On the whole, the findings of the present study underscore the potential role of PFKP in Wnt signaling­induced tumor development.


Assuntos
Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-1/metabolismo , Neoplasias Cutâneas/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Fosforilação , Regulação para Cima
18.
Trends Endocrinol Metab ; 32(8): 540-543, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34016523

RESUMO

We propose that fructose-1,6-bisphosphate (F-1,6-BP) promotes a feedback loop between phosphofructokinase-1 (PFK1), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), and PFK2/PFKFB3, which enhances aerobic glycolysis and sustains effector T (Teff) cell activation, while oxidative metabolism is concomitantly downregulated. This regulation, promoted by low citrate and mitochondrial ATP synthesis, also sustains the Warburg effect in cancer cells.


Assuntos
Frutosedifosfatos/metabolismo , Glicólise , Fosfofrutoquinase-1 , Linfócitos T , Trifosfato de Adenosina/biossíntese , Ácido Cítrico , Ativação Linfocitária , Mitocôndrias , Neoplasias , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T/metabolismo
19.
Am J Physiol Cell Physiol ; 321(1): C147-C157, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038242

RESUMO

Many cancer cells, regardless of their tissue origin or genetic landscape, have increased expression or activity of the plasma membrane Na-H exchanger NHE1 and a higher intracellular pH (pHi) compared with untransformed cells. A current perspective that remains to be validated is that increased NHE1 activity and pHi enable a Warburg-like metabolic reprogramming of increased glycolysis and decreased mitochondrial oxidative phosphorylation. We tested this perspective and find it is not accurate for clonal pancreatic and breast cancer cells. Using the pharmacological reagent ethyl isopropyl amiloride (EIPA) to inhibit NHE1 activity and decrease pHi, we observe no change in glycolysis, as indicated by secreted lactate and intracellular pyruvate, despite confirming increased activity of the glycolytic enzyme phosphofructokinase-1 at higher pH. Also, in contrast to predictions, we find a significant decrease in oxidative phosphorylation with EIPA, as indicated by oxygen consumption rate (OCR). Decreased OCR with EIPA is not associated with changes in pathways that fuel oxidative phosphorylation or with mitochondrial membrane potential but occurs with a change in mitochondrial dynamics that includes a significant increase in elongated mitochondrial networks, suggesting increased fusion. These findings conflict with current paradigms on increased pHi inhibiting oxidative phosphorylation and increased oxidative phosphorylation being associated with mitochondrial fusion. Moreover, these findings raise questions on the suggested use of EIPA-like compounds to limit metabolic reprogramming in cancer cells.


Assuntos
Amilorida/análogos & derivados , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/genética , Amilorida/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Clonais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Ácido Pirúvico/metabolismo , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo
20.
Artigo em Chinês | MEDLINE | ID: mdl-33691363

RESUMO

Objective: To study the cytotoxicity and malignant transformation ability of chrysotile on MeT-5A cells. Methods: In June 2016, lactate dehydrogenase (LDH) method was used to detect the cytotoxicity of chrysotile to MeT-5A cells. MeT-5A cells were treated with 5 µg/cm(2) chrysotile intermittently for 24 h a time, once a week and a total of 28 times. After the cells showed anchorage independent growth, the cell features of malignant transformation were identified by colony forming frequency in soft agar, and the soft agar colony formation rates were calculated. The activities of key speed limiting enzymes of glycolysis metabolism including hexokinase (HK) , phosphofructokinase (PFK) and pyruvate kinase (PK) were determined by UV colorimetry. Results: Chrysotile was cytotoxic to MeT-5A cells in a concentration-dependent decline. Compared with the control group, the relative survival rates of MeT-5A cells were significantly decreased after exposed to chrysotile at 10, 20, 40 and 80 µg/cm(2) (P<0.05) . After 28 times of exposure, the growth rate of the cells in chrysotile transformed MeT-5A cells was accelerated, the arrangement was disordered, the contact inhibition was lost, and the double layer growth appeared, which could grow on soft agar. The colony forming rate of the chrysotile transformed MeT-5A cells was 18.33‰±2.49‰. Compared with the control group (0) , the difference was statistically significant (P<0.01) . The activities of glycolysis related kinase including PK [ (19.51±1.52) U/L], PFK[ (0.12±0.02) U/10(4) cell] and HK[ (0.26±0.01) U/10(4) cell] were increased in the chrysotile transformed MeT-5A cells compared with control group [ (25.00±1.04) U/L、(0.15±0.01) U/10(4) cell and (0.33±0.01) U/10(4) cell] (P<0.01) . Conclusion: Chrysotile can induce malignant transformation of MeT-5A cells and increase the activities of glycolysis related kinases including PK, PFK and HK.


Assuntos
Asbestos Serpentinas , Fosfofrutoquinase-1 , Asbestos Serpentinas/toxicidade , Glicólise , Hexoquinase/metabolismo , Fosfofrutoquinase-1/metabolismo , Piruvato Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA