Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 304(2): C180-93, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23114964

RESUMO

The hypothesis was tested that the variation of in vivo glycolytic flux with contraction frequency in skeletal muscle can be qualitatively and quantitatively explained by calcium-calmodulin activation of phosphofructokinase (PFK-1). Ischemic rat tibialis anterior muscle was electrically stimulated at frequencies between 0 and 80 Hz to covary the ATP turnover rate and calcium concentration in the tissue. Estimates of in vivo glycolytic rates and cellular free energetic states were derived from dynamic changes in intramuscular pH and phosphocreatine content, respectively, determined by phosphorus magnetic resonance spectroscopy ((31)P-MRS). Computational modeling was applied to relate these empirical observations to understanding of the biochemistry of muscle glycolysis. Hereto, the kinetic model of PFK activity in a previously reported mathematical model of the glycolytic pathway (Vinnakota KC, Rusk J, Palmer L, Shankland E, Kushmerick MJ. J Physiol 588: 1961-1983, 2010) was adapted to contain a calcium-calmodulin binding sensitivity. The two main results were introduction of regulation of PFK-1 activity by binding of a calcium-calmodulin complex in combination with activation by increased concentrations of AMP and ADP was essential to qualitatively and quantitatively explain the experimental observations. Secondly, the model predicted that shutdown of glycolytic ATP production flux in muscle postexercise may lag behind deactivation of PFK-1 (timescales: 5-10 s vs. 100-200 ms, respectively) as a result of accumulation of glycolytic intermediates downstream of PFK during contractions.


Assuntos
Glicólise/fisiologia , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/análise , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Simulação por Computador , Concentração de Íons de Hidrogênio , Isquemia/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Modelos Biológicos , Contração Muscular/fisiologia , Fosfocreatina/análise , Fosfocreatina/metabolismo , Fosfofrutoquinase-1 Muscular/química , Fosfofrutoquinase-1 Muscular/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
2.
J Biol Chem ; 287(21): 17546-17553, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474333

RESUMO

6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution).


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Fosfofrutoquinase-1 Muscular/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Sítios de Ligação , Evolução Molecular , Humanos , Mutação , Fosfofrutoquinase-1 Muscular/genética , Fosfofrutoquinase-1 Muscular/metabolismo
3.
PLoS One ; 6(5): e19645, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21573193

RESUMO

BACKGROUND: Human cancers consume larger amounts of glucose compared to normal tissues with most being converted and excreted as lactate despite abundant oxygen availability (Warburg effect). The underlying higher rate of glycolysis is therefore at the root of tumor formation and growth. Normal control of glycolytic allosteric enzymes appears impaired in tumors; however, the phenomenon has not been fully resolved. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper, we show evidence that the native 85-kDa 6-phosphofructo-1-kinase (PFK1), a key regulatory enzyme of glycolysis that is normally under the control of feedback inhibition, undergoes posttranslational modification. After proteolytic cleavage of the C-terminal portion of the enzyme, an active, shorter 47-kDa fragment was formed that was insensitive to citrate and ATP inhibition. In tumorigenic cell lines, only the short fragments but not the native 85-kDa PFK1 were detected by immunoblotting. Similar fragments were detected also in a tumor tissue that developed in mice after the subcutaneous infection with tumorigenic B16-F10 cells. Based on limited proteolytic digestion of the rabbit muscle PFK-M, an active citrate inhibition-resistant shorter form was obtained, indicating that a single posttranslational modification step was possible. The exact molecular masses of the active shorter PFK1 fragments were determined by inserting the truncated genes constructed from human muscle PFK1 cDNA into a pfk null E. coli strain. Two E. coli transformants encoding for the modified PFK1s of 45,551 Da and 47,835 Da grew in glucose medium. The insertion of modified truncated human pfkM genes also stimulated glucose consumption and lactate excretion in stable transfectants of non-tumorigenic human HEK cell, suggesting the important role of shorter PFK1 fragments in enhancing glycolytic flux. CONCLUSIONS/SIGNIFICANCE: Posttranslational modification of PFK1 enzyme might be the pivotal factor of deregulated glycolytic flux in tumors that in combination with altered signaling mechanisms essentially supports fast proliferation of cancer cells.


Assuntos
Neoplasias/enzimologia , Neoplasias/metabolismo , Fosfofrutoquinase-1 Muscular/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Western Blotting , Linhagem Celular Tumoral , DNA Complementar/genética , Endopeptidase K/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Frutosedifosfatos/farmacologia , Glucose/metabolismo , Células HEK293 , Humanos , Ácido Láctico/biossíntese , Camundongos , Metástase Neoplásica , Neoplasias/patologia , Fragmentos de Peptídeos/metabolismo , Fosfofrutoquinase-1 Muscular/antagonistas & inibidores , Fosfofrutoquinase-1 Muscular/química , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Coelhos , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Transfecção , Transformação Genética/efeitos dos fármacos
4.
FEBS Lett ; 581(16): 3033-8, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17544406

RESUMO

Two phosphofructokinase (PFK) chimeras were constructed by exchanging the N- and C-terminal halves of the mammalian M- and C-type isozymes, to investigate the contribution of each terminus to the catalytic site and the fructose-2,6-P(2)/fructose-1,6-P(2) allosteric site. The homogeneously-purified chimeric enzymes organized into tetramers, and exhibited kinetic properties for fructose-6-P and MgATP similar to those of the native enzyme that furnished the N-terminal domain in each case, whereas their fructose-2,6-P(2) activatory characteristics coincided with those of the isozyme that provided the C-terminal half. This reflected the role of each domain in the formation of the corresponding binding site. Grafting the N-terminus of PFK-M onto the C-terminus of the fructose-1,6-P(2) insensitive PFK-C restored transduction of this signal to the catalytic site, which significance is also discussed.


Assuntos
Frutosedifosfatos/metabolismo , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Ligantes , Fosfofrutoquinase-1 Muscular/química , Fosfofrutoquinase-1 Muscular/metabolismo , Fosfofrutoquinase-1 Tipo C/química , Fosfofrutoquinase-1 Tipo C/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae
5.
Biochem Biophys Res Commun ; 290(2): 670-5, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11785951

RESUMO

Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is a potent allosteric activator of the ATP-dependent phosphofructokinase (PFK) in eukaryotes. Based on the sequence homology between rabbit muscle PFK and two bacterial PFKs and the crystal structures of the latter, Ser(530), Arg(292) and His(662) of the rabbit enzyme are implicated as binding sites for Fru-2,6-P(2). We report here the effects of three mutations, S530D, R292A, and H662A on the activation of rabbit muscle PFK by Fru-2,6-P(2). At pH 7.0 and the inhibitory concentrations of ATP, the native enzyme gives a classic sigmoidal response to changes in Fru-6-P concentration in the absence of Fru-2,6-P(2) and a nearly hyperbolic response in the presence of the activator. Under the same conditions, no activation was seen for S530D. On the other hand, H662A can be activated but requires a 10-fold or higher concentration of Fru-2,6-P(2). Limited activation was observed for mutant R292A. A model illustrating the sites for recognition of Fru-2,6-P(2) in rabbit muscle PFK as well as the mechanism of allosteric activation is proposed.


Assuntos
Fosfofrutoquinase-1 Muscular/química , Fosfofrutoquinase-1 Muscular/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Substituição de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Ativação Enzimática/efeitos dos fármacos , Frutosedifosfatos/metabolismo , Frutosedifosfatos/farmacologia , Frutosefosfatos/química , Frutosefosfatos/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfofrutoquinase-1 Muscular/genética , Coelhos , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA