Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38061618

RESUMO

Silica nanoparticles (SNPs) are widely explored as drug carriers, gene delivery vehicles, and as nanoparticles intended for bone and tissue engineering. SNPs are highly evident through various clinical trials for a wide range of biomedical applications. SNPs are biocompatible and promising nanoparticles for next-generation therapeutics. However, despite the well-established importance of SNPs, metabolomics methods for the SNPs remain elusive which renders its maximal clinical translation. We applied 1H nuclear magnetic resonance (1H NMR) spectroscopy to investigate the metabolomics profile in Zebrafish (Danio rerio) exposed to SNPs. Zebrafish were exposed to the SNPs (10.0, 25.0, and 50.0 µg/mL) for 72 h and whole-body samples were subjected for targeted profiling. Pattern recognition of 1H NMR spectral data depicted alterations in the metabolomic profiles between control and SNPs exposed zebrafish. We found that tryptophane, lysine, methionine, phenylalanine, tyrosine, sn-glycero-3-phosphocholine (G3PC), and o-phosphocholine were decreased. The metabolic expression of niacinamide, nicotinamide adenine dinucleotide (NAD+), citrate, adenosine triphosphate (ATP), and xanthine were increased in zebrafish with SNPs treatment. We are report for the first time on metabolite alterations and phenotypic expression in zebrafish via 1H NMR. These results demonstrate that SNPs can adversely affect the significant metabolic pathways involved in energy, amino acids, cellular membrane, lipids, and fatty acid metabolisms. Metabolomics profiling may be able to detect metabolic dysregulation in SNPs-treated zebrafish and establish a foundation for further toxicological studies.


Assuntos
Fosforilcolina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fosforilcolina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Metabolômica/métodos
2.
Mol Cell Biochem ; 478(4): 939-948, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36136285

RESUMO

Twist (TWIST1) is a gene required for cell fate specification in embryos and its expression in mammary epithelium can initiate tumorigenesis through the epithelial-mesenchymal transition. To identify downstream target genes of Twist in breast cancer, we performed microarray analysis on the transgenic breast cancer cell line, MCF-7/Twist. One of the targets identified was choline kinase whose upregulation resulted in increased cellular phosphocholine and total choline containing compounds-a characteristic observed in highly aggressive metastatic cancers. To study the interactions between Twist, choline kinase, and their effect on the microenvironment, we used 1H magnetic resonance spectroscopy and found significantly higher phosphocholine and total choline, as well as increased phosphocholine/glycerophosphocholine ratio in MCF-7/Twist cells. We also observed significant increases in extracellular glucose, lactate, and [H +] ion concentrations in the MCF-7/Twist cells. Magnetic resonance imaging of MCF-7/Twist orthotopic breast tumors showed a significant increase in vascular volume and permeability surface area product compared to control tumors. In addition, by reverse transcription-quantitative polymerase chain reaction, we discovered that Twist upregulated choline kinase expression in estrogen receptor negative breast cancer cell lines through FOXA1 downregulation. Moreover, using The Cancer Genome Atlas database, we observed a significant inverse relationship between FOXA1 and choline kinase expression and propose that it could act as a modulator of the Twist/choline kinase axis. The data presented indicate that Twist is a driver of choline kinase expression in breast cancer cells via FOXA1 resulting in the generation of an aggressive breast cancer phenotype.


Assuntos
Colina Quinase , Fosforilcolina , Linhagem Celular Tumoral , Colina/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Fenótipo , Fosforilcolina/metabolismo , Microambiente Tumoral , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
3.
Cells ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497004

RESUMO

This paper describes an untargeted NMR metabolomics study to identify potential intracellular donor-dependent and donor-independent metabolic markers of proliferation and osteogenic differentiation of human adipose mesenchymal stem cells (hAMSCs). The hAMSCs of two donors with distinct proliferating/osteogenic characteristics were fully characterized regarding their polar endometabolome during proliferation and osteogenesis. An 18-metabolites signature (including changes in alanine, aspartate, proline, tyrosine, ATP, and ADP, among others) was suggested to be potentially descriptive of cell proliferation, independently of the donor. In addition, a set of 11 metabolites was proposed to compose a possible donor-independent signature of osteogenesis, mostly involving changes in taurine, glutathione, methylguanidine, adenosine, inosine, uridine, and creatine/phosphocreatine, choline/phosphocholine and ethanolamine/phosphocholine ratios. The proposed signatures were validated for a third donor, although they require further validation in a larger donor cohort. We believe that this proof of concept paves the way to exploit metabolic markers to monitor (and potentially predict) cell proliferation and the osteogenic ability of different donors.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Fosforilcolina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Tecido Adiposo/metabolismo
4.
J Dairy Sci ; 105(10): 8497-8508, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35965128

RESUMO

The 3 branched-chain AA (BCAA), Val, Leu, and Ile, are essential AA used by tissues as substrates for protein synthesis and energy generation. In addition, BCAA are also involved in modulating cell signaling pathways, such as nutrient sensing and insulin signaling. In our previous study, dietary BCAA supplementation was shown to improve protein synthesis and glucose homeostasis in transition cows. However, a more detailed understanding of the changes in metabolic pathways associated with an increased BCAA availability is desired to fine-tune nutritional supplementation strategies. Multiparous Holstein cows (n = 20) were enrolled 28 d before expected calving and assigned to either the BCAA treatment (n = 10) or the control group (n = 10). Cows assigned to BCAA were fed 550 g/d of rumen-protected BCAA mixed with 200 g/d of dry molasses from calving until 35 DIM, whereas the cows assigned to the control were fed only 200 g/d of dry molasses. Serum samples were collected on d 10 before expected calving, as well as on d 4 and d 21 postpartum. Milk samples were collected on d 14 postpartum. From a larger cohort, we selected 20 BCAA-supplemented cows with the greatest plasma urea nitrogen concentration, as an indicator for greater BCAA availability, for the metabolomics analysis herein. Serum and milk samples were subjected to a liquid chromatography-mass spectrometry-based assay, detecting and measuring the abundance of 241 serum and 211 milk metabolic features, respectively. Multivariable statistical analyses revealed that BCAA supplementation altered the metabolome profiles of both serum and milk samples. Increased abundance of serum phosphocholine and glutathione and of milk Val, Ile, and Leu, and decreased abundance of milk acyl-carnitines were associated with BCAA supplementation. Altered phosphocholine and glutathione abundances point to altered hepatic choline metabolism and antioxidant balance, respectively. Altered milk acyl-carnitine abundances suggest changes in mammary fatty acid metabolism. Dietary BCAA supplementation was associated with a range of alterations in serum and milk metabolome profiles, adding to our understanding of the role of BCAA availability in modulating dairy cow protein, lipid, and energy metabolism on a whole-body level and how it affects milk composition.


Assuntos
Insulinas , Leite , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Antioxidantes/metabolismo , Carnitina/análogos & derivados , Carnitina/análise , Bovinos , Colina/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Lactação , Lipídeos/análise , Metaboloma , Leite/química , Nitrogênio/metabolismo , Fosforilcolina/análise , Fosforilcolina/metabolismo , Fosforilcolina/farmacologia , Ureia/metabolismo
5.
ACS Chem Biol ; 17(8): 2272-2283, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35802552

RESUMO

Choline is an essential nutrient for mammalian cells. Our understanding of the cellular functions of choline and its metabolites, independent of their roles as choline lipid metabolism intermediates, remains limited. In addition to fundamental cellular physiology, this knowledge has implications for cancer biology because elevated choline metabolite levels are a hallmark of cancer. Here, we establish a mammalian choline metabolite-interacting proteome by utilizing a photocrosslinkable choline probe. To design this probe, we performed metabolic labeling experiments with structurally diverse choline analogues that resulted in the serendipitous discovery of a choline lipid headgroup remodeling mechanism involving sequential dealkylation and methylation steps. We demonstrate that phosphocholine inhibits the binding of one of the proteins identified, the attractive anticancer target p32, to its endogenous ligands and to the promising p32-targeting anticancer agent, Lyp-1. Our results reveal that choline metabolites play vital roles in cellular physiology by serving as modulators of protein function.


Assuntos
Antineoplásicos , Neoplasias , Animais , Colina/metabolismo , Humanos , Mamíferos/metabolismo , Neoplasias/metabolismo , Fosforilcolina/metabolismo , Proteoma
6.
Neurosci Lett ; 772: 136491, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35108590

RESUMO

Alpha-synuclein (αSyn) pathology is a hallmark of Parkinson's disease. Here we show that lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a regulator of αSyn pathology and cytotoxicity. LPCAT1 is upregulated by αSyn E35K E46K E61K (3K) in human M17 neuroblastoma cells and primary rat cortical neurons, and in postmortem brain tissue from PD patients with confirmed αSyn aggregate pathology. Suppression of LPCAT1 reduces αSyn accumulations and toxicity in our neuroblastoma αSyn 3K overexpression model. Further overexpression of LPCAT1 promotes pS129 αSyn positive aggregation in primary neurons in the αSyn pre-formed fibril (PFF) model. A phospholipid product of LPCAT1 enzymatic activity, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, similarly promotes neuronal PFF seeded aggregation. Using a pH sensitive PFF model we provide evidence that αSyn fibrils have altered endo-lysosomal processing under LPCAT1 enhancement, suggesting less aggregate degradation. Our data demonstrates that LPCAT1 and associated phospholipids can regulate αSyn pathology.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Doença de Parkinson/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosforilcolina/metabolismo , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
J Transl Med ; 20(1): 92, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168606

RESUMO

BACKGROUND: Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear. METHODS: Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA expression to validate the key enzymes in the dysregulated metabolic pathway. RESULTS: On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) ((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like molecules. Spearman's correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glycerophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resistant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS. CONCLUSIONS: These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs.


Assuntos
Neoplasias Ovarianas , Paclitaxel , Animais , Colina/metabolismo , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfolipases , Fosforilcolina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
8.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R802-R811, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612088

RESUMO

Hospitalized preterm infants experience painful medical procedures. Oral sucrose is the nonpharmacological standard of care for minor procedural pain relief. Infants are treated with numerous doses of sucrose, raising concerns about potential long-term effects. The objective of this study was to determine the long-term effects of neonatal oral sucrose treatment on growth and liver metabolism in a mouse model. Neonatal female and male mice were randomly assigned to one of two oral treatments (n = 7-10 mice/group/sex): sterile water or sucrose. Pups were treated 10 times/day for the first 6 days of life with 0.2 mg/g body wt of respective treatments (24% solution; 1-4 µL/dose) to mimic what is given to preterm infants. Mice were weaned at age 3 wk onto a control diet and fed until age 16 wk. Sucrose-treated female and male mice gained less weight during the treatment period and were smaller at weaning than water-treated mice (P ≤ 0.05); no effect of sucrose treatment on body weight was observed at adulthood. However, adult sucrose-treated female mice had smaller tibias and lower serum insulin-like growth factor-1 than adult water-treated female mice (P ≤ 0.05); these effects were not observed in males. Lower liver S-adenosylmethionine, phosphocholine, and glycerophosphocholine were observed in adult sucrose-treated compared with water-treated female and male mice (P ≤ 0.05). Sucrose-treated female, but not male, mice had lower liver free choline and higher liver betaine compared with water-treated female mice (P < 0.01). Our findings suggest that repeated neonatal sucrose treatment has long-term sex-specific effects on growth and liver methionine and choline metabolism.


Assuntos
Analgésicos/toxicidade , Colina/metabolismo , Glucocorticoides/metabolismo , Fígado/efeitos dos fármacos , Sacarose/toxicidade , Tíbia/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Administração Oral , Fatores Etários , Analgésicos/administração & dosagem , Animais , Animais Recém-Nascidos , Betaína/metabolismo , Feminino , Glicerilfosforilcolina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilcolina/metabolismo , S-Adenosilmetionina/metabolismo , Fatores Sexuais , Sacarose/administração & dosagem , Tíbia/crescimento & desenvolvimento
9.
Biochem J ; 478(18): 3429-3444, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34133721

RESUMO

Phospholipid synthesis is crucial for membrane proliferation in malaria parasites during the entire cycle in the host cell. The major phospholipid of parasite membranes, phosphatidylcholine (PC), is mainly synthesized through the Kennedy pathway. The phosphocholine required for this synthetic pathway is generated by phosphorylation of choline derived from the catabolism of the lyso-phosphatidylcholine (LPC) scavenged from the host milieu. Here we have characterized a Plasmodium falciparum lysophospholipase (PfLPL20) which showed enzymatic activity on LPC substrate to generate choline. Using GFP- targeting approach, PfLPL20 was localized in vesicular structures associated with the neutral lipid storage bodies present juxtaposed to the food-vacuole. The C-terminal tagged glmS mediated inducible knock-down of PfLPL20 caused transient hindrance in the parasite development, however, the parasites were able to multiply efficiently, suggesting that PfLPL20 is not essential for the parasite. However, in PfLPL20 depleted parasites, transcript levels of enzyme of SDPM pathway (Serine Decarboxylase-Phosphoethanolamine Methyltransferase) were altered along with up-regulation of phosphocholine and SAM levels; these results show up-regulation of alternate pathway to generate the phosphocholine required for PC synthesis through the Kennedy pathway. Our study highlights the presence of alternate pathways for lipid homeostasis/membrane-biogenesis in the parasite; these data could be useful to design future therapeutic approaches targeting phospholipid metabolism in the parasite.


Assuntos
Eritrócitos/metabolismo , Lisofosfolipase/genética , Fosfatidilcolinas/biossíntese , Fosforilcolina/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Colina/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase/genética , Humanos , Estágios do Ciclo de Vida/genética , Metabolismo dos Lipídeos/genética , Lisofosfatidilcolinas/metabolismo , Lisofosfolipase/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , S-Adenosilmetionina/metabolismo , Serina/metabolismo
10.
Sci Adv ; 6(20): eaaz8041, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32440549

RESUMO

The causative agent of Legionnaires disease, Legionella pneumophila, translocates the phosphocholine transferase AnkX during infection and thereby posttranslationally modifies the small guanosine triphosphatase (GTPase) Rab1 with a phosphocholine moiety at S76 using cytidine diphosphate (CDP)-choline as a cosubstrate. The molecular basis for Rab1 binding and enzymatic modification have remained elusive because of lack of structural information of the low-affinity complex with AnkX. We combined thiol-reactive CDP-choline derivatives with recombinantly introduced cysteines in the AnkX active site to covalently capture the heterocomplex. The resulting crystal structure revealed that AnkX induces displacement of important regulatory elements of Rab1 by placing a ß sheet into a conserved hydrophobic pocket, thereby permitting phosphocholine transfer to the active and inactive states of the GTPase. Together, the combination of chemical biology and structural analysis reveals the enzymatic mechanism of AnkX and the family of filamentation induced by cyclic adenosine monophosphate (FIC) proteins.


Assuntos
Legionella , Proteínas de Bactérias/metabolismo , Cistina Difosfato , GTP Fosfo-Hidrolases/metabolismo , Legionella/metabolismo , Fosforilcolina/metabolismo
11.
Biochem J ; 477(10): 2007-2026, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32391551

RESUMO

The emergence of drug resistance is a major concern for combating against Cutaneous Leishmaniasis, a neglected tropical disease affecting 98 countries including India. Miltefosine is the only oral drug available for the disease and Miltefosine transporter proteins play a pivotal role in the emergence of drug-resistant Leishmania major. The cause of resistance is less accumulation of drug inside the parasite either by less uptake of the drug due to a decrease in the activity of P4ATPase-CDC50 complex or by increased efflux of the drug by P-glycoprotein (P-gp, an ABC transporter). In this paper, we are trying to allosterically modulate the behavior of resistant parasite (L. major) towards its sensitivity for the existing drug (Miltefosine, a phosphatidylcholine analog). We have used computational approaches to deal with the conservedness of the proteins and apparently its three-dimensional structure prediction through ab initio modeling. Long scale membrane-embedded molecular dynamics simulations were carried out to study the structural interaction and stability. Parasite-specific motifs of these proteins were identified based on the machine learning technique, against which a peptide library was designed. The protein-peptide docking shows good binding energy of peptides Pg5F, Pg8F and PC2 with specific binding to the motifs. These peptides were tested both in vitro and in vivo, where Pg5F in combination with PC2 showed 50-60% inhibition in resistant L. major's promastigote and amastigote forms and 80-90% decrease in parasite load in mice. We posit a model system wherein the data provide sufficient impetus for being novel therapeutics in order to counteract the drug resistance phenotype in Leishmania parasites.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Regulação Alostérica/efeitos dos fármacos , Leishmania major/metabolismo , Fosforilcolina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/toxicidade , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Transportadores de Cassetes de Ligação de ATP/toxicidade , Animais , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Linhagem Celular , Biologia Computacional/métodos , Resistência a Medicamentos/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Aprendizado de Máquina , Camundongos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Peptídeos/síntese química , Fosforilcolina/metabolismo , Fosforilcolina/farmacologia
12.
Chem Biol Drug Des ; 95(3): 380-387, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31442363

RESUMO

Phosphatidylcholine-specific phospholipase C (PC-PLC) is one of the important members of phospholipase family which is capable of specifically hydrolyzing the third phosphate linker of glycerophospholipid molecules, releasing phosphocholine and diacylglycerols (DAG). It is a crucial virulence factor of bacteria contributed to cell-to-cell spread and leading multiple diseases in mammals. Moreover, PC-PLC has a wide range of biological functions and involves in various cell signaling pathway, including apoptosis, proliferation, differentiation, and metastasis. In this study, we have synthesized 2 chiral compounds ((R)-7-amino-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-ol, called R-7ABO, and (S)-7-amino-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-ol, called S-7ABO) and discovered their inhibitory effect on PC-PLC activity which derived from Bacillus cereus (B. cereus) and human umbilical vein endothelial cells (HUVEC). Therefore, as two novel efficient PC-PLC inhibitors, R-7ABO and S-7ABO might become favorable tools of antibacterial therapy in B. cereus infection diseases and researching the function of PC-PLC in HUVECs.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Apoptose , Bacillus cereus , Diferenciação Celular , Proliferação de Células , Diglicerídeos/química , Diglicerídeos/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrólise , Fosforilcolina/química , Fosforilcolina/metabolismo , Transdução de Sinais , Estereoisomerismo , Relação Estrutura-Atividade
13.
J Immunol ; 204(2): 459-471, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31826940

RESUMO

Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell-specific Traf3 -/- and littermate control mice. We found that multiple metabolites, lipids, and enzymes regulated by TRAF3 in B cells are clustered in the choline metabolic pathway. Using stable isotope labeling, we demonstrated that phosphocholine and phosphatidylcholine biosynthesis was markedly elevated in Traf3 -/- mouse B cells and decreased in TRAF3-reconstituted human multiple myeloma cells. Furthermore, pharmacological inhibition of choline kinase α, an enzyme that catalyzes phosphocholine synthesis and was strikingly increased in Traf3 -/- B cells, substantially reversed the survival phenotype of Traf3 -/- B cells both in vitro and in vivo. Taken together, our results indicate that enhanced phosphocholine and phosphatidylcholine synthesis supports the prolonged survival of Traf3 -/- B lymphocytes. Our findings suggest that TRAF3-regulated choline metabolism has diagnostic and therapeutic value for B cell malignancies with TRAF3 deletions or relevant mutations.


Assuntos
Linfócitos B/fisiologia , Colina Quinase/metabolismo , Colina/metabolismo , Mieloma Múltiplo/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Colina Quinase/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mutação/genética , Fosforilcolina/metabolismo , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/genética
14.
J Biol Chem ; 294(43): 15862-15874, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31439667

RESUMO

De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway involves highly endergonic biochemical reactions that must be fine-tuned with energy homeostasis. Previous studies have shown that CTP:phosphocholine cytidylyltransferase (CCT) is an important regulatory enzyme in this pathway and that its activity can be controlled at both transcriptional and posttranslational levels. Here we identified an important additional mechanism regulating plant CCT1 activity. Comparative analysis revealed that Arabidopsis CCT1 (AtCCT1) contains catalytic and membrane-binding domains that are homologous to those of rat CCT1. In contrast, the C-terminal phosphorylation domain important for stringent regulation of rat CCT1 was apparently missing in AtCCT1. Instead, we found that AtCCT1 contains a putative consensus site (Ser-187) for modification by sucrose nonfermenting 1-related protein kinase 1 (SnRK1 or KIN10/SnRK1.1), involved in energy homeostasis. Phos-tag SDS-PAGE coupled with MS analysis disclosed that SnRK1 indeed phosphorylates AtCCT1 at Ser-187, and we found that AtCCT1 phosphorylation substantially reduces its activity by as much as 70%. An S187A variant exhibited decreased activity, indicating the importance of Ser-187 in catalysis, and this variant was less susceptible to SnRK1-mediated inhibition. Protein truncation and liposome binding studies indicated that SnRK1-mediated AtCCT1 phosphorylation directly affects the catalytic domain rather than interfering with phosphatidate-mediated AtCCT1 activation. Overexpression of the AtCCT1 catalytic domain in Nicotiana benthamiana leaves increased PC content, and SnRK1 co-expression reduced this effect. Taken together, our results suggest that SnRK1 mediates the phosphorylation and concomitant inhibition of AtCCT1, revealing an additional mode of regulation for this key enzyme in plant PC biosynthesis.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Arabidopsis/química , Domínio Catalítico , Colina-Fosfato Citidililtransferase/química , Sequência Conservada , Evolução Molecular , Cinética , Modelos Biológicos , Fosforilação , Fosforilcolina/metabolismo , Fosfosserina/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Ratos , Homologia Estrutural de Proteína , Nicotiana/genética
15.
Clin Neurophysiol ; 130(9): 1502-1510, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31295719

RESUMO

OBJECTIVES: In older adults, type-2 diabetes mellitus (T2DM) impacts cognition and increases dementia risk. Prior studies suggest that impaired neuroplasticity may contribute to the cognitive decline in T2DM, but the underlying mechanisms of altered neuroplasticity are unclear. We investigated the relationship of the concentration of glutamatergic metabolites with measures of cortical plasticity in older adults across the spectrum of glucose intolerance/insulin resistance. METHODS: Forty adults (50-87 years: 17-T2DM, 14-pre-diabetes, 9-controls) underwent magnetic resonance spectroscopy to quantify glutamate and other key metabolites within a 2 cm3 region around the hand knob of the left primary motor cortex. Thirty-six also underwent a separate transcranial magnetic stimulation (TMS) assessment of cortical excitability and plasticity using single-pulse TMS and intermittent theta-burst stimulation targeting the same brain region. RESULTS: Group differences were observed in relative concentrations of glutamine (p = .028), glucose (p = .008), total cholines (p = .048), and the glutamine/glutamate ratio (p = .024). Cortical plasticity was reduced in both T2DM and pre-diabetes groups relative to controls (p-values < .05). Only the T2DM group showed a significant positive association between glutamate concentration and plasticity (r = .56, p = .030). CONCLUSIONS: Neuroplastic mechanisms are already impaired in pre-diabetes. In T2DM, reduced cortico-motor plasticity is associated with lower cortical glutamate concentration. SIGNIFICANCE: Impaired plasticity in T2DM is associated with low glutamatergic metabolite levels. The glutamatergic neurotransmission system constitutes a potential therapeutic target for cognitive problems linked to plasticity-related deficiencies in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Ácido Glutâmico/metabolismo , Córtex Motor/fisiologia , Plasticidade Neuronal , Estado Pré-Diabético/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Creatina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Intolerância à Glucose , Glutamina/metabolismo , Glutationa/metabolismo , Glicerilfosforilcolina/metabolismo , Humanos , Inositol/metabolismo , Resistência à Insulina , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Fosfocreatina/metabolismo , Fosforilcolina/metabolismo , Estado Pré-Diabético/metabolismo , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos
16.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31109949

RESUMO

Nontypeable Haemophilus influenzae (NTHi) colonizes the human upper respiratory tract without causing disease symptoms, but it is also a major cause of upper and lower respiratory tract infections in children and elderly, respectively. NTHi synthesizes various molecules to decorate its lipooligosaccharide (LOS), which modulates the level of virulence. The presence of phosphorylcholine (PCho) on NTHi LOS increases adhesion to epithelial cells, which is an advantage for the bacterium enabling nasopharyngeal colonization. However, when PCho is incorporated on the LOS of NTHi, it is recognized by the acute-phase C-reactive protein (CRP) and PCho-specific antibodies, both potent initiators of the classical pathway of complement activation. We determined the presence of PCho and binding of IgG and IgM to the bacterial surface for 319 NTHi strains collected from the nasopharynx/oropharynx, middle ear, and lower respiratory tract. PCho detection was higher for NTHi strains collected from the nasopharynx/oropharynx, which was associated with increased binding of IgM and IgG to the bacterial surface. Binding of CRP and IgM to the bacterial surface of PChohigh NTHi strains increased complement-mediated killing, which was largely dependent on PCho-specific IgM. The levels of PCho-specific IgM varied in sera from 12 healthy individuals, and higher PCho-specific IgM levels were associated with increased complement-mediated killing of a PChohigh NTHi strain. In conclusion, incorporation of PCho on the LOS of NTHi marks the bacterium for binding of CRP and IgM, resulting in complement-mediated killing. Therefore, having a lower PCho might be beneficial in situations where sufficient PCho-specific antibodies and complement are present.


Assuntos
Proteína C-Reativa/fisiologia , Proteínas do Sistema Complemento/imunologia , Citotoxicidade Imunológica , Haemophilus influenzae/imunologia , Imunoglobulina M/fisiologia , Fosforilcolina/metabolismo , Aderência Bacteriana , Humanos , Lipopolissacarídeos/metabolismo , Nasofaringe/microbiologia , Orofaringe/microbiologia
17.
Clin Neuroradiol ; 29(1): 27-36, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28983683

RESUMO

PURPOSE: Previous ex vivo spectroscopic data from tissue samples revealed differences in phospholipid metabolites between isocitrate dehydrogenase mutated (IDHmut) and IDH wildtype (IDHwt) gliomas. We investigated whether these changes can be found in vivo using 1H-decoupled 31P magnetic resonance spectroscopic imaging (MRSI) with 3D chemical shift imaging (CSI) at 3 T in patients with low and high-grade gliomas. METHODS: The study included 33 prospectively enrolled, mostly untreated patients who met spectral quality criteria according to the World Health Organization (WHO II n = 7, WHO III n = 17, WHO IV n = 9; 25 patients IDHmut, 8 patients IDHwt). The MRSI protocol included 1H decoupled 31P MRSI with 3D CSI (3D 31P CSI), 2D 1H CSI and a 1H single voxel spectroscopy sequence (TE 30 ms) from the tumor area. For 1H MRS, absolute metabolite concentration values were calculated (phantom replacement method). For 31P MRS, metabolite intensity ratios were calculated for the choline (C) and ethanolamine (E)-containing metabolites. RESULTS: In our patient cohort we did not find significant differences for the ratio of phosphocholine (PC) and phosphoethanolamine (PE), PC/PE, (p = 0.24) for IDHmut compared to IDHwt gliomas. Furthermore, we found no elevated ratios of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), GPC/GPE, (p = 0.68) or GPC/PE (p = 0.12) for IDHmut gliomas. Even the ratio (PC+GPC)/(PE+GPE) showed no significant differences with respect to mutation status (p = 0.16). Nonetheless, changes related to tumor grade regarding intracellular pH (pHi) and phospholipid metabolism as well as absolute metabolite concentrations of co-registered 2D 1H CSI data for tumor and control tissue showed the anticipated results. CONCLUSION: Using 3D-CSI data acquisition, in vivo 31P MR spectroscopic measurement of phospholipid metabolites could not distinguish between IDHmut and IDHwt.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Análise de Variância , Astrocitoma/enzimologia , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/terapia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Diagnóstico Diferencial , Etanolaminas/análise , Etanolaminas/metabolismo , Feminino , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Glioma/genética , Glioma/patologia , Glioma/terapia , Glutaratos/análise , Glutaratos/metabolismo , Glicerilfosforilcolina/análise , Humanos , Hidrogênio , Isocitrato Desidrogenase/metabolismo , Isoenzimas/análise , Isoenzimas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Oligodendroglioma/enzimologia , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/terapia , Fosfatidiletanolaminas/análise , Fosfatidiletanolaminas/metabolismo , Isótopos de Fósforo , Fosforilcolina/análise , Fosforilcolina/metabolismo , Estudos Prospectivos , Carga Tumoral
18.
Auris Nasus Larynx ; 46(4): 513-519, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30503566

RESUMO

OBJECTIVE: Phosphorylcholine (PC) is a structural component of Streptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi), and is known to be associated with adherence through the platelet activating factor receptor (PAF-R). Furthermore, high PC expression is considered to be involved in Spn and NTHi virulence. In this study, we examined the influence of PC expression on the adherence of Spn and NTHi to epithelial cells in order to clarify the potential effectiveness of a vaccine targeting PC. METHODS: Twenty-seven strains of Spn and twenty-two strains of NTHi were used, cultured overnight, and PC expression was evaluated by fluorescence activated cell sorting; the strains were divided into two groups: PC low expression (PC-low) and PC high expression (PC-high) groups. Bacterial adherence was then examined using Detroit 562 cells and BALB/c mice. Bacterial invasion was then examined in Detroit 562 cells. RESULTS: The adherence of Spn and NTHi and invasion of NTHi in the PC-high group was significantly reduced by pretreatment with a monoclonal anti-PC antibody (TEPC-15), PAF-R antagonist (ABT-491), and PC-keyhole limpet hemocyanin (PC-KLH). However, such findings were not observed in the PC-low group. CONCLUSION: The present study suggests that PC is involved in the mucosal adhesion of Spn and NTHi, and the mucosal invasion of NTHi with PC-high strains, but not PC-low strains. These results suggest that a PC-targeting mucosal vaccine only affects PC-high Spn and NTHi strains and does not disturb commensal bacterial flora in the upper respiratory tract, which comprises nonpathogenic PC-low bacteria.


Assuntos
Aderência Bacteriana/fisiologia , Células Epiteliais/metabolismo , Haemophilus influenzae/metabolismo , Mucosa Nasal/metabolismo , Fosforilcolina/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Linhagem Celular , Citometria de Fluxo , Hemocianinas/farmacologia , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/antagonistas & inibidores , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Respiratória/metabolismo , Fatores de Virulência
19.
J Mater Chem B ; 7(5): 786-795, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254853

RESUMO

Zwitterionic polymers are a class of polymers that acts as both Lewis base and Lewis acid in solution. These polymers not only have excellent properties of hydration, anti-bacterial adhesion, charge reversal and easy chemical modification, but also have characteristics of long-term circulation and suppress nonspecific protein adsorption in vivo. Here, we describe a novel folate-targeted and acid-labile polymeric prodrug under the microenvironment of tumor cells, abbreviated as FA-P(MPC-co-PEGMA-BZ)-g-DOX, which was synthesized via a combination of reversible addition-fragmentation chain transfer (RAFT) copolymerization, Schiff-base reaction, Click chemistry, and a reaction between the amine group of doxorubicin (DOX) and aldehyde functionalities of P(MPC-co-PEGMA-BZ) pendants, wherein MPC and PEGMA-BZ represent 2-(methacryloyloxy)ethyl phosphorylcholine and polyethylene glycol methacrylate ester benzaldehyde, respectively. The polymeric prodrug could self-assemble into nanoparticles in an aqueous solution. The average particle size and morphologies of the prodrug nanoparticles were observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. We also investigated the in vitro drug release behavior and observed rapid prodrug nanoparticle dissociation and drug release under a mildly acidic microenvironment. The methyl thiazolyl tetrazolium (MTT) assay verified that the P(MPC-co-PEGMA-BZ) copolymer possessed good biocompatibility and the FA-P(MPC-co-PEGMA-BZ)-g-DOX prodrug nanoparticles showed higher cellular uptake than those prodrug nanoparticles without the FA moiety. The results of cytotoxicity and the intracellular uptake of non-folate/folate targeted prodrug nanoparticles further confirmed that FA-P(MPC-co-PEGMA-BZ)-g-DOX could be efficiently accumulated and rapidly internalized by HeLa cells due to the strong interaction between multivalent phosphorylcholine (PC) groups and cell membranes. This kind of multifunctional FA-P(MPC-co-PEGMA-BZ)-g-DOX prodrug nanoparticle with combined target-ability and pH responsiveness demonstrates promising potential for cancer chemotherapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ácido Fólico/metabolismo , Pró-Fármacos/química , Doxorrubicina/administração & dosagem , Ácido Fólico/farmacocinética , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Metacrilatos/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fosforilcolina/metabolismo , Polietilenoglicóis/metabolismo , Polímeros/química , Polímeros/metabolismo , Polímeros/farmacocinética , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética
20.
Front Immunol ; 9: 2036, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279690

RESUMO

Neutrophils are known to extrude decondensed chromatin, thus forming NETs (neutrophil extracellular traps). These structures immobilize pathogens, thereby preventing their spreading, and are also adorned with antimicrobial molecules. NETs can also influence pathogenesis in chronic inflammation, autoimmunity, and cancer. Despite the importance of NETs, the molecular mechanisms underlying their formation, as well as the upstream signaling pathways involved, are only partially understood. Likewise, current methodological approaches to quantify NETs suffer from significant drawbacks, not the least being the inclusion of a significant non-specific signal. In this study, we used novel, fluorescent polymers that only bind extruded chromatin, allowing a specific and standardized quantification of NETosis. This allowed us to reliably rank the relative potency of various physiologic NET inducers. In neutrophils activated with such stimuli, inhibition of the Syk or PI3K pathways blocked NETosis by acting upon late events in NET formation. Inhibition of the TAK1, p38 MAPK, or MEK pathways also hindered NETosis, but by acting on early events. By contrast, inhibiting PKC, Src family kinases, or JNK failed to prevent NETosis; cycloheximide or actinomycin D were also ineffective. Expectedly, NET formation was deeply compromised following inhibition of the NADPH oxidase in PMA-activated neutrophils, but was found to be ROS-independent in response to physiological agonists. Conversely, we show for the first time in human neutrophils that selective inhibition of PAD4 potently prevents NETosis by all stimuli tested. Our data substantially extends current knowledge of the signaling pathways controlling NETosis, and reveals how they affect early or late stages of the phenomenon. In view of the involvement of NETs in several pathologies, our findings also identify molecular targets that could be exploited for therapeutic intervention.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , Células Cultivadas , Endocitose , Corantes Fluorescentes/metabolismo , Humanos , NADPH Oxidases/metabolismo , Ativação de Neutrófilo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Ácidos Polimetacrílicos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA