Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825295

RESUMO

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Assuntos
Adenosina , Adipócitos , Adipogenia , Animais , Adipócitos/metabolismo , Adipócitos/citologia , Metilação , Suínos , Adipogenia/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Metabolismo dos Lipídeos/genética , Músculo Esquelético/metabolismo , Diferenciação Celular/genética
2.
J Med Case Rep ; 18(1): 14, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212860

RESUMO

BACKGROUND: Glycogen storage disease type IX is a rare disorder that can cause a wide variety of symptoms depending on the specific deficiency of the phosphorylase kinase enzyme and the organs it affects. CASE PRESENTATION: A 4-and-a-half-year-old Caucasian girl was referred to our clinic with a liver biopsy report indicating a diagnosis of glycogen storage disease. Prior to being referred to our clinic, the patient had been under the care of pediatric gastroenterologists. The patient's initial symptoms included chronic abdominal pain, constipation, and elevated liver transaminase. With the help of the pediatric gastroenterologists, cholestasis, Wilson disease, and autoimmune hepatitis were ruled out. Given that glycogen storage diseases type I and type III are the most common, we initially managed the patient with frequent feedings and a diet that included complex carbohydrates such as a corn starch supplement and a lactose restriction. Following an unfavorable growth velocity and hepatomegaly during the follow-up period, genetic analysis was conducted, which revealed a novel mutation of the phosphorylase kinase regulatory subunit beta gene- a c.C412T (P.Q138x) mutation. As the diagnosis of glycogen storage disease type IX was confirmed, the treatment regimen was altered to a high protein diet (more than 2 g/kg/day) and a low fat diet. CONCLUSION: Given the mild and varied clinical manifestations of glycogen storage disease type IX, it is possible for the diagnosis to be overlooked. It is important to consider glycogen storage disease type IX in children who present with unexplained hepatomegaly and elevated transaminase levels. Furthermore, due to the distinct management of glycogen storage disease type IX compared with glycogen storage disease type I and glycogen storage disease type III, genetic analysis is essential for an accurate diagnosis.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Doença de Depósito de Glicogênio , Pré-Escolar , Feminino , Humanos , Dor Abdominal/etiologia , Constipação Intestinal , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/genética , Hepatomegalia/patologia , Irã (Geográfico) , Fígado/patologia , Mutação , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Transaminases
3.
Cancer Sci ; 113(4): 1362-1376, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150045

RESUMO

Tumor metastasis is a series of complicated biological events. Hematogenous metastasis mediated by von Willebrand factor (vWF) is critical in tumor metastasis. However, the source of vWF and its role in tumor metastasis are controversial, and the further mechanism involved in mediating tumor metastasis is still unclear. In this study, we first demonstrated that lung adenocarcinoma cells could express vWF de novo and promotes tumor metastasis. Through the analysis of transcriptome sequencing, the metastasis promotion effect of vWF may be related to phosphorylase kinase subunit G1 (PHKG1), a catalytic subtype of phosphorylase kinase (PhK). PHKG1 was highly expressed in lung adenocarcinoma patients and led to poor prognosis. Further experiments found that lung adenocarcinoma-derived vWF induced the upregulation of PHKG1 through the PI3K/AKT pathway to promote glycogenolysis. Glycogen was funneled into glycolysis, leading to increased metastasis. Tumor metastasis assayed in vitro and in vivo showed that knockdown of PHKG1 or synergistic injection of phosphorylase inhibition based on the overexpression of vWF could inhibit metastasis. In summary, our research proved that lung adenocarcinoma-derived vWF may mediate tumor metastasis by regulating PHKG1 to promote glycogen metabolism and suggested potential targets for inhibition of lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Glicogenólise , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Glicogênio/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilase Quinase/metabolismo , Fator de von Willebrand/metabolismo
4.
Intern Med ; 61(8): 1241-1245, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34615823

RESUMO

Muscle phosphorylase b kinase (PHK) deficiency is a rare mild metabolic disorder caused by mutations of the PHKA1 gene encoding the αM subunit of PHK. A 16-year-old boy experienced myalgia during the maximal multistage 20-m shuttle run test targeting the maximal oxygen consumption. Although an ischemic forearm exercise test was normal, a muscle biopsy revealed subsarcolemmal glycogen accumulation. He harbored a novel insertion mutation in the PHKA1 gene that resulted in premature termination of the αM subunit close to the C-terminus. Compared with previously reported cases, his reduction in PHK activity was relatively mild.


Assuntos
Mialgia , Fosforilase Quinase , Adolescente , Doenças Genéticas Ligadas ao Cromossomo X , Doença de Depósito de Glicogênio , Humanos , Masculino , Músculos , Mialgia/etiologia , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo
5.
Elife ; 92020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32364497

RESUMO

Most glucose is processed in muscle, for energy or glycogen stores. Malignant Hyperthermia Susceptibility (MHS) exemplifies muscle conditions that increase [Ca2+]cytosol. 42% of MHS patients have hyperglycemia. We show that phosphorylated glycogen phosphorylase (GPa), glycogen synthase (GSa) - respectively activated and inactivated by phosphorylation - and their Ca2+-dependent kinase (PhK), are elevated in microsomal extracts from MHS patients' muscle. Glycogen and glucose transporter GLUT4 are decreased. [Ca2+]cytosol, increased to MHS levels, promoted GP phosphorylation. Imaging at ~100 nm resolution located GPa at sarcoplasmic reticulum (SR) junctional cisternae, and apo-GP at Z disk. MHS muscle therefore has a wide-ranging alteration in glucose metabolism: high [Ca2+]cytosol activates PhK, which inhibits GS, activates GP and moves it toward the SR, favoring glycogenolysis. The alterations probably cause these patients' hyperglycemia. For basic studies, MHS emerges as a variable stressor, which forces glucose pathways from the normal to the diseased range, thereby exposing novel metabolic links.


Animals and humans move by contracting the skeletal muscles attached to their bones. These muscles take up a type of sugar called glucose from food and use it to fuel contractions or store it for later in the form of glycogen. If muscles fail to use glucose it can lead to excessive sugar levels in the blood and a condition called diabetes. Within muscle cells are stores of calcium that signal the muscle to contract. Changes in calcium levels enhance the uptake of glucose that fuel these contractions. However, variations in calcium have also been linked to diabetes, and it remained unclear when and how these 'signals' become harmful. People with a condition called malignant hyperthermia susceptibility (MHS for short) have genetic mutations that allow calcium to leak out from these stores. This condition may result in excessive contractions causing the muscle to over-heat, become rigid and break down, which can lead to death if left untreated. A clinical study in 2019 found that out of hundreds of patients who had MHS, nearly half had high blood sugar and were likely to develop diabetes. Now, Tammineni et al. ­ including some of the researchers involved in the 2019 study ­ have set out to find why calcium leaks lead to elevated blood sugar levels. The experiments showed that enzymes that help convert glycogen to glucose are more active in patients with MHS, and found in different locations inside muscle cells. Whereas the enzymes that change glucose into glycogen are less active. This slows down the conversion of glucose into glycogen for storage and speeds up the breakdown of glycogen into glucose. Patients with MHS also had fewer molecules that transport glucose into muscle cells and stored less glycogen. These changes imply that less glucose is being removed from the blood. Next, Tammineni et al. used a microscopy technique that is able to distinguish finely separated objects with a precision not reached before in living muscle. This revealed that when the activity of the enzyme that breaks down glycogen increased, it moved next to the calcium store. This effect was also observed in the muscle cells of MHS patients that leaked calcium from their stores. Taken together, these observations may explain why patients with MHS have high levels of sugar in their blood. These findings suggest that MHS may start decades before developing diabetes and blood sugar levels in these patients should be regularly monitored. Future studies should investigate whether drugs that block calcium from leaking may help prevent high blood sugar in patients with MHS or other conditions that cause a similar calcium leak.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus/etiologia , Glucose/metabolismo , Hiperglicemia/etiologia , Hipertermia Maligna/complicações , Músculo Esquelético/metabolismo , Adulto , Idoso , Animais , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Glicogênio Fosforilase Muscular/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Hipertermia Maligna/sangue , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Fosforilase Quinase/metabolismo , Fosforilação
6.
PLoS One ; 15(4): e0231834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298370

RESUMO

Markers for monitoring clearance of Mycobacterium tuberculosis (Mtb) infection during anti-TB drug treatment could facilitate management of tuberculosis (TB) treatment, but are lacking. We aimed to screen for Mtb clearance markers from in-vitro-infected leucocytes and to evaluate these markers in followed-up active TB (ATB) patients and latent TB (LTBI) cases after anti-TB drug treatment. Extracellular proteins from primary leucocytes infected with each of the Mtb lineages (East-Asian, Indo-Oceanic, Euro-American and the laboratory strain H37Rv) were screened as possible clearance markers. Leucocytes infected with Staphylococcus aureus acted as controls. The proteomic analysis was performed using GeLC-MS/MS. Several quantitative and qualitative candidate clearance markers were found. These proteins were suppressed during the infection stage of all Mtb lineages and re-expressed after bacillary clearance. PSTK, FKBP8 and MGMT were common clearance markers among the four Mtb lineages in our model. Only PSTK was a potential clearance marker based on western blot validation analysis from culture supernatants. The PSTK marker was further validated with western blot analysis using serum samples (n = 6) from ATB patients and LTBI cases during anti-TB drug treatment, and from healthy controls (n = 3). Time-dependent increase of PSTK was found both in ATB and LTBI patients during the course of anti-TB drug treatment, but not in healthy controls. We have demonstrated that PSTK is a potential treatment-monitoring marker for active and latent TB.


Assuntos
Tuberculose Latente/sangue , Leucócitos/metabolismo , Mycobacterium tuberculosis , Fosforilase Quinase/metabolismo , Proteoma/metabolismo , Tuberculose/sangue , Adulto , Biomarcadores/sangue , Cromatografia Líquida , Metilases de Modificação do DNA/sangue , Enzimas Reparadoras do DNA/sangue , Feminino , Humanos , Tuberculose Latente/tratamento farmacológico , Leucócitos/microbiologia , Masculino , Pessoa de Meia-Idade , Fosfotransferases (Aceptor do Grupo Álcool) , Proteoma/efeitos dos fármacos , Proteômica , Proteínas de Ligação a Tacrolimo/sangue , Espectrometria de Massas em Tandem , Fatores de Tempo , Tuberculose/tratamento farmacológico , Proteínas Supressoras de Tumor/sangue , Adulto Jovem
7.
Int J Biol Sci ; 15(12): 2596-2606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754332

RESUMO

Glycogen phosphorylase kinase ß-subunit (PHKB) is a regulatory subunit of phosphorylase kinase (PHK), involving in the activation of glycogen phosphorylase (GP) and the regulation of glycogen breakdown. Emerging evidence suggests that PHKB plays a role in tumor progression. However, the function of PHKB in HCC progression remains elusive. Here, our study revealed that the expression of PHKB significantly decreased in HCC tissues, and the low expression of PHKB could serve as an independent indicator for predicting poor prognosis in HCC. Functional experiments showed that PHKB knockdown significantly promoted cell proliferation both in vitro and in vivo, whereas PHKB overexpression resulted in opposing effects. Additionally, in vitro assays revealed that the over (or high) expression of PHKB greatly hindered HCC cell invasion and increased apoptosis rates. Also, we found that the over (or high) expression of PHKB effectively suppressed the epithelial-mesenchymal transition, which was further confirmed by our clinical data. Intriguingly, the biological function of PHKB in HCC was independent of glycogen metabolism. Mechanically, PHKB could inhibit AKT and STAT3 signaling pathway activation in HCC. Collectively, our data demonstrate that PHKB acts as a novel prognostic indicator for HCC, which exerts its suppression function via inactivating AKT and STAT3. Our data might provide novel insights into progression and facilitate the development of a new therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fosforilase Quinase/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Prognóstico , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
J Cell Biochem ; 120(6): 8935-8948, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-28419530

RESUMO

This study aimed to elucidate the precise mechanisms underlying the protective effects of phosphoseryl-tRNA kinase (PSTK) against cisplatin-induced podocyte injury. PSTK overexpression and knockdown vectors were generated and transfected into murine podocyte cells-5. PSTK levels were measured, and transcriptome sequencing was conducted. Differential expression analysis was performed to identify messenger RNAs (mRNAs) that were positively and negatively correlated with PSTK. We selected 10 candidate genes identified via real-time quantitative polymerase chain reaction and Western blot analysis for further analysis. As expected, PSTK levels were significantly higher in PSTK-overexpressing podocytes and significantly lower in PSTK-knockdown podocytes. PSTK overexpression resulted in the upregulation of 122 genes and downregulation of 372 genes in podocytes. On the other hand, PSTK knockdown resulted in the upregulation of 231 genes and downregulation of 445 genes. Furthermore, the analysis revealed that 11 genes were positively correlated with PSTK, whereas 20 genes were negatively correlated with PSTK. The obtained PSTK-regulated genes were primarily involved in molecular function, biological process, and cellular component, as well as the angiogenesis pathway. The Wnt family member 10A levels were significantly higher after PSTK overexpression, but were significantly lower after PSTK knockdown. In addition, Na+/K+ ATPase subunit α-2 and matrix metalloproteinase 9 levels were significantly downregulated after PSTK overexpression, but significantly upregulated upon PSTK knockdown. Cell proliferation was significantly increased upon PSTK overexpression, but significantly decreased upon PSTK suppression. The results of this study not only identified several significant PSTK-regulated genes for further validation, but also provided insights into the mechanisms underlying the protective effects of PSTK on podocytes.


Assuntos
Cisplatino/efeitos adversos , Perfilação da Expressão Gênica/métodos , Fosforilase Quinase/genética , Podócitos/citologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Metaloproteinase 9 da Matriz/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fosforilase Quinase/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Proteínas Wnt/genética
9.
Cell Rep ; 21(6): 1452-1460, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117552

RESUMO

Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in ß cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.


Assuntos
Glicemia/análise , Insulina/análise , Falência Renal Crônica/patologia , Proglucagon/sangue , Animais , Células COS , Estudos de Casos e Controles , Células Cultivadas , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Gluconeogênese/efeitos dos fármacos , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Falência Renal Crônica/sangue , Falência Renal Crônica/metabolismo , Masculino , Camundongos , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Proglucagon/farmacologia , Ratos , Ratos Wistar , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(34): E4966-75, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506793

RESUMO

Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts.


Assuntos
Morte Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Ácidos Graxos Insaturados/metabolismo , Glutationa Peroxidase/metabolismo , Lipoxigenases/metabolismo , Fosforilase Quinase/metabolismo , Domínio Catalítico , Morte Celular/genética , Linhagem Celular Tumoral , Deutério , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/biossíntese , Lipoxigenases/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosforilase Quinase/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Selenocisteína/metabolismo , Transdução de Sinais
11.
Protein Sci ; 24(12): 1956-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26362516

RESUMO

Phosphorylase kinase (PhK) is a hexadecameric (αßγδ)(4) enzyme complex that upon activation by phosphorylation stimulates glycogenolysis. Due to its large size (1.3 MDa), elucidating the structural changes associated with the activation of PhK has been challenging, although phosphoactivation has been linked with an increased tendency of the enzyme's regulatory ß-subunits to self-associate. Here we report the effect of a peptide mimetic of the phosphoryltable N-termini of ß on the selective, zero-length, oxidative crosslinking of these regulatory subunits to form ß-ß dimers in the nonactivated PhK complex. This peptide stimulated ß-ß dimer formation when not phosphorylated, but was considerably less effective in its phosphorylated form. Because this peptide mimetic of ß competes with its counterpart region in the nonactivated enzyme complex in binding to the catalytic γ-subunit, we were able to formulate a structural model for the phosphoactivation of PhK. In this model, the nonactivated state of PhK is maintained by the interaction between the nonphosphorylated N-termini of ß and the regulatory C-terminal domains of the γ-subunits; phosphorylation of ß weakens this interaction, leading to activation of the γ-subunits.


Assuntos
Materiais Biomiméticos/química , Peptídeos/química , Fosforilase Quinase/química , Fosforilase Quinase/metabolismo , Sítios de Ligação , Domínio Catalítico , Ativação Enzimática , Glicogenólise , Modelos Moleculares , Complexos Multienzimáticos/química , Oxirredução , Fosforilação , Estrutura Secundária de Proteína
12.
Metab Brain Dis ; 30(1): 317-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24744118

RESUMO

Until the demonstration little more than 20 years ago that glycogenolysis occurs during normal whisker stimulation glycogenolysis was regarded as a relatively uninteresting emergency procedure. Since then, a series of important astrocytic functions has been shown to be critically dependent on glycogenolytic activity to support the signaling mechanisms necessary for these functions to operate. This applies to glutamate formation and uptake and to release of ATP as a transmitter, stimulated by other transmitters or elevated K(+) concentrations and affecting not only other astrocytes but also most other brain cells. It is also relevant for astrocytic K(+) uptake both during the period when the extracellular K(+) concentration is still elevated after neuronal excitation, and capable of stimulating glycogenolytic activity, and during the subsequent undershoot after intense neuronal activity, when glycogenolysis may be stimulated by noradrenaline. Both elevated K(+) concentrations and several transmitters, including the ß-adrenergic agonist isoproterenol and vasopressin increase free cytosolic Ca(2+) concentration in astrocytes, which stimulates phosphorylase kinase so that it activates the transformation of the inactive glycogen phosphorylase a to the active phosphorylase b. Contrary to common belief cyclic AMP plays at most a facilitatory role, and only when free cytosolic Ca(2+) concentration is also increased. Cyclic AMP is not increased during activation of glycogenolysis by either elevated K(+) concentrations or the stimulation of the serotonergic 5-HT(2B) receptor. Not all agents that stimulate glycogenolysis do so by directly activating phophorylase kinase--some do so by activating processes requiring glycogenolysis, e.g. for synthesis of glutamate.


Assuntos
Astrócitos/metabolismo , Glicogenólise , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , AMP Cíclico/metabolismo , Ácido Glutâmico/fisiologia , Glicogênio/metabolismo , Humanos , Isoproterenol/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Neurológicos , Neurônios/metabolismo , Neurotransmissores/fisiologia , Fosforilase Quinase/metabolismo , Estimulação Física , Potássio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Vasopressinas/fisiologia , Vibrissas/fisiologia
13.
Oncotarget ; 5(16): 7040-50, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25051373

RESUMO

The KIAA1199 gene was first discovered to be associated with non-syndromic hearing loss. Recently, several reports have shown that the up-regulation of KIAA1199 is associated with cancer cell migration or invasion and a poor prognosis. These findings indicate that KIAA1199 may be a novel target for cancer therapy. Therefore, we explored in detail the function of KIAA1199 in cancer cells. In this study, we investigated the interaction of KIAA1199 protein with intracellular proteins in cancer cells. To this end, we expressed KIAA1199-MBP fusion protein and performed a pull-down assay. In addition, KIAA1199-overexpressing cancer cell lines were constructed using a retroviral vector and were used for further experiments. A pull-down analysis showed that the glycogen phosphorylase kinase ß-subunit (PHKB) interacted with the C-terminal region of KIAA1199 protein. Furthermore, we observed the interaction of KIAA1199 with glycogen phosphorylase brain form (PYGB) under serum-free conditions. The interaction promoted glycogen breakdown and cancer cell survival. Our findings indicate that KIAA1199 plays an important role in glycogen breakdown and cancer cell survival and that it may represent a novel target for cancer therapy.


Assuntos
Glicogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Proteínas/metabolismo , Neoplasias Gástricas/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Hialuronoglucosaminidase , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Subunidades Proteicas , Proteínas/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transfecção , Regulação para Cima
14.
Aviat Space Environ Med ; 85(7): 694-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25022156

RESUMO

BACKGROUND: As spaceflight compromises skeletal muscle oxidative and aerobic work capacity, this study assessed the efficacy of resistance exercise (RE) to counteract muscle metabolic perturbations induced by 5 wk unilateral lower limb unloading (UL). METHODS: There were 21 men and women (30-56 yr) who were randomly assigned to either UL with (Group, Grp; UL+RE; N = 10) or without (Grp UL; N = 11) concurrent RE. Iso-inertial RE comprised four sets of seven maximal coupled concentric-eccentric knee extensions executed 2-3 times per week. Percutaneous biopsies were obtained from m. vastus lateralis before and after either intervention. Levels of mRNA expression of factors regulating skeletal muscle oxidative capacity i.e., peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1alpha) and vascular endothelial growth factor (VEGF), and glycolytic capacity, i.e., phosphofructokinase (PFK), glycogen phosphorylase and synthase, hexokinase, and phosphorylase kinase alpha1, were subsequently analyzed. RESULTS: Grp UL showed decreased (36%) PGC-1alpha expression, increased (1.5-fold) PFK expression, and a trend toward decreased VEGF post-intervention. Grp UL+RE showed no changes. DISCUSSION: These results suggest that 5 wk unloading reduces skeletal muscle oxidative capacity and increases glycolytic enzyme activity. More importantly, only 12 bouts of high-force, low-volume resistance exercise attenuated these responses. Thus, the current resistance exercise paradigm emphasizing eccentric overload effectively counteracts unwarranted metabolic alterations induced by 5 wk unloading and may, therefore, aid in maintaining skeletal muscle integrity and endurance, and hence astronaut health and fitness during spaceflight.


Assuntos
Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Treinamento Resistido , Simulação de Ausência de Peso , Adulto , Análise de Variância , Biópsia por Agulha , Feminino , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Int J Dermatol ; 52(5): 531-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23231506

RESUMO

Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months.


Assuntos
Queimaduras/tratamento farmacológico , Curcumina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Queimaduras/enzimologia , Queimaduras/patologia , Curcumina/farmacologia , Inibidores Enzimáticos/farmacologia , Géis , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Fosforilase Quinase/metabolismo , Envelhecimento da Pele , Dermatopatias/enzimologia , Dermatopatias/patologia
16.
Mol Endocrinol ; 26(11): 1907-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22918876

RESUMO

We previously generated cytochrome P450 4F2 (CYP4F2) transgenic mice and showed high 20-hydroxyeicosatetraenoic acid (20-HETE) production, which resulted in an elevation of blood pressure. However, it was unclear whether 20-HETE affected glucose metabolism. We measured fasting plasma glucose, insulin, hepatic CYP4F2 expression, and 20-HETE production by hepatic microsomes, and hepatic 20-HETE levels in transgenic mice. We also assessed glycogen phosphorylase (GP) activity and the cAMP/protein kinase A (PKA)-phosphorylase kinase (PhK)-GP pathway, as well as expressions of insulin receptor substrate 1 and glucose transporters in vivo and in vitro. The transgenic mice had overexpressed hepatic CYP4F2, high hepatic 20-HETE and fasting plasma glucose levels but normal insulin level. The GP activity was increased and the cAMP/PKA-PhK-GP pathway was activated in the transgenic mice compared with wild-type mice. Moreover, these alterations were eliminated with the addition of N-hydroxy-N'-(4-butyl-2 methylphenyl) formamidine, which is a selective 20-HETE inhibitor. The results were further validated in Bel7402 cells. In addition, the transgenic mice had functional insulin signaling, and 20-HETE had no effect on insulin signaling in Bel7402 cells, excluding that the observed hyperglycemia in CYP4F2 transgenic mice resulted from insulin dysfunction, because the target tissues were sensitive to insulin. Our study suggested that 20-HETE can induce hyperglycemia, at least in part, through the cAMP/PKA-PhK-GP pathway but not through the insulin-signaling pathway.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Glicogênio Fosforilase/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hiperglicemia/enzimologia , Fosforilase Quinase/metabolismo , Transdução de Sinais , Amidinas/farmacologia , Animais , Glicemia/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hiperglicemia/complicações , Hipertensão/complicações , Hipertensão/patologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Isoquinolinas/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
17.
Proc Jpn Acad Ser B Phys Biol Sci ; 87(8): 486-508, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21986313

RESUMO

It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.


Assuntos
Cálcio/farmacologia , Metabolismo Energético/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fosforilase Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Íons
18.
Diabetologia ; 54(5): 1157-68, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21311858

RESUMO

AIMS/HYPOTHESIS: Protein-tyrosine phosphatase 1B (PTP1B) negatively regulates insulin action, promoting attenuation of the insulin signalling pathway. The production of this phosphatase is enhanced in insulin-resistant states, such as obesity and type 2 diabetes, where high levels of proinflammatory cytokines (TNF-α, IL-6) are found. In these metabolic conditions, insulin action on glycogen metabolism in skeletal muscle is greatly impaired. We addressed the role of PTP1B on glycogen metabolism in basal and insulin-resistant conditions promoted by TNF-α. METHODS: We studied the effect of TNF-α in the presence and absence of insulin on glycogen content and synthesis, glycogen synthase (GS) and glycogen phosphorylase (GP) activities and on glycogen synthesis and degradation signalling pathways. For this purpose we used immortalised cell lines isolated from skeletal muscle from mice lacking PTP1B. RESULTS: Absence of PTP1B caused activation of GS and GP with a net glycogenolytic effect, reflected in lower amounts of glycogen and activation of the glycogenolytic signalling pathway, with higher rates of phosphorylation of cyclic adenosine monophosphate-dependent kinase (PKA), phosphorylase kinase (PhK) and GP phosphorylation. Nevertheless, insulin action was strongly enhanced in Ptp1b (also known as Ptpn1)(-/-) cells in terms of glycogen content, synthesis, GS activation rates and GS Ser641 dephosphorylation. Treatment with TNF-α augmented the activity ratios of both GS and GP, and impaired insulin stimulation of glycogen synthesis in wild-type myocytes, whereas Ptp1b (-/-) myocytes restored this inhibitory effect. We report a glycogenolytic effect of TNF-α, as demonstrated by greater activation of the degradation signalling cascade PKA/PhK/GP. In our model, this effect is mediated by the activation of PKA. CONCLUSIONS/INTERPRETATION: We provide new data about the role of PTP1B in glycogen metabolism and confirm the beneficial effect that absence of the phosphatase confers against an insulin-resistant condition.


Assuntos
Glicogênio/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Linhagem Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/metabolismo , Imunoprecipitação , Insulina/farmacologia , Camundongos , Camundongos Mutantes , Fosforilase Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Necrose Tumoral alfa/farmacologia
19.
Dis Model Mech ; 3(11-12): 773-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20940317

RESUMO

Extracellular adenosine is an important signaling molecule in neuromodulation, immunomodulation and hypoxia. Adenosine dysregulation can cause various pathologies, exemplified by a deficiency in adenosine deaminase in severe combined immunodeficiency. We have established a Drosophila model to study the effects of increased adenosine in vivo by mutating the main Drosophila adenosine deaminase-related growth factor (ADGF-A). Using a genetic screen, we show here that the increased extracellular adenosine in the adgf-a mutant is associated with hyperglycemia and impairment in energy storage. The adenosine works in this regard through the adenosine receptor as an anti-insulin hormone in parallel to adipokinetic hormone, a glucagon counterpart in flies. If not regulated properly, this action can lead to a loss of energy reserves (wasting) and death of the organism. Because adenosine signaling is associated with the immune response and the response to stress in general, our results mark extracellular adenosine as a good candidate signal involved in the wasting syndrome that accompanies various human pathologies.


Assuntos
Adenosina/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Metabolismo Energético , Espaço Extracelular/metabolismo , Síndrome de Emaciação/enzimologia , Síndrome de Emaciação/patologia , Adipocinas/metabolismo , Animais , Restrição Calórica , Carboidratos/sangue , Dieta , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Hemolinfa/metabolismo , Larva/metabolismo , Mutação/genética , Fenótipo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais , Supressão Genética
20.
Toxicol Sci ; 100(1): 36-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17693425

RESUMO

Arsenate (As(V)) is reduced in the body to the more toxic arsenite (As(III)). We have shown that two enzymes catalyzing phosphorolytic cleavage of their substrates, namely purine nucleoside phosphorylase and glyceraldehyde-3-phosphate dehydrogenase, can reduce As(V) in presence of an appropriate thiol and their substrates. Another phosphorolytic enzyme that may also reduce As(V) is glycogen phosphorylase (GP). With inorganic phosphate (P(i)), GP catalyzes the breakdown of glycogen to glucose-1-phosphate; however, it also accepts As(V). Testing the hypothesis that GP can reduce As(V), we incubated As(V) with the phosphorylated GPa or the dephosphorylated GPb purified from rabbit muscle and quantified the As(III) formed from As(V) by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry. In the presence of adenosine monophosphate (AMP), glycogen, and glutathione (GSH), both GP forms reduced As(V) at rates increasing with enzyme and As(V) concentrations. The As(V) reductase activity of GPa was 10-fold higher than that of GPb. However, incubating GPb with GP kinase and ATP (that converts GPb to GPa) increased As(V) reduction by phosphorylase up to the rate produced by GPa incubated under the same conditions. High concentration of inorganic sulfate, which activates GPb like phosphorylation, also promoted reduction of As(V) by GPb. As(V) reduction by GPa (like As(V) reduction in rats) required GSH. It also required glycogen (substrate for GP) and was stimulated by AMP (allosteric activator of GP) even at low micromolar concentrations. P(i), substrate for GP competing with As(V), inhibited As(III) formation moderately at physiological concentrations. Glucose-1-phosphate, the product of GP-catalyzed glycogenolysis, also decreased As(V) reduction. Summarizing, GP is the third phosphorolytic enzyme identified capable of reducing As(V) in vitro. For reducing As(V) by GP, GSH and glycogen are indispensable, suggesting that the reduction is linked to glycogenolysis. While its in vivo significance remains to be tested, further characterization of the GP-catalyzed As(V) reduction is presented in the adjoining paper.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Glutationa/metabolismo , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio/metabolismo , Glicogenólise , Músculo Esquelético/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Músculo Esquelético/enzimologia , Oxirredução , Fosforilase Quinase/metabolismo , Coelhos , Espectrometria de Fluorescência , Espectrofotometria Atômica , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA