Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Toxicon ; 243: 107716, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38614247

RESUMO

The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the ß-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.


Assuntos
Bothrops , Venenos de Crotalídeos , Macrófagos , Óxido Nítrico , Fagocitose , Transdução de Sinais , Zimosan , Animais , Fagocitose/efeitos dos fármacos , Zimosan/farmacologia , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Fosfolipases A2 Secretórias/metabolismo
2.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Assuntos
Aterosclerose , Crataegus , Fosfolipases A2 Secretórias , Placa Aterosclerótica , Camundongos , Animais , Crataegus/química , Quercetina/uso terapêutico , Fosfolipases A2 Secretórias/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espectrometria de Massas em Tandem , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Flavonoides/uso terapêutico , Lipoproteínas LDL/metabolismo , Transdução de Sinais , Colesterol/metabolismo , Camundongos Knockout , Apolipoproteínas E/genética
3.
J Lipid Res ; 64(9): 100429, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604227

RESUMO

Serum amyloid A (SAA) is named after a life-threatening disease, yet this small evolutionarily conserved protein must have played a vital role in host defense. Most circulating SAA binds plasma lipoproteins and modulates their metabolism. However, this hardly justifies the rapid and dramatic SAA upregulation in inflammation, which is concomitant with upregulation of secretory phospholipase A2 (sPLA2). We proposed that these proteins synergistically clear cell membrane debris from the sites of injury. The present study uses biochemical and biophysical approaches to further explore the beneficial function of SAA and its potential links to amyloid formation. We show that murine and human SAA1 are powerful detergents that solubilize diverse lipids, including mammalian biomembranes, converting them into lipoprotein-size nanoparticles. These nanoparticles provide ligands for cell receptors, such as scavenger receptor CD36 or heparin/heparan sulfate, act as substrates of sPLA2, and sequester toxic products of sPLA2. Together, these functions enable SAA to rapidly clear unprotected lipids. SAA can also adsorb, without remodeling, to lipoprotein-size nanoparticles such as exosomal liposomes, which are proxies for lipoproteins. SAA in complexes with zwitterionic phospholipids stabilizes α-helices, while SAA in complexes containing anionic lipids or micelle-forming sPLA2 products forms metastable ß-sheet-rich species that readily aggregate to form amyloid. Consequently, the synergy between SAA and sPLA2 extends from the beneficial lipid clearance to the pathologic amyloid formation. Furthermore, we show that lipid composition alters SAA conformation and thereby can influence the metabolic fate of SAA-lipid complexes, including their proamyloidogenic and proatherogenic binding to heparan sulfate.


Assuntos
Fosfolipases A2 Secretórias , Proteína Amiloide A Sérica , Humanos , Camundongos , Animais , Proteína Amiloide A Sérica/metabolismo , Lipoproteínas , Fosfolipídeos , Fosfolipases A2 Secretórias/metabolismo , Heparitina Sulfato , Mamíferos/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L411-L418, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489844

RESUMO

Surfactant protein-D (SP-D) is a hydrophilic protein with multiple crucial anti-inflammatory and immunological functions. It might play a role in the development and course of pulmonary infections, acute respiratory distress syndrome, and other respiratory disorders. Only few small neonatal studies have investigated SP-D: we aimed to investigate the links between this protein, measured in the first hours of life in extremely preterm neonates, and clinical outcomes, as well its relationship with pulmonary secretory phospholipase A2 (sPLA2). Bronchoalveolar lavage fluids were obtained within the first 3 h of life. SP-D and sPLA2 were measured with ELISA and radioactive method, respectively; epithelial lining fluid concentrations were estimated with urea ratio. Clinical data were prospectively collected. One hundred extremely preterm neonates were nonconsecutively studied. SP-D was significantly raised with increasing gestational age (24-26 wk: 68 [0-1,694], 27 or 28 wk: 286 [0-1,328], 29 or 30 wk: 1,401 [405-2,429] ng/mL, overall P = 0.03). SP-D was significantly higher in cases with clinical chorioamnionitis with fetal involvement (1,138 [68-3,336]) than in those without clinical chorioamnionitis with fetal involvement (0 [0-900] ng/mL, P < 0.001). SP-D was lower in infants with bronchopulmonary dysplasia (BPD) (251 [0-1,550 ng/mL]) compared with those without bronchopulmonary dysplasia (BPD) or who died before its diagnosis (977 [124-5,534 ng/mL], P = 0.05) and this was also significant upon multivariate analysis [odds ration (OR): 0.997 (0.994-0.999), P = 0.024], particularly in neonates between 27- and 28-wk gestation. SP-D significantly correlated with the duration of hospital stay (ρ = -0.283, P = 0.002), invasive ventilation (ρ = -0.544, P = 0.001), and total sPLA2 activity (ρ = 0.528, P = 0.008). These findings help understanding the role of SP-D early in life and support further investigation about the role of SP-D in developing BPD.NEW & NOTEWORTHY Surfactant protein-D increases with gestational age and is inversely associated with BPD development. These results have been obtained in the first hours of life of extremely preterm neonates with optimal perinatal care.


Assuntos
Displasia Broncopulmonar , Corioamnionite , Fosfolipases A2 Secretórias , Síndrome do Desconforto Respiratório do Recém-Nascido , Recém-Nascido , Lactente , Gravidez , Feminino , Humanos , Proteína D Associada a Surfactante Pulmonar , Líquido da Lavagem Broncoalveolar , Lactente Extremamente Prematuro , Fosfolipases A2 Secretórias/metabolismo , Tensoativos
5.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048117

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with a very poor prognosis as it has a 2.5 to 5 years mean survival after proper diagnosis. Even nintedanib and pirfenidone cannot halt the progression, though they slow the progression of IPF. Hence, there is a need to understand the novel pathophysiology. Phospholipase A2 (PLA2) could be the ideal candidate to study in IPF, as they have a role in both inflammation and fibrosis. In the present study, we have shown the expression profile of various secretory Phospholipase A2 (PLA2) isoforms by analyzing publicly available transcriptome data of single cells from the lungs of healthy individuals and IPF patients. Among 11 members of sPLA2, PLA2G2A is found to be increased in the fibroblasts and mesothelial cells while PLA2G5 is found to be increased in the fibroblasts of IPF patients. We identified a subset of fibroblasts expressing high PLA2G2A with moderate expression of PLA2G5 and which are specific to IPF only; we named it as PLA2G2A+ IPF fibroblast. Pathway analysis revealed that these PLA2G2A+ IPF fibroblast have upregulation of both inflammatory and fibrosis-related pathways like the TGF-ß signaling pathway, IL-17 signaling, the arachidonic acid metabolism pathway and ECM-receptor interaction. In addition to this, we found elevated levels of sPLA2-IIA in plasma samples of IPF patients in our cohort. PLA2G3, PLA2G10 and PLA2G12B are found in to be increased in certain epithelial cells of IPF patients. Thus, these findings indicate that these five isoforms have a disease-dominant role along with innate immune roles as these isoforms are found predominantly in structural cells of IPF patients. Further, we have targeted sPLA2 in mice model of bleomycin-induced lung fibrosis by pBPB, a known sPLA2 inhibitor. pBPB treatment attenuated lung fibrosis induced by bleomycin along with a reduction in TGF-ß and deposition of extracellular matrix in lung. Thus, these findings indicate that these sPLA2 isoforms especially PLA2G2A may serve as a therapeutic target in lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Fosfolipases A2 Secretórias , Animais , Camundongos , Bleomicina , Fibrose , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fosfolipases A2 Secretórias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Humanos
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982611

RESUMO

Coronavirus disease (COVID-19) has become a global pandemic. COVID-19 patients need immediate diagnosis and rehabilitation, which makes it urgent to identify new protein markers for a prognosis of the severity and outcome of the disease. The aim of this study was to analyze the levels of interleukin-6 (IL-6) and secretory phospholipase (sPLA2) in the blood of patients regarding the severity and outcome of COVID-19 infection. The study included clinical and biochemical data obtained from 158 patients with COVID-19 treated at St. Petersburg City Hospital No. 40. A detailed clinical blood test was performed on all patients, as well as an assessment of IL-6, sPLA2, aspartate aminotransferase (AST), total protein, albumin, lactate dehydrogenase (LDH), APTT, fibrinogen, procalcitonin, D-dimer, C-reactive protein (CRB), ferritin, and glomerular filtration rate (GFR) levels. It was found that the levels of PLA2, IL-6, APTV, AST, CRP, LDH, IL-6, D-dimer, and ferritin, as well as the number of neutrophils, significantly increased in patients with mild to severe COVID-19 infections. The levels of IL-6 were positively correlated with APTT; the levels of AST, LDH, CRP, D-dimer, and ferritin; and the number of neutrophils. The increase in the level of sPLA2 was positively correlated with the levels of CRP, LDH, D-dimer, and ferritin, the number of neutrophils, and APTT, and negatively correlated with the levels of GFR and lymphocytes. High levels of IL-6 and PLA2 significantly increase the risk of a severe course by 13.7 and 2.24 times, and increase the risk of death from COVID-19 infection by 14.82 and 5.32 times, respectively. We have shown that the blood levels of sPLA2 and IL-6 increase in cases which eventually result in death and when patients are transferred to the ICU (as the severity of COVID-19 infection increases), showing that IL-6 and sPLA2 can be considered as early predictors of aggravation of COVID-19 infections.


Assuntos
COVID-19 , Fosfolipases A2 Secretórias , Humanos , Interleucina-6/metabolismo , SARS-CoV-2/metabolismo , Proteína C-Reativa/metabolismo , Ferritinas , Fosfolipases A2 Secretórias/metabolismo , Biomarcadores
7.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674864

RESUMO

The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.


Assuntos
Neoplasias , Fosfolipases A2 Secretórias , Humanos , Isoenzimas/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Catálise
8.
J Cell Biochem ; 124(2): 294-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585945

RESUMO

The arachidonic acid (AA) metabolic pathway, plays a vital role in the production of eicosanoids by the action of pro-inflammatory secretory phospholipase A2 (PLA2 ). Release of eicosanoids is known to be involved in many inflammatory diseases. Identification of the inhibitory molecules of this AA pathway enzyme along with the regulation of intracellular signaling cascades may be a finer choice to develop as a powerful anti-inflammatory drug. In this regard, we have screened few cell-permeable antioxidant molecules Tempo, Mito-TEMPO, N,N'-Bis(salicylideneamino)ethane-manganese(II) (EUK)-134, and EUK-8 against pro-inflammatory sPLA2 s. Among these, we found EUK-8 is a potent inhibitor with its IC50 value ranges 0.7-2.0 µM for sPLA2 s isolated from different sources. Furthermore, docking studies confirm the strong binding of EUK-8 towards sPLA2 . In vivo effect of EUK-8 was studied in HSF-sPLA2 -induced edema in mouse paw model. In addition to neutralizing the edema, EUK-8 significantly reduces the phosphorylation level of inflammatory proteins such as p38 member of MAPK pathway, Akt, and p65 along with the suppression of pro-inflammatory cytokine (interleukin-6) and chemokine (CXCL1) in edematous tissue. This shows that EUK-8 not only inhibits the sPLA2 activity, it also plays an important role in the regulation of sPLA2 -induced cell signaling cascades. Apart from the sPLA2 inhibition, we also examine the regulatory actions of EUK-8 with other downstream enzymes of AA pathway such as 5-LOX assay in human polymorphonuclear leukocytes (PMNs) and COX-2 expression in carrageenan-λ induced paw edema. Here EUK-8 significantly inhibits 5-LOX enzyme activity and downregulates COX-2 expression. These data indicate that EUK-8 found to be a promising multitargeted inhibitory molecule toward inflammatory pathway. In conclusion, mitochondrial targeted antioxidant EUK-8 is not only the powerful antioxidant, also a potent anti-inflammatory molecule and may be a choice of molecule for pharmacological applications.


Assuntos
Fosfolipases A2 Secretórias , Camundongos , Humanos , Animais , Fosfolipases A2 Secretórias/efeitos adversos , Fosfolipases A2 Secretórias/metabolismo , Antioxidantes/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente
9.
Brain Res Bull ; 189: 80-101, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988785

RESUMO

Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aß), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.


Assuntos
Síndromes Neurotóxicas , Fosfolipases A2 Secretórias , Peptídeos beta-Amiloides/metabolismo , Antígenos de Superfície/metabolismo , Antígenos de Superfície/farmacologia , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catepsinas/metabolismo , Ceramidas , Quimiocinas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Ácido Glutâmico/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Ligantes , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Proteínas Inflamatórias de Macrófagos/farmacologia , Microglia/metabolismo , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Óxido Nítrico/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L121-L128, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762614

RESUMO

Secretory phospholipase A2 (sPLA2) regulates the first step of inflammatory cascade and is involved in several pathological processes. sPLA2 also plays a role in preterm labor and parturition, since they are triggered by inflammatory mediators such as prostaglandins. Interestingly, chorioamnionitis (i.e., the presence of intrauterine inflammation) is also often associated with preterm birth. We aimed to verify if chorioamnionitis with fetal involvement modifies sPLA2 activity and expression profile in mothers and neonates delivered prematurely. We collected maternal plasma and amniotic fluid, as well as bronchoalveolar lavage fluid from preterm neonates born to mothers with or without clinical chorioamnionitis with fetal involvement. We measured concentrations of sPLA2 subtype-IIA and -IB, total enzyme activity, and proteins. Urea ratio was used to obtain epithelial lining fluid concentrations. Enzyme activity measured in maternal plasma (P < 0.001) and amniotic fluid (P < 0.001) was higher in chorioamnionitis cases than in controls. This was mainly due to the increased production of sPLA2-IIA, as the subtype -IB was present in a smaller amount and was similar between the two groups; sPLA2-IIA was increased in epithelial lining fluid (P = 0.045) or increased, although without statistical significance, in maternal plasma (P = 0.06) and amniotic fluid (P = 0.08) of chorioamnionitis cases. Cytokines that are known to increase sPLA2-IIA expression (TNF-α and IL-1ß) or whose expression was increased by sPLA2-IIA (IL-8) were higher in histologically confirmed chorioamnionitis [TNF-α (P = 0.028), IL-1ß (P < 0.001), and IL-8 (P = 0.038)]. These data represent the basis for future studies on sPLA2-IIA inhibition to prevent deleterious consequences of chorioamnionitis and preterm birth.


Assuntos
Corioamnionite , Fosfolipases A2 Secretórias , Nascimento Prematuro , Corioamnionite/metabolismo , Feminino , Humanos , Recém-Nascido , Interleucina-8 , Fosfolipases A2 Secretórias/metabolismo , Gravidez , Fator de Necrose Tumoral alfa
11.
Inflammopharmacology ; 30(5): 1853-1870, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35639234

RESUMO

Eleusine coracana (L.) Gaertn (E. coracana) is one of the highest consuming food crops in Asia and Africa. E. coracana is a plant with several medicinal values including anti-ulcerative, anti-diabetic, anti-viral and anti-cancer properties. However, the anti-inflammatory property of E. coracana remains to be elucidated. Therefore, the objective of present study was to investigate the potential in isolated molecule from E. coracana via a combination of in vitro, in vivo and in silico methods. In this study, we have isolated, purified and characterized an anti-inflammatory molecule from E. coracana bran extract known as syringol. Purification of syringol was accomplished by combination of GC-MS and RP-HPLC techniques. Syringol significantly inhibited the enzymes activity of sPLA2 (IC50 = 3.00 µg) and 5-LOX (IC50 = 0.325 µg) in vitro. The inhibition is independent of substrate concentration, calcium ion concentration and was irreversible. Syringol interacts with purified sPLA2 enzymes as evidenced by fluorescence and molecular docking studies. Further, the syringol molecule dose dependently inhibited the development of sPLA2 and λ-carrageenan induced edema. Furthermore, syringol decreases the expression of cPLA2, COX-2, IκBα, p38 and MPO in edematous tissues as demonstrated by western blots. These studies revealed that syringol isolated from E. coracana bran may develop as a potent anti-inflammatory molecule.


Assuntos
Eleusine , Fosfolipases A2 Secretórias , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cálcio/metabolismo , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Edema/tratamento farmacológico , Edema/metabolismo , Eleusine/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Inibidor de NF-kappaB alfa/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/uso terapêutico , Extratos Vegetais/uso terapêutico , Pirogalol/análogos & derivados
12.
Artigo em Inglês | MEDLINE | ID: mdl-35362396

RESUMO

BACKGROUND: Saccharumoside-B and its analogs were found to have anticancer potential in vitro. The present study reports acute toxicity, molecular docking, ADMET profile analysis, and in vitro and in vivo anti-inflammatory activity of saccharumoside-B for the first time. METHODS: The in vitro enzyme inhibitory activity of saccharumoside-B on PLA2, COX-1, COX-2, and 5-LOX enzymes was evaluated by the cell-free method, and its effect on TNF-α, IL1ß, and IL- 6 secretion levels in LPS stimulated THP-1 human monocytes was determined by ELISA-based methods. The anti-inflammatory activity was evaluated in vivo by carrageenan-induced rat paw edema model. To test its binding affinity at the active site pockets of PLA2 enzymes and assess drug-like properties, docking experiments and ADMET studies were performed. RESULTS: Saccharumoside-B showed selective inhibition of the sPLA2 enzyme (IC50 = 7.53 ± 0.232 µM), and thioetheramide-PC was used as a positive control. It showed significant inhibition (P ≤ 0.05) of TNF-α, IL-1ß, and IL-6 cytokines compared to the positive control dexamethasone. Saccharumoside-B showed a dose-dependent inhibition of carrageenan-induced rat paw edema, with a maximum inhibition (76.09 ± 0.75) observed at 3 hours after the phlogistic agent injection. Saccharumoside-B potentially binds to the active site pocket of sPLA2 crystal protein (binding energy -7.6 Kcal/Mol). It complies with Lipinski's Rule of Five, showing a promising safety profile. The bioactivity scores suggested it to be a better enzyme inhibitor. CONCLUSION: Saccharumoside-B showed significant PLA2 inhibition. It can become a potential lead molecule in synthesizing a new class of selective PLA2 inhibitors with a high safety profile in the future.


Assuntos
Fosfolipases A2 Secretórias , Fator de Necrose Tumoral alfa , Animais , Humanos , Ratos , Anti-Inflamatórios/efeitos adversos , Carragenina/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dexametasona , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Inibidores Enzimáticos , Interleucina-6 , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Fosfolipases A2 Secretórias/metabolismo
13.
J Atheroscler Thromb ; 29(5): 692-718, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775979

RESUMO

AIMS: It was suggested that group V secretory phospholipase A2 (sPLA2-V) existed in the nucleus. This study examined whether nuclear sPLA2-V plays a role in endocytosis of acetylated low-density lipoprotein (AcLDL) in monocyte/macrophage-like cell line RAW264.7 cells. METHODS: RAW264.7 cells were transfected with shRNA vector targeting sPLA2-V (sPLA2-V-knockdown [KD] cells) or empty vector (sPLA2-V-wild-type [WT] cells). AcLDL endocytosis was assessed by incubation with 125I-AcLDL or AcLDL conjugated with pHrodo. Actin polymerization was assessed by flow cytometry using Alexa Fluor 546-phalloidin. RESULTS: In immunofluorescence microscopic studies, sPLA2-V was detected in the nucleus. ChIP-Seq and ChIP-qPCR analyses showed binding of sPLA2-V to the promoter region of the phosphoglycerate kinase 1 (Pgk1) gene. In the promoter assay, sPLA2-V-KD cells had lower promoter activity of the Pgk1 gene than sPLA2-V-WT cells, and this decrease could be reversed by transfection with a vector encoding sPLA2-V-H48Q that lacks enzymatic activity. Compared with sPLA2-V-WT cells, sPLA2-V-KD cells had decreased PGK1 protein expression, beclin 1 (Beclin1) phosphorylation at S30, and class III PI3-kinase activity that could also be restored by transfection with sPLA2-V-H48Q. sPLA2-V-KD cells had impaired actin polymerization and endocytosis, which was reversed by introduction of sPLA2-V-H48Q or PGK1 overexpression. In sPLA2-V-WT cells, siRNA-mediated depletion of PGK1 suppressed Beclin1 phosphorylation and impaired actin polymerization and intracellular trafficking of pHrodo-conjugated AcLDL. CONCLUSIONS: Nuclear sPLA2-V binds to the Pgk1 gene promoter region and increases its transcriptional activity. sPLA2-V regulates AcLDL endocytosis through PGK1-Beclin1 in a manner that is independent of its enzymatic activity in RAW264.7 cells.


Assuntos
Actinas , Fosfolipases A2 Secretórias , Actinas/genética , Proteína Beclina-1/metabolismo , Linhagem Celular , Endocitose , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Fosfoglicerato Quinase/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Ativação Transcricional
14.
Cells ; 10(7)2021 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-34359862

RESUMO

Tissue-resident mast cells (MCs) have important roles in IgE-associated and -independent allergic reactions. Although microenvironmental alterations in MC phenotypes affect the susceptibility to allergy, understanding of the regulation of MC maturation is still incomplete. We previously reported that group III secreted phospholipase A2 (sPLA2-III) released from immature MCs is functionally coupled with lipocalin-type prostaglandin D2 (PGD2) synthase in neighboring fibroblasts to supply a microenvironmental pool of PGD2, which in turn acts on the PGD2 receptor DP1 on MCs to promote their proper maturation. In the present study, we reevaluated the role of sPLA2-III in MCs using a newly generated MC-specific Pla2g3-deficient mouse strain. Mice lacking sPLA2-III specifically in MCs, like those lacking the enzyme in all tissues, had immature MCs and displayed reduced local and systemic anaphylactic responses. Furthermore, MC-specific Pla2g3-deficient mice, as well as MC-deficient KitW-sh mice reconstituted with MCs prepared from global Pla2g3-null mice, displayed a significant reduction in irritant contact dermatitis (ICD) and an aggravation of contact hypersensitivity (CHS). The increased CHS response by Pla2g3 deficiency depended at least partly on the reduced expression of hematopoietic PGD2 synthase and thereby reduced production of PGD2 due to immaturity of MCs. Overall, our present study has confirmed that MC-secreted sPLA2-III promotes MC maturation, thereby facilitating acute anaphylactic and ICD reactions and limiting delayed CHS response.


Assuntos
Diferenciação Celular , Deleção de Genes , Mastócitos/enzimologia , Mastócitos/patologia , Fosfolipases A2 Secretórias/metabolismo , Anafilaxia/patologia , Animais , Dermatite/patologia , Dermatite de Contato/patologia , Fibroblastos/patologia , Camundongos Endogâmicos C57BL , Fosfolipases A2 Secretórias/deficiência
15.
J Immunol ; 206(10): 2338-2352, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941654

RESUMO

Macrophage polarization is a dynamic and integral process in tissue inflammation and remodeling. In this study, we describe that lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in controlling inflammatory macrophage (M1) polarization in rodent experimental autoimmune encephalomyelitis (EAE) and in monocytes from multiple sclerosis (MS) patients. Specific inhibition of Lp-PLA2 led to an ameliorated EAE via markedly decreased inflammatory and demyelinating property of M1. The effects of Lp-PLA2 on M1 function were mediated by lysophosphatidylcholine, a bioactive product of oxidized lipids hydrolyzed by Lp-PLA2 through JAK2-independent activation of STAT5 and upregulation of IRF5. This process was directed by the G2A receptor, which was only found in differentiated M1 or monocytes from MS patients. M1 polarization could be inhibited by a G2A neutralizing Ab, which led to an inhibited disease in rat EAE. In addition, G2A-deficient rats showed an ameliorated EAE and an inhibited autoimmune response. This study has revealed a mechanism by which lipid metabolites control macrophage activation and function, modification of which could lead to a new therapeutic approach for MS and other inflammatory disorders.


Assuntos
Proteínas de Ciclo Celular/deficiência , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Ativação de Macrófagos/genética , Macrófagos/imunologia , Monócitos/metabolismo , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Receptores Acoplados a Proteínas G/deficiência , Transdução de Sinais/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Abietanos/administração & dosagem , Animais , Anticorpos Neutralizantes/administração & dosagem , Benzaldeídos/administração & dosagem , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Técnicas de Inativação de Genes , Humanos , Inflamação/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Oximas/administração & dosagem , Fosfolipases A2 Secretórias/antagonistas & inibidores , Fosfolipases A2 Secretórias/metabolismo , Ratos , Ratos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Resultado do Tratamento
16.
J Phys Chem B ; 125(13): 3353-3363, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33780247

RESUMO

Understanding generic mechanisms of functions shared by the secretory phospholipase A2 (sPLA2) family involved in the lipid metabolism and cell signaling and the molecular basis of function specificity for family members is an intriguing but challenging problem for biologists. Here, we explore the issue through extensive analyses using a combination of structure-based methods and bioinformatics tools on130 sPLA2 family members. The principal component analysis of the structure ensemble reveals that the enzyme has an open-close motion which helps widen the substrate binding channel, facilitating its binding to phospholipid. Performing elastic network model and sequence analyses found that the residues critical for family functions, such as cysteine and catalytic residues, are highly conserved and undergo minimal movements, which is evolutionarily essential as their perturbation would impact the function, while the four residue regions involved in the association with the calcium ion/membrane are lowly conserved and of high mobility and large variations in low-to-intermediate frequency modes, which reflects the specificity of members. The analyses from perturbation response scanning also reveal that the above four regions with high sensitivity to an external perturbation are member-specific, suggesting their different roles in allosteric modulation, while the minimal sensitive residues are the shared characteristics across family members, which play an important role in maintaining structural stability as the folding core. This study is helpful for understanding how sequences, structures, and dynamics of sPLA2 family members evolve to ensure their common and specific functions and can provide a guide for accurate design of proteins with finely tuned activities.


Assuntos
Fosfolipases A2 Secretórias , Biologia Computacional , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Fosfolipídeos , Transdução de Sinais
17.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321758

RESUMO

P21 activated kinases (or group I PAKs) are serine/threonine kinases whose expression is altered in prostate and breast cancers. PAK-1 activity is inhibited by the small molecule "Inhibitor targeting PAK-1 activation-3" (IPA-3), which has selectivity for PAK-1 but is metabolically unstable. Secretory Group IIA phospholipase A2 (sPLA2) expression correlates to increased metastasis and decreased survival in many cancers. We previously designed novel liposomal formulations targeting both PAK-1 and sPLA2, called Secretory Phospholipase Responsive liposomes or SPRL-IPA-3, and demonstrated their ability to alter prostate cancer growth. The efficacy of SPRL against other types of cancers is not well understood. We addressed this limitation by determining the ability of SPRL to induce cell death in a diverse panel of cells representing different stages of breast cancer, including the invasive but non-metastatic MCF-7 cells, and metastatic triple-negative breast cancer (TNBC) cells such as MDA-MB-231, MDA-MB-468, and MDA-MB-435. We investigated the role of sPLA2 in the disposition of these liposomes by comparing the efficacy of SPRL-IPA-3 to IPA-3 encapsulated in sterically stabilized liposomes (SSL-IPA-3), a formulation shown to be less sensitive to sPLA2. Both SSL-IPA-3 and SPRL-IPA-3 induced time- and dose-dependent decreases in MTT staining in all cell lines tested, but SPRL-IPA-3-induced effects in metastatic TNBC cell lines were superior over SSL-IPA-3. The reduction in MTT staining induced by SPRL-IPA-3 correlated to the expression of Group IIA sPLA2. sPLA2 expression also correlated to increased induction of apoptosis in TNBC cell lines by SPRL-IPA-3. These data suggest that SPRL-IPA-3 is selective for metastatic TNBC cells and that the efficacy of SPRL-IPA-3 is mediated, in part, by the expression of Group IIA sPLA2.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Lipossomos/química , Fosfolipases A2 Secretórias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Quinases Ativadas por p21/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Inibidores de Proteínas Quinases/administração & dosagem , Quinases Ativadas por p21/antagonistas & inibidores
18.
Molecules ; 25(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998383

RESUMO

Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.


Assuntos
Fosfolipases A2 Secretórias/química , Fosfolipases A2 Secretórias/metabolismo , Sequência de Aminoácidos , Ácido Araquidônico/metabolismo , Biocatálise , Humanos , Modelos Moleculares , Fosfolipases A2 Secretórias/antagonistas & inibidores , Especificidade por Substrato
19.
Neuroreport ; 31(15): 1084-1089, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32881777

RESUMO

Cervical nerve root injury induces a host of inflammatory mediators in the spinal cord that initiate and maintain neuronal hyperexcitability and pain. Secretory phospholipase A2 (sPLA2) is an enzyme that has been implicated as a mediator of pain onset and maintenance in inflammation and neural injury. Although sPLA2 modulates nociception and excitatory neuronal signaling in vitro, its effects on neuronal activity and central sensitization early after painful nerve root injury are unknown. This study investigated whether inhibiting spinal sPLA2 at the time of nerve root compression (NRC) modulates the pain, dorsal horn hyperexcitability, and spinal genes involved in glutamate signaling, nociception, and inflammation that are seen early after injury. Rats underwent a painful C7 NRC injury with immediate intrathecal administration of the sPLA2 inhibitor thioetheramide-phosphorlycholine. Additional groups underwent either injury alone or sham surgery. One day after injury, behavioral sensitivity, spinal neuronal excitability, and spinal cord gene expression for glutamate receptors (mGluR5 and NR1) and transporters (GLT1 and EAAC1), the neuropeptide substance P, and pro-inflammatory cytokines (TNFα, IL1α, and IL1ß) were assessed. Treatment with the sPLA2 inhibitor prevented mechanical allodynia, attenuated neuronal hyperexcitability in the spinal dorsal horn, restored the proportion of spinal neurons classified as wide dynamic range, and reduced genes for mGluR5, substance P, IL1α, and IL1ß to sham levels. These findings indicate spinal regulation of central sensitization after painful neuropathy and suggest that spinal sPLA2 is implicated in those early spinal mechanisms of neuronal excitability, perhaps via glutamate signaling, neurotransmitters, or inflammatory cascades.


Assuntos
Genes Reguladores/fisiologia , Síndromes de Compressão Nervosa/enzimologia , Neuroimunomodulação/fisiologia , Fosfolipases A2 Secretórias/antagonistas & inibidores , Fosfolipases A2 Secretórias/metabolismo , Raízes Nervosas Espinhais/enzimologia , Animais , Genes Reguladores/efeitos dos fármacos , Injeções Espinhais , Masculino , Síndromes de Compressão Nervosa/tratamento farmacológico , Síndromes de Compressão Nervosa/genética , Neuroimunomodulação/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/enzimologia , Dor/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Fosfatidilcolinas/administração & dosagem , Radiculopatia/tratamento farmacológico , Radiculopatia/enzimologia , Radiculopatia/genética , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/efeitos dos fármacos
20.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L95-L104, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401671

RESUMO

Secreted phospholipase A2 hydrolyzes surfactant phospholipids and is crucial for the inflammatory cascade; preterm neonates are treated with exogenous surfactant, but the interaction between surfactant and phospholipase is unknown. We hypothesize that this interplay is complex and the enzyme plays a relevant role in neonates needing surfactant replacement. We aimed to: 1) identify phospholipases A2 isoforms expressed in preterm lung; 2) study the enzyme role on surfactant retreatment and function and the effect of exogenous surfactant on the enzyme system; and 3) verify whether phospholipase A2 is linked to respiratory outcomes. In bronchoalveolar lavages of preterm neonates, we measured enzyme activity (alone or with inhibitors), enzyme subtypes, surfactant protein-A, and inflammatory mediators. Surfactant function and phospholipid profile were also tested. Urea ratio was used to obtain epithelial lining fluid concentrations. Follow-up data were prospectively collected. Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. Neonates needing surfactant retreatment have higher enzyme activity (P = 0.021) and inflammatory mediators (P always ≤ 0.001) and lower amounts of phospholipids (P always < 0.05). Enzyme activity was inversely correlated to surfactant adsorption (ρ = -0.6; P = 0.008; adjusted P = 0.009), total phospholipids (ρ = -0.475; P = 0.05), and phosphatidylcholine (ρ = -0.622; P = 0.017). Exogenous surfactant significantly reduced global phospholipase activity (P < 0.001) and subtype-IIA (P = 0.005) and increased dioleoylphosphatidylglycerol (P < 0.001) and surfactant adsorption (P < 0.001). Enzyme activity correlated with duration of ventilation (ρ = 0.679, P = 0.005; adjusted P = 0.04) and respiratory morbidity score at 12 mo postnatal age (τ-b = 0.349, P = 0.037; adjusted P = 0.043) but was not associated with mortality, bronchopulmonary dysplasia, or other long-term respiratory outcomes.


Assuntos
Recém-Nascido Prematuro/fisiologia , Fosfolipases A2 Secretórias/metabolismo , Surfactantes Pulmonares/metabolismo , Respiração , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Fosfolipases A2 Secretórias/antagonistas & inibidores , Fosfolipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA