Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
BMC Cancer ; 23(1): 921, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773107

RESUMO

BACKGROUND: Phospholipase C Delta 3 (PLCD3) is a member of phospholipase C(PLC) Protein and PLCD3 protein plays a prominent role in many cancers. However, little is known about the role of PLCD3 in esophageal squamous cell carcinoma (ESCC). MATERIAL AND METHODS: We analyzed PLCD3 mRNA and protein expression in ESCC tissues and cell lines by immunohistochemistry, quantitative real-time PCR, and western blot. The correlation between PLCD3 expression and clinicopathological characteristics was also analyzed. CCK8, colony formation, wound-healing, and transwell assays were conducted to measure cell functional alternations. Flow cytometry was performed to assess the apoptosis rate and cell cycle caused by PLCD3 knockdown. Xenograft models in nude mice to clarify the role of PLCD3 in ESCC. Key proteins in the PI3K / AKT signaling pathway after treatment of ECA109 and KYSE150 cells with the AKT inhibitor MK2206 were analyzed by western blot. RESULTS: PLCD3 was highly expressed in ESCC tissues and cell lines. PLCD3 expression levels correlated with pathologic stage and lymphatic metastasis. PLCD3 knockdown inhibited cell proliferation, migration, invasion, promoted apoptosis, and caused the cell cycle arrest in the G1 phase. PLCD3 overexpression promoted cell proliferation, migration, and invasion. In vivo experiments with xenografts demonstrated that PLCD3 promoted ESCC tumorigenesis. Finally, Overexpression of PLCD3 activated the PI3K / AKT / P21 signaling. CONCLUSION: PLCD3 promotes malignant cell behaviors in esophageal squamous cell carcinoma via the PI3K/AKT/P21 signaling and could serve as a potential target for ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fosfolipase C delta , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
2.
BMC Cancer ; 23(1): 668, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460940

RESUMO

BACKGROUND: Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS: The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS: The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of ß-catenin and its downstream gene through targeting PLCD1. CONCLUSION: MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/ß-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/genética , Humanos
3.
Epigenetics ; 18(1): 2210339, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37166441

RESUMO

The circular RNAs (circRNAs) involved in competitive endogenous RNA (ceRNA) mechanism are critical modulators affecting pathogenesis of thyroid carcinoma (TC). The study's goal was to investigate the effects of circ 0003747 on the biological progression of papillary thyroid cancer (PTC). Normal thyroid cells Nthy-ori3-1 and TC derived cell lines were used in our study. Sanger sequencing and RNase R treatment were utilized for validating the circular structure of circ_0003747. In our work, circ_0003747 was found to be highly expressed in TC cells. Circ_0003747 knockdown reduced TC cell viability, proliferation, migration, and invasion while increasing cell apoptosis. Circ_0003747 targeted and negatively regulated miR-338-3p expression. Besides, miR-338-3p interacted with PLCD3 to repress its expression. Overexpression of miR-338-3p inhibited TC cell progression, and PLCD3 reversed these effects. Furthermore, PLCD3 overexpression reversed the effects of circ_0003747 knockdown on TC cells. Additionally, the knockdown of circ_0003747 remarkably suppressed tumour size and growth, restrained PLCD3 expression and promoted miR-338-3p expression in nude mice. In conclusion, circ_0003747 facilitated the biological progression of TC by modulating the miR-338-3p/PLCD3 axis, and it may be a new target for TC treatment. [Figure: see text]Abbreviations: TC: Thyroid carcinoma; PTC: Papillary thyroid carcinoma; CircRNAs: Circular RNAs; MiRNA: MicroRNA; EMT: Epithelial-mesenchymal transition; HCC: Hepatocellular carcinoma; PLCD3: Phospholipase C Delta 3; CeRNA: Competitive endogenous RNA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Neoplasias da Glândula Tireoide , Animais , Camundongos , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Metilação de DNA , Neoplasias Hepáticas/genética , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , RNA Circular/genética , Neoplasias da Glândula Tireoide/genética , Humanos
4.
Skinmed ; 21(1): 44-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36987828

RESUMO

A 1-year-old girl presented with porcelain white fingernails, accidentally discovered when she was referred for an infantile hemangioma consultation. The family reported that the nails had been milky white since birth and her father had similar white finger and toenails. The father remembered that additional family members on his side of the family presented with white nails; however, he could not provide exact information about the number of other relatives affected by this nail abnormality. The girl and her father were the only available family members with white nails presented for this study (Figure 1). The girl presented with leukonychia totalis on all fingernails only, while the father had this abnormality on all finger and toenails (Figure 2). We were not aware of any association with other diseases or features in this family, except hemangioma in the girl. (SKINmed. 2023;21:44-46).


Assuntos
Hemangioma , Doenças da Unha , Unhas Malformadas , Feminino , Humanos , Lactente , Dinamarca , Doenças da Unha/diagnóstico , Doenças da Unha/genética , Unhas , Fosfolipase C delta , Masculino
5.
Clin Epigenetics ; 15(1): 30, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849889

RESUMO

BACKGROUND: PLCD1, located at 3p22, encodes an enzyme that mediates cellular metabolism and homeostasis, intracellular signal transduction and movement. PLCD1 plays a pivotal role in tumor suppression of several types of cancers; however, its expression and underlying molecular mechanisms in renal cell carcinoma (RCC) pathogenesis remain elusive. METHODS: RT-PCR and Western blot were used to detect PLCD1 expression in RCC cell lines and normal tissues. Bisulfite treatment, MSP and BGS were utilized to explore the CpG methylation status of PLCD1 promoter. Online databases were analyzed for the association between PLCD1 expression/methylation and patient survival. In vitro experiments including CCK8, colony formation, wound-healing, transwell migration and invasion, immunofluorescence and flow cytometry assays were performed to evaluate tumor cell behavior. Luciferase assay and Western blot were used to examine effect of PLCD1 on WNT/ß-catenin and EGFR-FAK-ERK signaling. RESULTS: We found that PLCD1 was widely expressed in multiple adult normal tissues including kidney, but frequently downregulated or silenced in RCC due to its promoter CpG methylation. Restoration of PLCD1 expression inhibited the viability, migration and induced G2/M cell cycle arrest and apoptosis in RCC cells. PLCD1 restoration led to the inhibition of signaling activation of WNT/ß-catenin and EGFR-FAK-ERK pathways, and the EMT program of RCC cells. CONCLUSIONS: Our results demonstrate that PLCD1 is a potent tumor suppressor frequently inactivated by promoter methylation in RCC and exerts its tumor suppressive functions via suppressing WNT/ß-catenin and EGFR-FAK-ERK signaling. These findings establish PLCD1 as a promising prognostic biomarker and treatment target for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinoma de Células Renais/genética , Fosfolipase C delta , beta Catenina/genética , Metilação de DNA , Transdução de Sinais , Neoplasias Renais/genética , Receptores ErbB/genética
6.
Cell Cycle ; 22(3): 303-315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36071682

RESUMO

Circular RNAs (circRNAs) have shown pivotal regulatory roles in multiple human ocular diseases, including age-related cataract (ARC). Here, we explored the role of circRNA mitogen-activated protein kinase kinase kinase 4 (circMAP3K4, hsa_circ_0078619) in ARC pathology and its associated mechanism. The expression of RNAs and proteins was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, senescence, proliferation, and apoptosis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, senescence-associated-ß-galactosidase (SA-ß-Gal) staining, 5-ethynyl-20-deoxyuridine (EdU) assay, and flow cytometry. The oxidative stress status of SRA01/04 cells was analyzed using the commercial kits. The interaction between microRNA-193a-3p (miR-193a-3p) and circMAP3K4 or phospholipase C delta 3 (PLCD3) was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay. CircMAP3K4 was significantly down-regulated in ARC patients and H2O2-induced SRA01/04 cells. H2O2 treatment restrained the viability and proliferation and promoted the senescence, apoptosis, and oxidative stress of SRA01/04 cells, and circMAP3K4 overexpression protected SRA01/04 cells from H2O2-induced dysfunction. MiR-193a-3p was a direct target of circMAP3K4, and circMAP3K4 overexpression-mediated protective effects in H2O2-induced SRA01/04 cells were largely reversed by the accumulation of miR-193a-3p. MiR-193a-3p interacted with the 3' untranslated region (3'UTR) of PLCD3, and PLCD3 knockdown largely overturned miR-193a-3p silencing-induced protective effects in H2O2-induced SRA01/04 cells. CircMAP3K4 up-regulated the expression of PLCD3 via sponging miR-193a-3p in SRA01/04 cells. In conclusion, circMAP3K4 protected SRA01/04 cells from H2O2-induced dysfunction in ARC through mediating miR-193a-3p/PLCD3 axis.


Assuntos
Catarata , MicroRNAs , RNA Circular , Humanos , Regiões 3' não Traduzidas , Apoptose/genética , Catarata/genética , Proliferação de Células/genética , Células Epiteliais , Peróxido de Hidrogênio/toxicidade , MicroRNAs/genética , Fosfolipase C delta , RNA Circular/genética
7.
Appl Biochem Biotechnol ; 195(3): 1723-1735, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36367621

RESUMO

Colon cancer (CC) is a common and lethal cancer to be further elucidated. Accumulating studies elaborated the crucial role of miRNAs differentially expressed in cancer cell growth. In the present study, differentially expressed miRNAs related to CC were screened by the bioinformatics methods on the strength of TCGA database. Highly expressed miR-17-3p was proved to notably influence CC cell proliferative, migratory, invasion, and apoptotic levels. By using TargetScan and miRTarBase databases, phospholipase C delta 1 (PLCD1) was predicted as a target downstream of miR-17-3p, and their binding site was predicted. Through TCGA database, low expression of PLCD1 and its significant negative correlation with miR-17-3p were identified in CC. Dual-luciferase reporter gene analysis ascertained the targeting relationship between miR-17-3p and PLCD1. Cell Counting Kit-8, colony formation, and transwell assays were introduced to detect CC cell malignant progression. Flow cytometry was applied to detect CC cell apoptosis. As result revealed, miR-17-3p was markedly highly expressed, and PLCD1, the target of miR-17-3p, was remarkably lowly expressed in CC cells. Forced expression of miR-17-3p facilitated CC cell proliferation, migration, invasion, and suppressed apoptosis. Biological roles of upregulating miR-17-3p in the colon cancer cells were markedly weakened by over-expressing PLCD1 simultaneously. MiR-17-3p regulated CC cell malignant progression, as well as apoptosis by targeting PLCD1. Moreover, KIF14 was extensively considered as an involved tumor-promoting gene that could be affected by miR-17-3p/PLCD1 axis based on BioGRID analysis and CO-IP assay. Concludingly, this study exhibited that miR-17-3p facilitated CC progression by PLCD1 downregulation.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Neoplasias do Colo/genética , Fenótipo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
8.
Hum Cell ; 35(3): 924-935, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35301686

RESUMO

Circular RNAs (circRNAs) are emerging as crucial regulators in tumorigenesis and aggressive progression. However, their biological roles in non-small cell lung cancer (NSCLC) remain largely unknown. Here, by performing circRNA high throughput sequencing in 4 paired NSCLC and normal tissues, we found a NSCLC-associated circRNA, circ-PLCD1, which was evidently downregulated in NSCLC tissues and cell lines. Circ-PLCD1 was transcriptionally activated by tumor-inhibiting protein p53, and exogenous expression of circ-PLCD1 inhibited NSCLC cell proliferation, invasion and induced apoptosis. Mechanistically, circ-PLCD1 acted as a competitive endogenous RNA (ceRNA) to sponge miR-375 and miR-1179 and elevate PTEN, a well-known inhibitor of oncogenic PI3K/AKT signaling, thereby repressing NSCLC tumorigenesis. Importantly, we also identified this ceRNA regulatory axis of circ-PLCD1/miR-375/miR-1179/PTEN in vivo by establishing a xenograft tumor model. Clinically, NSCLC patients with low circ-PLCD1 expression had larger tumor size, later clinical stage and shorter survival time than those with high circ-PLCD1 expression. Altogether, our findings reveal the important tumor suppressive role of circ-PLCD1 in NSCLC, reactivation of this circRNA may be considered as a novel therapeutic avenue for patient with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Transdução de Sinais/genética
9.
Mol Cancer ; 20(1): 141, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727930

RESUMO

BACKGROUND: DLC1, a tumor suppressor gene that is downregulated in many cancer types by genetic and nongenetic mechanisms, encodes a protein whose RhoGAP and scaffolding activities contribute to its tumor suppressor functions. The role of the DLC1 START (StAR-related lipid transfer; DLC1-START) domain, other than its binding to Caveolin-1, is poorly understood. In other START domains, a key function is that they bind lipids, but the putative lipid ligand for DLC1-START is unknown. METHODS: Lipid overlay assays and Phosphatidylserine (PS)-pull down assays confirmed the binding of DLC1-START to PS. Co-immunoprecipitation studies demonstrated the interaction between DLC1-START and Phospholipase C delta 1 (PLCD1) or Caveolin-1, and the contribution of PS to those interactions. Rho-GTP, cell proliferation, cell migration, and/or anchorage-independent growth assays were used to investigate the contribution of PS and PLCD1, or the implications of TCGA cancer-associated DLC1-START mutants, to DLC1 functions. Co-immunoprecipitations and PS-pull down assays were used to investigate the molecular mechanisms underlying the impaired functions of DLC1-START mutants. A structural model of DLC1-START was also built to better understand the structural implications of the cancer-associated mutations in DLC1-START. RESULTS: We identified PS as the lipid ligand for DLC1-START and determined that DLC1-START also binds PLCD1 protein in addition to Caveolin-1. PS binding contributes to the interaction of DLC1 with Caveolin-1 and with PLCD1. The importance of these activities for tumorigenesis is supported by our analysis of 7 cancer-associated DLC1-START mutants, each of which has reduced tumor suppressor function but retains wildtype RhoGAP activity. Our structural model of DLC1-START indicates the mutants perturb different elements within the structure, which is correlated with our experimental findings that the mutants are heterogenous with regard to the deficiency of their binding properties. Some have reduced PS binding, others reduced PLCD1 and Caveolin-1 binding, and others are deficient for all of these properties. CONCLUSION: These observations highlight the importance of DLC1-START for the tumor suppressor function of DLC1 that is RhoGAP-independent. They also expand the versatility of START domains, as DLC1-START is the first found to bind PS, which promotes the binding to other proteins.


Assuntos
Caveolina 1/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipase C delta/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Proteínas de Transporte , Caveolina 1/química , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Ativadoras de GTPase/genética , Humanos , Modelos Moleculares , Mutação , Fosfolipase C delta/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 481-491, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33674820

RESUMO

In recent decades, the incidence of thyroid cancer (TC) has rapidly increased, leading us to explore the complex underlying mechanisms. We identified the gene Phospholipase C Delta 3 (PLCD3) as a potential oncogene in TC by conducting the whole transcriptome sequencing. Our study is to understand the oncogenic role of PLCD3 in TC. We verified the overexpression of PLCD3 in TC from The Cancer Genome Atlas, Gene Expression Omnibus databases, and a locally validated cohort. Clinical correlation analysis showed that PLCD3 expression was related to histological type, T stage, lymph node metastasis (LNM), and disease stage. The high expression of PLCD3 could be a distinguishing factor for TC and its LNM. The biological function was examined using small interfering RNA-transfected TC cell lines. Silenced PLCD3 could inhibit colony formation, migration, and invasion ability and promote apoptosis of TC cell lines. PLCD3 silencing reversed the epithelial-mesenchymal transition but induced the apoptotic progress. Further exploration revealed that PLCD3 might be associated with critical genes of the Hippo pathway. The expressions of RHOA, YAP1/TAZ, and their downstream targets were decreased significantly when PLCD3 was down-regulated. YAP1 overexpression rescued the tumor-suppressive effect caused by PLCD3 silencing. This study demonstrates that PLCD3 is an oncogene that supports tumorigenesis and progression in TC, and PLCD3 may be a potential target gene for TC treatment.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Proteínas de Neoplasias/metabolismo , Fosfolipase C delta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Feminino , Via de Sinalização Hippo , Humanos , Metástase Linfática , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Fosfolipase C delta/genética , Proteínas Serina-Treonina Quinases/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
11.
Dig Dis Sci ; 66(2): 442-451, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32236884

RESUMO

BACKGROUND: Phospholipase C delta 1 (PLCD1) has been found to be abnormally expressed in various cancers. However, the potential roles of PLCD1 in esophageal squamous cell carcinoma (ESCC) are still unknown. METHODS: Western blot and qPCR were used to explore PLCD1 expression in various ESCC cells. MTT, colony formation assays, wound-healing assay, and transwell cell invasion assay were used to examine the cell viability in vitro. Western blot, qPCR, and luciferase assays were used to investigate the effects of PLCD1 on Wnt/ß-catenin signaling pathway. The xenograft models in nude mice were established to explore the roles of PLCD1 in vivo. RESULTS: We found that the expression of PLCD1 in ESCC cells was significantly downregulated than that in normal esophageal epithelial cells. In addition, upregulation of PLCD1 decreased the capacity of TE-1 and EC18 cells in proliferation, invasion, and migration. Then, the expression of ß-catenin/p-ß-catenin, C-myc, cyclin D1, MMP9, and MMP7 was investigated. PLCD1 activity was found to be negatively associated with the expression of ß-catenin, C-myc, cyclin D1, MMP9, and MMP7. Finally, the activity of PLCD1 in inhibiting ESCC proliferation in vivo was validated. CONCLUSION: The inhibitory effects of PLCD1 on the proliferation, invasion, and migration of TE-1 and EC18 cells might be associated with inhibition of Wnt/ß-catenin signaling pathway. PLCD1 played a key role in inhibiting ESCC carcinogenesis and progression in patients with ESCC.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosfolipase C delta/biossíntese , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Carga Tumoral/fisiologia
13.
J Invest Dermatol ; 141(3): 533-544, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795530

RESUMO

Pilomatricoma, a benign skin appendage tumor, also known as calcifying epithelioma, consists of islands of epithelial cells histologically that contain anucleated cells in the center surrounded by basophilic cells and partial calcification. Sporadic pilomatricomas commonly have somatic mutations in the gene CTNNB1, but causative genes from germline and the underlying pathophysiology are unclear. In this study, we identified a germline missense variant of PLCD1 encoding PLCδ1, c.1186G>A (p.Glu396Lys), in a large Chinese family with autosomal dominant multiple pilomatricomas. Phospholipase C, a key enzyme playing critical roles in intracellular signal transduction, is essential for epidermal barrier integrity. The p.Glu396Lys variant increased the enzymatic activity of PLCδ1, leading to protein kinase C/protein kinase D/extracellular signal-regulated kinase1/2 pathway activation and TPRV6 channel closure, which not only resulted in excessive proliferation of keratinocytes in vitro and in vivo but also induced local accumulation of calcium in the pilomatricoma-like tumor that developed spontaneously in the skin of Plcd1E396K/E396K mice. Our results implicate this p.Glu396Lys variant of PLCD1 from germline leading to gain-of-function of PLCδ1 as a causative genetic defect in familial multiple pilomatricomas.


Assuntos
Canais de Cálcio/metabolismo , Doenças do Cabelo/genética , Fosfolipase C delta/genética , Pilomatrixoma/genética , Neoplasias Cutâneas/genética , Canais de Cátion TRPV/metabolismo , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Mutação em Linhagem Germinativa , Doenças do Cabelo/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação de Sentido Incorreto , Linhagem , Pilomatrixoma/patologia , Proteína Quinase C/metabolismo , Pele/patologia , Neoplasias Cutâneas/patologia
14.
Aging (Albany NY) ; 12(13): 13023-13037, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615541

RESUMO

Lung metastasis (LM) is commonly found in triple-negative breast cancer (TNBC); however, the molecular mechanism underlying TNBC metastasis to lungs remains largely unknown. We thus aimed to uncover a possible mechanism for the LM of TNBC. Here we show that the phosphorylation of Akt and mTORC1 was positively but the autophagy activity was negatively correlated with endogenous Gαh levels and cell invasion ability in TNBC cell lines. Whereas the knockdown of Gαh, as well as blocking its binding with PLC-δ1 by a synthetic peptide inhibitor, in the highly invasive MDA-MB231 cells dramatically suppressed Akt/mTORC1 phosphorylation and blocked autophagosome degradation, the overexpression of Gαh in the poorly invasive HCC1806 cells enhanced Akt/mTORC1 phosphorylation but promoted autophagosome degradation. The pharmaceutical inhibition of autophagy initiation by 3-methyladenine was found to rescue the cell invasion ability and LM potential of Gαh-silenced MDA-MB231 cells. In contrast, the inhibition of mTORC1 activity by rapamycin suppressed autophagosome degradation but mitigated the cell invasion ability and LM potential of Gαh-overexpressing HCC1806 cells. These findings demonstrate that the induction of autophagy activity or the inhibition of Akt-mTORC1 axis provides a useful strategy to combat the Gαh/PLC-δ1-driven LM of TNBC.


Assuntos
Autofagossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfolipase C delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transglutaminases/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Proteína 2 Glutamina gama-Glutamiltransferase , Transdução de Sinais/genética , Transglutaminases/genética , Neoplasias de Mama Triplo Negativas/genética
15.
Sci Rep ; 10(1): 6035, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265483

RESUMO

The autosomal dominant presentation of trichilemmal cysts is one of the most common single gene familial diseases in humans. However, the genetic basis for the inheritance and genesis of these lesions has remained unknown. We first studied patients with multiple trichilemmal cysts using exome and Sanger sequencing. Remarkably, 21 of 21 trichilemmal cysts from 16 subjects all harbored a somatic p.S745L (c.2234 G > A) mutation in phospholipase C delta 1 (PLCD1), a proposed tumor suppressor gene. In addition to this specific somatic mutation in their tumors, 16 of the 17 subjects with multiple trichilemmal cysts were also heterozygous for a p.S460L (c.1379 G > A) germline variant in PLCD1 which is normally present in only about 6% of this population. The one patient of 17 that did not show the p.S460L germline variant had a germline p.E455K (c.1363 C > T) mutation in the same exon of PLCD1. Among 15 additional subjects, with a history suggesting a single sporadic trichilemmal cyst, six were likely familial due to the presence of the p.S460L germline variant. Of the remaining truly sporadic trichilemmal cysts that could be sequenced, only half showed the p.S745L somatic mutation in contrast to 100% of the familial cysts. Surprisingly, in contrast to Knudsen's two hit hypothesis, the p.S745L somatic mutation was always on the same chromosome as the p.S460L germline variant. Our results indicate that familial trichilemmal cysts is an autosomal dominant tumor syndrome resulting from two hits to the same allele of PLCD1 tumor suppressor gene. The c.1379 G > A base change and neighboring bases are consistent with a mutation caused by ultraviolet radiation. Our findings also indicate that approximately one-third of apparently sporadic trichilemmal cysts are actually familial with incomplete penetrance. Sequencing data suggests that the remaining, apparently sporadic, trichilemmal cysts are genetically distinct from familial cysts due to a lack of the germline mutations that underlie familial cysts and a decreased prevalence of the p.S745L somatic mutation relative to familial trichilemmal cysts.


Assuntos
Cisto Epidérmico/genética , Fosfolipase C delta/genética , Estudos Transversais , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Mutação Puntual
16.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(6): 637-641, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33719273

RESUMO

Objective: To investigate the effects of miRNA-191 on the proliferation, migration and invasion of prostate cancer, and to explore its mechanism. Methods: The expression levels of miRNA-191 in four human prostate cancer cell lines (PC-3, DU-145, LNCa P, 22RU1) and human normal prostate cell line RWPE-2 were detected, and prostate cancer cell line PC-3 was selected as the experimental object. PC-3 cells were divided into three groups: blank control group (no transfection), miRNA-191 NC group (PC-3 cells transfected with Inhibitor NC) and miRNA-191 Inhibitor group (PC-3 cells transfected with miRNA-191 Inhibitor), and each group was provided with three multiple pores. The expression levels of miRNA-191 and PLCD1 were detected by RT-PCR. The cell proliferation was detected by CCK8 assay. Scratch test and invasive test were used to detect cell migration and invasive ability. Through Targetscan target gene prediction website, PLCD1 was screened as the target protein of miRNA-191, and verified by double luciferase target experiment.Western blot assay was used to detect the expression of PLCD1 in cells of each group. Results: Compared with RWPE-2 cells, the expression level of miRNA-191 in human prostate cancer cells was significantly higher (P <0.05), and the expression level of miRNA191 in PC-3 was significantly higher than that in other three cell lines (P<0.05). After inhibiting the expression of miRNA-191, the expression levels of PLCD1 was significantly higher while PC-3 cells' proliferation ability was inhibited, and their migration and invasion ability were significantly lower than those of blank control group and miRNA-191 NC group (P< 0.05). The results of double luciferase reporter gene assay showed that PLCD1 gene was a target gene of miRNA-191. Conclusion: miRNA-191 promote the proliferation, migration and invasion of prostate cancer PC-3 cells by targeting PLCD1.


Assuntos
MicroRNAs , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Fosfolipase C delta , Neoplasias da Próstata/genética
17.
Cancer Med ; 9(3): 859-871, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808619

RESUMO

The purpose of this investigation was to explore the prognostic value of phospholipase C delta (PLCD) genes in early stage pancreatic ductal adenocarcinoma (PDAC) and its potential molecular mechanisms. The prognostic value of PLCD genes in early stage PDAC was assessed using the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Genome-wide correlation analysis was performed on PLCD3 to identify the highly correlated genes in the transcriptome. Then, PLCD3 and these correlated genes together underwent a bioinformatics analysis to elucidate the potential molecular biological functions of PLCD3 in PDAC. PLCD1 and PLCD3 are significantly overexpressed in PDAC. In PDAC patients, PLCD3 is overexpressed in certain groups of people with a history of alcoholism (P = .032). High expression of PLCD3 was found to be associated with lower overall survival (OS) of patients with early stage PDAC (P = .020; adjusted P = .016). A combination of PLCD3 and clinical variables was able to better predict the outcome of patients with early stage PDAC. These clinical variables are histological grade (P = .001; adjusted P = .001), targeted molecular therapy (P < .001; adjusted P < .001), radiation therapy (P = .002; adjusted P = .039), and residual resection (P = .001; adjusted P = .002). The bioinformatics analysis revealed that PLCD3 is associated with angiogenesis, intracellular signal transduction, and regulation of cell proliferation. In conclusion, PLCD3 may be a potential prognostic biomarker for early stage PDAC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Fosfolipase C delta/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Proliferação de Células/genética , Quimiorradioterapia Adjuvante/métodos , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Margens de Excisão , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Estadiamento de Neoplasias , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico , RNA-Seq , Estudos Retrospectivos , Transdução de Sinais/genética
18.
Invest Ophthalmol Vis Sci ; 60(14): 4670-4680, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725166

RESUMO

Purpose: Long noncoding RNAs (lncRNAs) are important in disease progression and cellular functions. This study aimed to conduct global lncRNA profiling and characterize the role of lncRNA 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta 3-sence RNA 1 (PLCD3-OT1) in the progression of age-related cataract (ARC). Methods: We performed lncRNA expression profiling of lens capsule from ARC groups and age-matched groups using high-throughput RNA-sequencing. Real-time PCR was conducted to detect the expression pattern of lncRNA and mRNA in the clinical samples and cell model. Assays of cell-counting kit-8, 5'-ethynyl-2'-deoxyuridine, TUNEL, and propidium iodide staining were used to detect cell viability, proliferation, apoptosis, and cell cycle. We also performed fluorescence in situ hybridization assay to detect the location of lncRNA, and verified the endogenous competitive RNA mechanism between miRNAs, lncRNAs, and target genes via double-luciferase reporter analyses. Results: The expression of lncRNA PLCD3-OT1 and PLCD3 were significantly decreased in ARC. PLCD3-OT1 overexpression promoted the expression of PLCD3, cell viability, proliferation, and inhibited cell apoptosis upon oxidative stress, while knockdown of PLCD3 showed the opposite results. Mechanistically, PLCD3-OT1functions through positively regulation the expression of PLCD3. In addition, PLCD3-OT1 may act as a ceRNA to regulate the expression of PLCD3 through competition for miR-224-5p. Conclusions: PLCD3-OT1 and PLCD3 may become potential therapeutic targets for the prognosis, diagnosis, and treatment of ARC.


Assuntos
Catarata/prevenção & controle , MicroRNAs/metabolismo , Fosfolipase C delta/fisiologia , RNA Longo não Codificante/fisiologia , Idoso , Western Blotting , Catarata/metabolismo , Catarata/patologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Lentivirus/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Transfecção
19.
J Invest Dermatol ; 139(10): 2075-2077, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31543210

RESUMO

Trichilemmal or "pilar" cysts are commonly found on the scalp and are derived from the outer root sheath of the hair follicle. Multiple trichilemmal cysts present in an autosomal dominant pattern of inheritance, yet the genetic mechanism has remained elusive. In this issue, Hörer et al. (2019) highlight predisposing variants in PLCD1 in such families and propose a monoallelic mutational mechanism that drives cyst formation.


Assuntos
Cisto Epidérmico , Folículo Piloso , Humanos , Fosfolipase C delta , Couro Cabeludo
20.
J Biol Chem ; 294(45): 16650-16662, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537645

RESUMO

Calcium (Ca2+) signaling within the cell nucleus regulates specific cellular events such as gene transcription and cell proliferation. Nuclear and cytosolic Ca2+ levels can be independently regulated, and nuclear translocation of receptor tyrosine kinases (RTKs) is one way to locally activate signaling cascades within the nucleus. Nuclear RTKs, including the epidermal growth factor receptor (EGFR), are important for processes such as transcriptional regulation, DNA-damage repair, and cancer therapy resistance. RTKs can hydrolyze phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) within the nucleus, leading to Ca2+ release from the nucleoplasmic reticulum by inositol 1,4,5-trisphosphate receptors. PI(4,5)P2 hydrolysis is mediated by phospholipase C (PLC). However, it is unknown which nuclear PLC isoform is triggered by EGFR. Here, using subcellular fractionation, immunoblotting and fluorescence, siRNA-based gene knockdowns, and FRET-based biosensor reporter assays, we investigated the role of PLCδ4 in epidermal growth factor (EGF)-induced nuclear Ca2+ signaling and downstream events. We found that EGF-induced Ca2+ signals are inhibited when translocation of EGFR is impaired. Nuclear Ca2+ signals also were reduced by selectively buffering inositol 1,4,5-trisphosphate (InsP3) within the nucleus. EGF induced hydrolysis of nuclear PI(4,5)P2 by the intranuclear PLCδ4, rather than by PLCγ1. Moreover, protein kinase C, a downstream target of EGF, was active in the nucleus of stimulated cells. Furthermore, PLCδ4 and InsP3 modulated cell cycle progression by regulating the expression of cyclins A and B1. These results provide evidence that EGF-induced nuclear signaling is mediated by nuclear PLCδ4 and suggest new therapeutic targets to modulate the proliferative effects of this growth factor.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fosfolipase C delta/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Ciclina A/metabolismo , Ciclina B1/metabolismo , Receptores ErbB/metabolismo , Humanos , Hidrólise , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C delta/antagonistas & inibidores , Fosfolipase C delta/genética , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA