RESUMO
Glucokinase (GK), a monomeric glucose-phosphorylating enzyme characterised by high structural flexibility, acts as a glucose sensor in pancreatic beta cells and liver. Pharmaceutical efforts to control the enzyme are hampered by an incomplete understanding of GK regulation. We investigated GK characteristics of wild-type and activating S64Y and G68V mutant proteins in the presence of various combinations of the synthetic activators RO-28-1675 and compound A, the endogenous activator fructose-2,6-bisphosphatase (FBPase-2), and the inhibitor mannoheptulose. S64Y impedes formation of a turn structure that is characteristic for the inactive enzyme conformation, and complex formation with compound A induces collision with the large domain. G68V evokes close contact of connecting region I and helix α13 with RO-28-1675 and compound A. Both mutants showed higher activity than the wild-type at low glucose and were susceptible to further activation by FBPase-2 and RO-28-1675, alone and additively. G68V was less active than S64Y, but was activatable by compound A. In contrast, compound A inhibited S64Y, and this effect was even more pronounced in combination with mannoheptulose. Mutant and wild-type GK showed comparable thermal stability and intracellular lifetimes. A GK-6-phosphofructo-2-kinase (PFK-2)/FBPase-2 complex predicted by in silico protein-protein docking demonstrated possible binding of the FBPase-2 domain near the active site of GK. In summary, activating mutations within the allosteric site of GK do not preclude binding of chemical activators (GKAs), but can alter their action into inhibition. Our postulated GK-PFK-2/FBPase-2 complex represents the endogenous principle of activation by substrate channelling which permits binding of other small molecules and proteins.
Assuntos
Glucoquinase/metabolismo , Células Secretoras de Insulina/enzimologia , Manoeptulose/metabolismo , Proteínas Mutantes/metabolismo , Fosfofrutoquinase-2/metabolismo , Tiazóis/metabolismo , Sítio Alostérico , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Glucoquinase/química , Glucoquinase/genética , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Manoeptulose/química , Camundongos , Fosfofrutoquinase-2/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Tiazóis/química , TransfecçãoRESUMO
The human inducible phospho-fructokinase bisphosphatase isoform 3, PFKFB3, is a crucial regulatory node in the cellular metabolism. The enzyme is an important modulator regulating the intracellular fructose-2,6-bisphosphate level. PFKFB3 is a bifunctional enzyme with an exceptionally high kinase to phosphatase ratio around 740:1. Its kinase activity can be directly inhibited by small molecules acting directly on the kinase active site. On the other hand, here we propose an innovative and indirect strategy for the modulation of PFKFB3 activity, achieved through allosteric bisphosphatase activation. A library of small peptides targeting an allosteric site was discovered and synthesized. The binding affinity was evaluated by microscale thermophoresis (MST). Furthermore, a LC-MS/MS analytical method for assessing the bisphosphatase activity of PFKFB3 was developed. The new method was applied for measuring the activation on bisphosphatase activity with the PFKFB3-binding peptides. The molecular mechanical connection between the newly discovered allosteric site to the bisphosphatase activity was also investigated using both experimental and computational methods.
Assuntos
Regulação Alostérica , Sítio Alostérico , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Peptídeos/química , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40 ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation.
Assuntos
Inibidores Enzimáticos/química , Neoplasias/tratamento farmacológico , Fosfofrutoquinase-2/química , Relação Quantitativa Estrutura-Atividade , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicólise , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/síntese química , Fosfofrutoquinase-2/farmacologia , Interface Usuário-ComputadorRESUMO
A high-throughput screen (HTS) of human 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) resulted in several series of compounds with the potential for further optimization. Informatics was used to identify active chemotypes with lead-like profiles and remove compounds that commonly occurred as actives in other HTS screens. The activities were confirmed with IC50 measurements from two orthogonal assay technologies, and further analysis of the Hill slopes and comparison of the ratio of IC50 values at 10 times the enzyme concentration were used to identify artifact compounds. Several series of compounds were rejected as they had both high slopes and poor ratios. A small number of compounds representing the different leading series were assessed using isothermal titration calorimetry, and the X-ray crystal structure of the complex with PFKFB3 was solved. The orthogonal assay technology and isothermal calorimetry were demonstrated to be unreliable in identifying false-positive compounds in this case. Presented here is the discovery of the dihydropyrrolopyrimidinone series of compounds as active and novel inhibitors of PFKFB3, shown by X-ray crystallography to bind to the adenosine triphosphate site. The crystal structures of this series also reveal it is possible to flip the binding mode of the compounds, and the alternative orientation can be driven by a sigma-hole interaction between an aromatic chlorine atom and a backbone carbonyl oxygen. These novel inhibitors will enable studies to explore the role of PFKFB3 in driving the glycolytic phenotype of tumors.
Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Fosfofrutoquinase-2/antagonistas & inibidores , Antineoplásicos/química , Calorimetria/métodos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas , Fluxo de TrabalhoRESUMO
The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed-back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117-124. © 2016 Wiley Periodicals, Inc.
Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Ácido Cítrico/química , Frutosefosfatos/química , Isoenzimas/química , Miocárdio/química , Fosfofrutoquinase-2/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Animais , Sítios de Ligação , Bovinos , Ácido Cítrico/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Frutosefosfatos/metabolismo , Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Miocárdio/enzimologia , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por SubstratoRESUMO
We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.
Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Frutosefosfatos/metabolismo , Fosfofrutoquinase-2/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Simulação por Computador , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Frutosefosfatos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Mutação , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por SubstratoRESUMO
Whereas moderately increased cellular oxidative stress is supportive for cancerous growth of cells, excessive levels of reactive oxygen species (ROS) are detrimental to their growth and survival. We demonstrated that high ROS levels, via increased oxidized glutathione (GSSG), induce isoform-specific S-glutathionylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) at residue Cys206, which is located near the entrance to the 6-phosphofructo-2-kinase catalytic pocket. Upon this ROS-dependent, reversible, covalent modification, a marked decrease in its catalytic ability to synthesize fructose-2,6-bisphosphate (Fru-2,6-P2), the key glycolysis allosteric activator, was observed. This event was coupled to a decrease in glycolytic flux and an increase in glucose metabolic flux into the pentose phosphate pathway. This shift, in turn, caused an increase in reduced glutathione (GSH) and, ultimately, resulted in ROS detoxification inside HeLa cells. The ability of PFKFB3 to control the Fru-2,6-P2 levels in an ROS-dependent manner allows the PFKFB3-expressing cancer cells to continue energy metabolism with a reduced risk of excessive oxidative stress and, thereby, to support their cell survival and proliferation. This study provides a new insight into the roles of PFKFB3 as switch that senses and controls redox homeostasis in cancer in addition to its role in cancer glycolysis.
Assuntos
Neoplasias/metabolismo , Estresse Oxidativo , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Metabolismo Energético , Frutosedifosfatos/metabolismo , Glucose/metabolismo , Dissulfeto de Glutationa/metabolismo , Glicólise/fisiologia , Células HeLa , Homeostase , Humanos , Dados de Sequência Molecular , Fosfofrutoquinase-2/genética , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Enxofre/química , Enxofre/metabolismoRESUMO
Besides the necessary changes in the expression of cell cycle-related proteins, cancer cells undergo a profound series of metabolic adaptations focused to satisfy their excessive demand for biomass. An essential metabolic transformation of these cells is increased glycolysis, which is currently the focus of anticancer therapies. Several key players have been identified, so far, that adapt glycolysis to allow an increased proliferation in cancer. In this issue of the Biochemical Journal, Novellasdemunt and colleagues elegantly identify a novel mechanism by which MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2], a key component of the MAPK pathway, up-regulates glycolysis in response to stress in cancer cells. The authors found that, by phosphorylating specific substrate residues, MK2 promotes both increased the gene transcription and allosteric activation of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), a key glycolysis-promoting enzyme. These results reveal a novel pathway through which MK2 co-ordinates metabolic adaptation to cell proliferation in cancer and highlight PFKFB3 as a potential therapeutic target in this devastating disease.
Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Fosfofrutoquinase-2/química , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , HumanosRESUMO
In human cancers, loss of PTEN, stabilization of hypoxia inducible factor-1α, and activation of Ras and AKT converge to increase the activity of a key regulator of glycolysis, 6-phosphofructo-2-kinase (PFKFB3). This enzyme synthesizes fructose 2,6-bisphosphate (F26BP), which is an activator of 6-phosphofructo-1-kinase, a key step of glycolysis. Previously, a weak competitive inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), was found to reduce the glucose metabolism and proliferation of cancer cells. We have synthesized 73 derivatives of 3PO and screened each compound for activity against recombinant PFKFB3. One small molecule, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15), was selected for further preclinical evaluation of its pharmacokinetic, antimetabolic, and antineoplastic properties in vitro and in vivo. We found that PFK15 causes a rapid induction of apoptosis in transformed cells, has adequate pharmacokinetic properties, suppresses the glucose uptake and growth of Lewis lung carcinomas in syngeneic mice, and yields antitumor effects in three human xenograft models of cancer in athymic mice that are comparable to U.S. Food and Drug Administration-approved chemotherapeutic agents. As a result of this study, a synthetic derivative and formulation of PFK15 has undergone investigational new drug (IND)-enabling toxicology and safety studies. A phase I clinical trial of its efficacy in advanced cancer patients will initiate in 2013 and we anticipate that this new class of antimetabolic agents will yield acceptable therapeutic indices and prove to be synergistic with agents that disrupt neoplastic signaling.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Feminino , Glucose/metabolismo , Humanos , Células Jurkat , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PFK-2/FBPase-2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose 2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is involved in cell proliferation owing to its role in carbohydrate metabolism. In the present study we analysed the mechanism of regulation of PFKFB3 as an immediate early gene controlled by stress stimuli that activates the p38/MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2] pathway. We report that exposure of HeLa and T98G cells to different stress stimuli (NaCl, H2O2, UV radiation and anisomycin) leads to a rapid increase (15-30 min) in PFKFB3 mRNA levels. The use of specific inhibitors in combination with MK2-deficient cells implicate control by the protein kinase MK2. Transient transfection of HeLa cells with deleted gene promoter constructs allowed us to identify an SRE (serum-response element) to which SRF (serum-response factor) binds and thus transactivates PFKFB3 gene transcription. Direct binding of phospho-SRF to the SRE sequence (-918 nt) was confirmed by ChIP (chromatin immunoprecipiation) assays. Moreover, PFKFB3 isoenzyme phosphorylation at Ser461 by MK2 increases PFK-2 activity. Taken together, the results of the present study suggest a multimodal mechanism of stress stimuli affecting PFKFB3 transcriptional regulation and kinase activation by protein phosphorylation, resulting in an increase in Fru-2,6-P2 concentration and stimulation of glycolysis in cancer cells.
Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Fosfofrutoquinase-2/química , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Sequência de Aminoácidos , Ativação Enzimática/fisiologia , Glicólise/genética , Células HeLa , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Neoplasias/química , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Fosforilação/genética , Ligação Proteica/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) is a key regulator of carbohydrate metabolism in liver. The goal of this study was to elucidate the regulatory role of Ser-32 phosphorylation on the kinase domain mediated dimerization of PFK-2/FBPase-2. Fluorescence-based mammalian two-hybrid and sensitized emission fluorescence resonance energy transfer analyses in cells revealed preferential binding within homodimers in contrast to heterodimers. Using isolated proteins a close proximity of two PFK-2/FBPase-2 monomers was only detectable in the phosphorylated enzyme dimer. Thus, a flexible kinase interaction mode exists, suggesting dimer conformation mediated coupling of hormonal and posttranslational enzyme regulation to the metabolic response in liver.
Assuntos
AMP Cíclico/metabolismo , Fígado/enzimologia , Fosfofrutoquinase-2/metabolismo , Serina/metabolismo , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Colforsina/farmacologia , Dimerização , Transferência Ressonante de Energia de Fluorescência , Fosfofrutoquinase-2/química , Fosforilação , Ratos , Técnicas do Sistema de Duplo-HíbridoRESUMO
Cancer cells adopt glycolysis as the major source of metabolic energy production for fast cell growth. The HIF-1-induced PFKFB3 plays a key role in this adaptation by elevating the concentration of Fru-2,6-BP, the most potent glycolysis stimulator. As this metabolic conversion has been suggested to be a hallmark of cancer, PFKFB3 has emerged as a novel target for cancer chemotherapy. Here, we report that a small molecular inhibitor, N4A, was identified as an initial lead compound for PFKFB3 inhibitor with therapeutic potential. In an attempt to improve its potency, we determined the crystal structure of the PFKFB3â¢N4A complex to 2.4 Å resolution and, exploiting the resulting molecular information, attained the more potent YN1. When tested on cultured cancer cells, both N4A and YN1 inhibited PFKFB3, suppressing the Fru-2,6-BP level, which in turn suppressed glycolysis and, ultimately, led to cell death. This study validates PFKFB3 as a target for new cancer therapies and provides a framework for future development efforts.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Antineoplásicos/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Frutosefosfatos/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Conformação ProteicaRESUMO
Efforts toward improving the predictiveness in tier-based approaches to virtual screening (VS) have mainly focused on protein kinases. Despite their significance as drug targets, small molecule kinases have been rarely tested with these approaches. In this paper, we investigate the efficacy of a pharmacophore screening-combined structure-based docking approach on the human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an emerging target for cancer chemotherapy. Six out of a total 1364 compounds from NCI's Diversity Set II were selected as true actives via throughput screening. Using a database constructed from these compounds, five programs were tested for structure-based docking (SBD) performance, the MOE of which showed the highest enrichments and second highest screening rates. Separately, using the same database, pharmacophore screening was performed, reducing 1364 compounds to 287 with no loss in true actives, yielding an enrichment of 4.75. When SBD was retested with the pharmacophore filtered database, 4 of the 5 SBD programs showed significant improvements to enrichment rates at only 2.5% of the database, with a 7-fold decrease in an average VS time. Our results altogether suggest that combinatorial approaches of VS technologies are easily applicable to small molecule kinases and, moreover, that such methods can decrease the variability associated with single-method SBD approaches.
Assuntos
Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Modelos Moleculares , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/química , Desenho de Fármacos , Humanos , LigantesRESUMO
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 Å. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.
Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Frutosefosfatos/química , Fosfofrutoquinase-2/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Frutosefosfatos/metabolismo , Cinética , Fosfofrutoquinase-1/química , Fosfofrutoquinase-1/metabolismo , Fosfofrutoquinase-2/metabolismoRESUMO
The in silico methods for drug discovery are becoming increasingly powerful and useful. That, in combination with increasing computer processor power, in our case using a novel distributed computing grid, has enabled us to greatly enhance our virtual screening efforts. Herein we review some of these efforts using both receptor and ligand-based virtual screening, with the goal of finding new anti-cancer agents. In particular, nucleic acids are a neglected set of targets, especially the different morphologies of duplex, triplex, and quadruplex DNA, many of which have increasing biological relevance. We also review examples of molecular modeling to understand receptors and using virtual screening against G-protein coupled receptor membrane proteins.
Assuntos
Desenho de Fármacos , Proteínas de Membrana/efeitos dos fármacos , Ácidos Nucleicos/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/química , Proteínas de Membrana/química , Modelos Moleculares , Estrutura Molecular , Ácidos Nucleicos/química , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/química , Fosfoproteínas/química , Fosfoproteínas/efeitos dos fármacos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/efeitos dos fármacos , Receptores CXCR4/química , Receptores CXCR4/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Telomerase/química , Interface Usuário-Computador , NucleolinaRESUMO
Activation of the p53 tumor suppressor by cellular stress leads to variable responses ranging from growth inhibition to apoptosis. TIGAR is a novel p53-inducible gene that inhibits glycolysis by reducing cellular levels of fructose-2,6-bisphosphate, an activator of glycolysis and inhibitor of gluconeogenesis. Here we describe structural and biochemical studies of TIGAR from Danio rerio. The overall structure forms a histidine phosphatase fold with a phosphate molecule coordinated to the catalytic histidine residue and a second phosphate molecule in a position not observed in other phosphatases. The recombinant human and zebra fish enzymes hydrolyze fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate but not fructose 6-phosphate in vitro. The TIGAR active site is open and positively charged, consistent with its enzymatic function as bisphosphatase. The closest related structures are the bacterial broad specificity phosphatase PhoE and the fructose-2,6-bisphosphatase domain of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The structural comparison shows that TIGAR combines an accessible active site as observed in PhoE with a charged substrate-binding pocket as seen in the fructose-2,6-bisphosphatase domain of the bifunctional enzyme.
Assuntos
Proteínas Reguladoras de Apoptose/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Dobramento de Proteína , Proteínas de Peixe-Zebra/química , Peixe-Zebra , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Domínio Catalítico/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Frutosedifosfatos/química , Frutosedifosfatos/metabolismo , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases , Porinas/química , Porinas/genética , Porinas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli.
Assuntos
Trifosfato de Adenosina , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Estrutura Quaternária de Proteína , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Fosfofrutoquinase-2/genética , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por SubstratoRESUMO
6-phosphofructo-1-kinase, a rate-limiting enzyme of glycolysis, is activated in neoplastic cells by fructose-2,6-bisphosphate (Fru-2,6-BP), a product of four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes (PFKFB1-4). The inducible PFKFB3 isozyme is constitutively expressed by neoplastic cells and required for the high glycolytic rate and anchorage-independent growth of ras-transformed cells. We report herein the computational identification of a small-molecule inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), which suppresses glycolytic flux and is cytostatic to neoplastic cells. 3PO inhibits recombinant PFKFB3 activity, suppresses glucose uptake, and decreases the intracellular concentration of Fru-2,6-BP, lactate, ATP, NAD+, and NADH. 3PO markedly attenuates the proliferation of several human malignant hematopoietic and adenocarcinoma cell lines (IC50, 1.4-24 micromol/L) and is selectively cytostatic to ras-transformed human bronchial epithelial cells relative to normal human bronchial epithelial cells. The PFKFB3 enzyme is an essential molecular target of 3PO because transformed cells are rendered resistant to 3PO by ectopic expression of PFKFB3 and sensitive to 3PO by heterozygotic genomic deletion of PFKFB3. Importantly, i.p. administration of 3PO (0.07 mg/g) to tumor-bearing mice markedly reduces the intracellular concentration of Fru-2,6-BP, glucose uptake, and growth of established tumors in vivo. Taken together, these data support the clinical development of 3PO and other PFKFB3 inhibitors as chemotherapeutic agents.
Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Neoplasias/patologia , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/genética , Inibidores de Proteínas Quinases/química , Piridinas/química , Piridinas/uso terapêutico , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.
Assuntos
Proteínas de Escherichia coli/química , Fosfofrutoquinase-2/química , Dobramento de Proteína , Transdução de Sinais , Naftalenossulfonato de Anilina/metabolismo , ATPase de Ca(2+) e Mg(2+)/química , ATPase de Ca(2+) e Mg(2+)/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Dimerização , Ativação Enzimática , Proteínas de Escherichia coli/metabolismo , Frutosefosfatos/química , Frutosefosfatos/metabolismo , Luz , Fosfofrutoquinase-2/metabolismo , Ligação Proteica , Desnaturação Proteica , Espalhamento de Radiação , Transdução de Sinais/fisiologia , Espectrometria de FluorescênciaRESUMO
To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3AMPPCPfructose-6-phosphate and PFKFB3ADPphosphoenolpyruvate complexes were determined to 2.7 A and 2.25 A resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the gamma-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the beta,gamma-phosphate bridge oxygen atom, the gamma-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and gamma-phosphorus allows the gamma-phosphate oxygen atoms to serve as a general base catalyst to induce an "associative" phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first.