Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166978, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061598

RESUMO

Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Encéfalo/metabolismo , Imunidade Inata , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Fagocitose/genética , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosfolipase C gama/farmacologia
2.
Adv Sci (Weinh) ; 10(34): e2303091, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863665

RESUMO

Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Gástricas , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fosfolipase C gama/farmacologia
3.
BMC Complement Med Ther ; 22(1): 75, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300669

RESUMO

BACKGROUND: Platelets play an important role in the progression of atherosclerosis and cardiovascular events. The inhibition of platelet function is a main strategy to reduce risk of cardiovascular events. Some studies have shown that tomato extracts inhibit platelet function, but the molecular mechanisms remain unclear. Fruitflow is a water-solute tomato extract and the main ingredients including flavonoids, adenosine, chlorogenic acid, phytosterols, naringenin, and carotenoids. The present study investigated the effects of fruitflow on adenosine diphosphate (ADP)- and collagen- stimulated platelet aggregation, platelet adhesion, and levels of thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (PGF1α), and platelet factor 4 (PF4) and explored the underlying molecular mechanisms. METHODS: Platelet-rich plasma (PRP) was used for measurement of platelet aggregation, TXB2, 6-keto- PGF1α, and PF4 levels. Platelet aggregation was analyzed using a Chrono-Log aggregometer. TXB2, 6-keto- PGF1α, and PF4 levels were determined using enzyme-linked immunosorbent assay kits. Immunoblotting was used to detect protein expression and phosphorylation on washed platelets. Platelet adhesion and spreading were determined by immunofluorescence. RESULTS: Fruitflow (1, 3, 10 and 100 µg/ml) dose-dependently inhibited platelet aggregation that was induced by ADP and collagen. Fruitflow (100 µg/ml) treatment completely suppressed ADP- and collagen-stimulated platelet aggregation. Fruitflow (100 µg/ml) significantly decreased TXB2 and 6-keto-PGF1α generation and PF4 release in ADP- and collagen-stimulated platelets. Treatment with fruitflow effectively blocked collagen-induced platelet spreading. To determine the potential molecule mechanism of action of fruitflow, we investigated the protein expression and phosphorylation of several signaling molecules in collagen-activated platelets. Fruitflow dose-dependently suppressed Akt, Glycogen synthase kinase-3ß (GSK-3ß), spleen tyrosine kinase (Syk) and phospholipase Cγ2 (PLCγ2) and p38 MAPK phosphorylation that was induced by collagen. CONCLUSION: Fruitflow inhibited platelet aggregation and reduced TXB2, 6-keto-PGF1α, and PF4 levels in ADP- and collagen-stimulated platelets. The mechanism of action of fruitflow may be associated with the suppression of Akt/GSK3ß, Syk/PLCγ2, and p38 MAPK phosphorylation in collagen-activated platelets. Fruitflow is a natural product derived from tomato and can be used as a health food for decreasing platelet activity.


Assuntos
Plaquetas , Proteínas Proto-Oncogênicas c-akt , Plaquetas/metabolismo , Colágeno/metabolismo , Colágeno/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Fosfolipase C gama/metabolismo , Fosfolipase C gama/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Diabetes ; 71(5): 1149-1165, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192691

RESUMO

Therapeutic vascular endothelial growth factor (VEGF) replenishment has met with limited success for the management of critical limb-threatening ischemia. To improve outcomes of VEGF therapy, we applied single-cell RNA sequencing (scRNA-seq) technology to study the endothelial cells of the human diabetic skin. Single-cell suspensions were generated from the human skin followed by cDNA preparation using the Chromium Next GEM Single-cell 3' Kit v3.1. Using appropriate quality control measures, 36,487 cells were chosen for downstream analysis. scRNA-seq studies identified that although VEGF signaling was not significantly altered in diabetic versus nondiabetic skin, phospholipase Cγ2 (PLCγ2) was downregulated. The significance of PLCγ2 in VEGF-mediated increase in endothelial cell metabolism and function was assessed in cultured human microvascular endothelial cells. In these cells, VEGF enhanced mitochondrial function, as indicated by elevation in oxygen consumption rate and extracellular acidification rate. The VEGF-dependent increase in cell metabolism was blunted in response to PLCγ2 inhibition. Follow-up rescue studies therefore focused on understanding the significance of VEGF therapy in presence or absence of endothelial PLCγ2 in type 1 (streptozotocin-injected) and type 2 (db/db) diabetic ischemic tissue. Nonviral topical tissue nanotransfection technology (TNT) delivery of CDH5 promoter-driven PLCγ2 open reading frame promoted the rescue of hindlimb ischemia in diabetic mice. Improvement of blood flow was also associated with higher abundance of VWF+/CD31+ and VWF+/SMA+ immunohistochemical staining. TNT-based gene delivery was not associated with tissue edema, a commonly noted complication associated with proangiogenic gene therapies. Taken together, our study demonstrates that TNT-mediated delivery of endothelial PLCγ2, as part of combination gene therapy, is effective in diabetic ischemic limb rescue.


Assuntos
Diabetes Mellitus Experimental , Fator A de Crescimento do Endotélio Vascular , Animais , Diabetes Mellitus Experimental/genética , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/genética , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosfolipase C gama/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia , Fator de von Willebrand/uso terapêutico
5.
J Nat Prod ; 83(4): 1174-1182, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32237724

RESUMO

The increase of bone-resorbing osteoclast activity in bone remodeling is the major characteristic of various bone diseases. Thus, inhibiting osteoclastogenesis and bone-resorbing function may be an effective therapeutic target for bone diseases. Betulinic acid (BA), a natural plant-derived pentacyclic triterpenoid compound, is known to possess numerous pharmacological and biochemical properties including anti-inflammatory, anticancer, and antiadipogenic activity. However, the effect of BA on osteoclast differentiation and function in bone metabolism has not been demonstrated so far. In this study, we investigated whether BA could suppress RANKL-induced osteoclastogenesis and bone resorption. Interestingly, BA significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt and IκB, as well as PLCγ2-Ca2+ signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos and NFATc1. The inhibition of these pathways by BA was once more confirmed by retrovirus infection of constitutively active (CA)-Akt and CA-Ikkß retrovirus and measurement of Ca2+ influx. BA also significantly inhibited the expression of osteoclastogenesis-specific marker genes. Moreover, we found that BA administration restored the bone loss induced through acute lipopolysaccharide injection in mice by a micro-CT and histological analysis. Our findings suggest that BA is a potential therapeutic candidate for bone diseases involving osteoclasts.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , NF-kappa B/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Fosfolipase C gama/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/química , Transdução de Sinais/efeitos dos fármacos , Animais , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Osteoclastos/efeitos dos fármacos , Triterpenos Pentacíclicos/química , Fosfolipase C gama/química , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/química , Ligante RANK/metabolismo , Ácido Betulínico
6.
Nat Neurosci ; 10(10): 1300-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17891142

RESUMO

The epidermal growth factor receptor (EGFR)/ErbB receptor tyrosine kinases regulate several aspects of development, including the development of the mammalian nervous system. ErbB signaling also has physiological effects on neuronal function, with influences on synaptic plasticity and daily cycles of activity. However, little is known about the effectors of EGFR activation in neurons. Here we show that EGF signaling has a nondevelopmental effect on behavior in Caenorhabditis elegans. Ectopic expression of the EGF-like ligand LIN-3 at any stage induces a reversible cessation of feeding and locomotion. These effects are mediated by neuronal EGFR (also called LET-23) and phospholipase C-gamma (PLC-gamma), diacylglycerol-binding proteins, and regulators of synaptic vesicle release. Activation of EGFR within a single neuron, ALA, is sufficient to induce a quiescent state. This pathway modulates the cessation of pharyngeal pumping and locomotion that normally occurs during the lethargus period that precedes larval molting. Our results reveal an evolutionarily conserved role for EGF signaling in the regulation of behavioral quiescence.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/metabolismo , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Letargia/genética , Letargia/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfolipase C gama/farmacologia
7.
J Cell Biochem ; 100(5): 1255-65, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17063483

RESUMO

The aim of this study was to examine the homocysteine effect on phospholipase Cgamma2 (PLCgamma2) activation and to investigate the signaling pathway involved. We found that homocysteine stimulated the tyrosine phosphorylation and activation of platelet PLCgamma2. The tyrosine kinases p60src and p72syk appeared to be involved upstream. Reactive oxygen species were increased in homocysteine treated platelets. Likely oxidative stress could prime the non receptor-mediated tyrosine kinase p60src, inducing phosphorylation and activation of p72syk. The antioxidant N-acetyl-L-cysteine prevented the activation of these kinases. The phosphorylation and activation of PLCgamma2 were greatly reduced by the inhibition of p72syk through piceatannol. Moreover indomethacin diminished the homocysteine effect on p60src, p72syk and PLCgamma2, suggesting that thromboxane A(2) could be involved. In addition the treatment of platelets with homocysteine caused intracellular calcium rise and protein kinase C activation. Finally homocysteine induced platelet aggregation, that was partially reduced by indomethacin and by N-acetyl-L-cysteine of 35% or 50% respectively, while the PLCgamma2 specific inhibitor U73122 diminished platelet response to homocysteine of 70%. Altogether the data indicate that PLCgamma2 plays an important role in platelet activation by homocysteine and that the stimulation of this pathway requires signals through oxygen free radicals and thromboxane A(2).


Assuntos
Homocisteína/farmacologia , Fosfolipase C gama/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Cálcio/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Oncogênica pp60(v-src)/metabolismo , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Quinase Syk , Tirosina/metabolismo
8.
Nat Chem Biol ; 2(5): 265-73, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16565716

RESUMO

We examined the role of angiogenesis and the need for receptor signaling using chemical inhibition of the vascular endothelial growth factor receptor in the adult zebrafish tail fin. Using a small-molecule inhibitor, we were able to exert precise control over blood vessel regeneration. An angiogenic limit to tissue regeneration was determined, as avascular tissue containing skin, pigment, neuronal axons and bone precursors could regenerate up to about 1 mm. This indicates that tissues can regenerate without direct interaction with endothelial cells and at a distance from blood supply. We also investigated whether the effects of chemical inhibition could be enhanced in zebrafish vascular mutants. We found that adult zebrafish, heterozygous for a mutation in the critical receptor effector phospholipase Cgamma1, show a greater sensitivity to chemical inhibition. This study illustrates the utility of the adult zebrafish as a new model system for receptor signaling and chemical biology.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Peixe-Zebra/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Células Endoteliais/fisiologia , Regeneração Tecidual Guiada/métodos , Heterozigoto , Microscopia de Fluorescência , Mutação , Neurônios/metabolismo , Fosfolipase C gama/farmacologia , Epitélio Pigmentado Ocular/efeitos dos fármacos , Epitélio Pigmentado Ocular/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Regeneração/fisiologia , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA