Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 212(11): 1901-19, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26438362

RESUMO

Epidermal lipids are important for skin homeostasis. However, the entire picture of the roles of lipids, particularly nonceramide lipid species, in epidermal biology still remains obscure. Here, we report that PLA2G2F, a functionally orphan-secreted phospholipase A2 expressed in the suprabasal epidermis, regulates skin homeostasis and hyperplasic disorders. Pla2g2f(-/-) mice had a fragile stratum corneum and were strikingly protected from psoriasis, contact dermatitis, and skin cancer. Conversely, Pla2g2f-overexpressing transgenic mice displayed psoriasis-like epidermal hyperplasia. Primary keratinocytes from Pla2g2f(-) (/-) mice showed defective differentiation and activation. PLA2G2F was induced by calcium or IL-22 in keratinocytes and preferentially hydrolyzed ethanolamine plasmalogen-bearing docosahexaenoic acid secreted from keratinocytes to give rise to unique bioactive lipids (i.e., protectin D1 and 9S-hydroxyoctadecadienoic acid) that were distinct from canonical arachidonate metabolites (prostaglandins and leukotrienes). Ethanolamine lysoplasmalogen, a PLA2G2F-derived marker product, rescued defective activation of Pla2g2f(-/-) keratinocytes both in vitro and in vivo. Our results highlight PLA2G2F as a previously unrecognized regulator of skin pathophysiology and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases.


Assuntos
Epiderme/patologia , Fosfolipases A2 do Grupo II/fisiologia , Homeostase , Animais , Diferenciação Celular , Células Cultivadas , Dermatite de Contato/patologia , Humanos , Hiperplasia , Queratinócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psoríase/patologia , Neoplasias Cutâneas/etiologia
2.
J Immunol ; 187(12): 6437-46, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22075700

RESUMO

Human group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is a bactericidal molecule important for the innate immune defense against Gram-positive bacteria. In this study, we analyzed its role in the host defense against Streptococcus pyogenes, a major human pathogen, and demonstrated that this bacterium has evolved a previously unidentified mechanism to resist killing by sPLA(2)-IIA. Analysis of a set of clinical isolates demonstrated that an ~500-fold higher concentration of sPLA(2)-IIA was required to kill S. pyogenes compared with strains of the group B Streptococcus, which previously were shown to be sensitive to sPLA(2)-IIA, indicating that S. pyogenes exhibits a high degree of resistance to sPLA(2)-IIA. We found that an S. pyogenes mutant lacking sortase A, a transpeptidase responsible for anchoring LPXTG proteins to the cell wall in Gram-positive bacteria, was significantly more sensitive (~30-fold) to sPLA(2)-IIA compared with the parental strain, indicating that one or more LPXTG surface proteins protect S. pyogenes against sPLA(2)-IIA. Importantly, using transgenic mice expressing human sPLA(2)-IIA, we showed that the sortase A-mediated sPLA(2)-IIA resistance mechanism in S. pyogenes also occurs in vivo. Moreover, in this mouse model, we also showed that human sPLA(2)-IIA is important for the defense against lethal S. pyogenes infection. Thus, we demonstrated a novel mechanism by which a pathogenic bacterium can evade the bactericidal action of sPLA(2)-IIA and we showed that sPLA(2)-IIA contributes to the host defense against S. pyogenes infection.


Assuntos
Aminoaciltransferases/fisiologia , Proteínas de Bactérias/fisiologia , Cisteína Endopeptidases/fisiologia , Farmacorresistência Bacteriana/imunologia , Fosfolipases A2 do Grupo II/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Feminino , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Fosfolipases A2 do Grupo II/deficiência , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/fisiologia , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infecções Estreptocócicas/genética
3.
J Pharm Sci ; 100(8): 3146-3159, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21455978

RESUMO

Secretory phospholipase A(2) (sPLA(2)) expression is increased in several cancers and has been shown to trigger release from some lipid carriers. This study used electrospray ionization mass spectrometry (ESI-MS) and release of 6-carboxyfluorescein (6-CF) to determine the effects of sPLA(2) on various liposome formulations. Different combinations of zwitterionic [1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)] and anionic [1,2-distearoyl-sn-glycero-3-phosphatidic acid, 1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPG), 1,2-distearoyl-sn-glycero-3-phosphatidylserine, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol) 2000 (DSPE-PEG)] phospholipids were examined. DSPG and DSPE were most susceptible to sPLA(2)-mediated degradation compared with other phospholipids. Increased 6-CF release was observed after inclusion of 10 mol % DSPE and anionic lipids into different liposome formulations. Group IIa sPLA(2)-mediated 6-CF release was less than Group III and relatively insensitive to cholesterol (Chol), whereas Chol reduced sPLA(2)-mediated release. Inclusion of DSPE-PEG increased sPLA(2)-mediated 6-CF release, whereas serum reduced lipid degradation and 6-CF release significantly. These data demonstrate that ESI-MS and 6-CF release were useful in determining the selectivity of sPLA(2) and release from liposomes, that differences in the activity of different sPLA(2) isoforms exist, and that DSPE-PEG enhanced sPLA(2)-mediated release of liposomal constituents. These findings will aid in the selection of lipids and optimization of the kinetics of drug release for the treatment of cancers and diseases of inflammation in which sPLA(2) expression is increased.


Assuntos
Fosfolipases A2 do Grupo II/fisiologia , Fosfolipases A2 do Grupo III/fisiologia , Fosfatidiletanolaminas/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Fluoresceínas/análise , Corantes Fluorescentes/análise , Fosfolipases A2 do Grupo II/biossíntese , Fosfolipases A2 do Grupo III/biossíntese , Lipossomos , Estrutura Molecular , Nanopartículas , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Transição de Fase , Fosfatidiletanolaminas/sangue , Espectrometria de Massas por Ionização por Electrospray
4.
Carcinogenesis ; 31(11): 1948-55, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20837598

RESUMO

The majority of prostate cancers are indolent, whereas a significant portion of patients will require systemic treatment during the course of their disease. To date, only high Gleason scores are best associated with a poor prognosis in prostate cancer. No validated serum biomarker has been identified with prognostic power. Previous studies showed that secretory phospholipase A2-IIa (sPLA2-IIa) is overexpressed in almost all human prostate cancer specimens and its elevated levels are correlated with high tumor grade. Here, we found that sPLA2-IIa is overexpressed in androgen-independent prostate cancer LNCaP-AI cells relative to their androgen-dependent LNCaP cell counterparts. LNCaP-AI cells also secrete significantly higher levels of sPLA2-IIa. Blocking sPLA2-IIa function compromises androgen-independent cell growth. Inhibition of the ligand-induced signaling output of the HER network, by blocking PI3K-Akt signaling and the nuclear factor-kappaB (NF-κB)-mediated pathway, compromises both sPLA2-IIa protein expression and secretion, as a result of downregulation of sPLA2-IIa promoter activity. More importantly, we demonstrated elevated serum sPLA2-IIa levels in prostate cancer patients. High serum sPLA2-IIa levels are associated significantly with high Gleason score and advanced disease stage. Increased sPLA2-IIa expression was confirmed in prostate cancer cells, but not in normal epithelium and stroma by immunohistochemistry analysis. We showed that elevated signaling of the HER/HER2-PI3K-Akt-NF-κB pathway contributes to sPLA2-IIa overexpression and secretion by prostate cancer cells. Given that sPLA2-IIa overexpression is associated with prostate development and progression, serum sPLA2-IIa may serve as a prognostic biomarker for prostate cancer and a potential surrogate prostate biomarker indicative of tumor burden.


Assuntos
Biomarcadores Tumorais/sangue , Fosfolipases A2 do Grupo II/fisiologia , Neoplasias Hormônio-Dependentes/patologia , Neoplasias da Próstata/patologia , Western Blotting , Proliferação de Células , Células Cultivadas , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , NF-kappa B/metabolismo , Estadiamento de Neoplasias , Neoplasias Hormônio-Dependentes/sangue , Neoplasias Hormônio-Dependentes/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
5.
J Immunol ; 184(9): 5232-41, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20357262

RESUMO

Angiogenesis and lymphangiogenesis mediated by vascular endothelial growth factors (VEGFs) are main features of chronic inflammation and tumors. Secreted phospholipases A(2) (sPLA(2)s) are overexpressed in inflammatory lung diseases and cancer and they activate inflammatory cells by enzymatic and receptor-mediated mechanisms. We investigated the effect of sPLA(2)s on the production of VEGFs from human macrophages purified from the lung tissue of patients undergoing thoracic surgery. Primary macrophages express VEGF-A, VEGF-B, VEGF-C, and VEGF-D at both mRNA and protein level. Two human sPLA(2)s (group IIA and group X) induced the expression and release of VEGF-A and VEGF-C from macrophages. Enzymatically-inactive sPLA(2)s were as effective as the active enzymes in inducing VEGF production. Me-Indoxam and RO092906A, two compounds that block receptor-mediated effects of sPLA(2)s, inhibited group X-induced release of VEGF-A. Inhibition of the MAPK p38 by SB203580 also reduced sPLA(2)-induced release of VEGF-A. Supernatants of group X-activated macrophages induced an angiogenic response in chorioallantoic membranes that was inhibited by Me-Indoxam. Stimulation of macrophages with group X sPLA(2) in the presence of adenosine analogs induced a synergistic increase of VEGF-A release and inhibited TNF-alpha production through a cooperation between A(2A) and A(3) receptors. These results demonstrate that sPLA(2)s induce production of VEGF-A and VEGF-C in human macrophages by a receptor-mediated mechanism independent from sPLA(2) catalytic activity. Thus, sPLA(2)s may play an important role in inflammatory and/or neoplastic angiogenesis and lymphangiogenesis.


Assuntos
Fosfolipases A2 do Grupo II/fisiologia , Fosfolipases A2 do Grupo X/fisiologia , Pulmão/enzimologia , Pulmão/imunologia , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Fatores de Crescimento do Endotélio Vascular/biossíntese , Animais , Catálise , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/enzimologia , Membrana Corioalantoide/metabolismo , Fosfolipases A2 do Grupo II/biossíntese , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo X/biossíntese , Fosfolipases A2 do Grupo X/metabolismo , Humanos , Mediadores da Inflamação/fisiologia , Pulmão/citologia , Pulmão/patologia , Linfangiogênese/imunologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/patologia , Neovascularização Patológica/enzimologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/imunologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Receptor A3 de Adenosina/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/fisiologia
6.
J Thorac Cardiovasc Surg ; 139(3): 591-9; discussion 599, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20176206

RESUMO

OBJECTIVE: Esophageal adenocarcinoma is thought to arise from lesions produced by chronic esophageal inflammation. Secretory phospholipase A(2) is an important mediator of mucosal response to gastroesophageal reflux, but its role in the function of mature cancer cells is unclear. We sought to determine the influence of group IIa secretory phospholipase A(2) on proliferation of human esophageal adenocarcinoma cells. METHODS: FLO-1 and OE33 cells derived from human esophageal adenocarcinoma were cultured with standard techniques. Cells were treated with 1-, 5-, 10-, and 20-mumol/L doses of 5-(4-benzyloxyphenyl)-4S-(7-phenylheptanoylamino)pentanoic acid, a specific inhibitor of group IIa secretory phospholipase A(2), for 72 hours. Gene for group IIa secretory phospholipase A(2)(PLA2G2A) was overexpressed and silenced with lentiviral infection techniques. Cell proliferation and viability were measured with standard 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and bromodeoxyuridine incorporation assays. All assays were performed in triplicate. PLA2G2A expression was measured with quantitative reverse transcriptase polymerase chain reaction; protein levels were detected with immunofluorescence microscopy. Statistical analysis was by analysis of variance with Fisher post hoc analysis. RESULTS: Secretory phospholipase A(2) protein was found in both malignant esophageal adenocarcinoma cell lines. Treatment with specific group IIa secretory phospholipase A(2) inhibitor resulted in dose-dependent reductions in growth and cell number in both cell lines. Overexpression of PLA2G2A resulted in enhanced cancer cell growth, whereas gene knockdown attenuated growth. CONCLUSIONS: Group IIa secretory phospholipase A(2) appears significant in growth and proliferation of human esophageal adenocarcinoma cells. Secretory phospholipase A(2) inhibition should be studied further regarding potential chemopreventive and therapeutic properties in esophageal adenocarcinoma.


Assuntos
Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/patologia , Fosfolipases A2 do Grupo II/fisiologia , Proliferação de Células , Humanos , Células Tumorais Cultivadas
7.
J Lipid Res ; 51(4): 743-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061576

RESUMO

Atherosclerosis is linked to inflammation. HDL protects against atherosclerotic cardiovascular disease, mainly by mediating cholesterol efflux and reverse cholesterol transport (RCT). The present study aimed to test the impact of acute inflammation as well as selected acute phase proteins on RCT with a macrophage-to-feces in vivo RCT assay using intraperitoneal administration of [(3)H]cholesterol-labeled macrophage foam cells. In patients with acute sepsis, cholesterol efflux toward plasma and HDL were significantly decreased (P < 0.001). In mice, acute inflammation (75 microg/mouse lipopolysaccharide) decreased [(3)H]cholesterol appearance in plasma (P < 0.05) and tracer excretion into feces both within bile acids (-84%) and neutral sterols (-79%, each P < 0.001). In the absence of systemic inflammation, overexpression of serum amyloid A (SAA, adenovirus) reduced overall RCT (P < 0.05), whereas secretory phospholipase A(2) (sPLA(2), transgenic mice) had no effect. Myeloperoxidase injection reduced tracer appearance in plasma (P < 0.05) as well as RCT (-36%, P < 0.05). Hepatic expression of bile acid synthesis genes (P < 0.01) and transporters mediating biliary sterol excretion (P < 0.01) was decreased by inflammation. In conclusion, our data demonstrate that acute inflammation impairs cholesterol efflux in patients and macrophage-to-feces RCT in vivo in mice. Myeloperoxidase and SAA contribute to a certain extent to reduced RCT during inflammation but not sPLA(2). However, reduced bile acid formation and decreased biliary sterol excretion might represent major contributing factors to decreased RCT in inflammation.


Assuntos
Reação de Fase Aguda/fisiopatologia , Colesterol/metabolismo , Fosfolipases A2 do Grupo II/fisiologia , Peroxidase/fisiologia , Proteína Amiloide A Sérica/fisiologia , Reação de Fase Aguda/sangue , Reação de Fase Aguda/induzido quimicamente , Reação de Fase Aguda/metabolismo , Animais , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Transporte Biológico , Células Cultivadas , Colesterol/sangue , Fezes/química , Células Espumosas/metabolismo , Fosfolipases A2 do Grupo II/biossíntese , Fosfolipases A2 do Grupo II/sangue , Fosfolipases A2 do Grupo II/genética , Humanos , Lipídeos/sangue , Lipoproteínas/sangue , Fígado/enzimologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Peroxidase/administração & dosagem , Peroxidase/sangue , Peroxidase/isolamento & purificação , RNA Mensageiro/metabolismo , Sepse/sangue , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Esteroides/metabolismo
8.
Vasc Health Risk Manag ; 4(3): 597-604, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18827909

RESUMO

Inflammation, lipid peroxidation and chronic activation of the renin-angiotensin system (RAS) are hallmarks of the development of atherosclerosis. Recent studies have suggested the involvement of the pro-inflammatory secretory phospholipase A(2) (sPLA(2))-IIA in atherogenesis. This enzyme is produced by different cell types through stimulation by pro-inflammatory cytokines. It is detectable in the intima and in media smooth muscle cells, not only in atherosclerotic lesions but also in the very early stages of atherogenesis. sPLA(2)-IIA can hydrolyse the phospholipid monolayers of low density lipoproteins (LDL). Such modified LDL show increased affinity to proteoglycans. The modified particles have a greater tendency to aggregate and an enhanced ability to insert cholesterol into cells. This modification may promote macrophage LDL uptake leading to the formation of foam cells. Furthermore, sPLA(2)-IIA is not only a mediator for localized inflammation but may be also used as an independent predictor of adverse outcomes in patients with stable coronary artery disease or acute coronary syndromes. An interaction between activated RAS and phospholipases has been indicated by observations showing that inhibitors of sPLA(2) decrease angiotensin (Ang) II-induced macrophage lipid peroxidation. Meanwhile, various interactions between Ang II and oxLDL have been demonstrated suggesting a central role of sPLA(2)-IIA in these processes and offering a possible target for treatment. The role of sPLA(2)-IIA in the perpetuation of atherosclerosis appears to be the missing link between inflammation, activated RAS and lipid peroxidation.


Assuntos
Aterosclerose/fisiopatologia , Fosfolipases A2 do Grupo II/fisiologia , Inflamação/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/fisiopatologia , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/fisiopatologia , Fosfolipases A2 do Grupo II/sangue , Humanos , Peroxidação de Lipídeos/fisiologia , Macrófagos/metabolismo , Prognóstico , Receptor Tipo 1 de Angiotensina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA