Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.253
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Med Mycol ; 62(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38692846

RESUMO

Candida albicans is a pathogenic fungus that undergoes morphological transitions between hyphal and yeast forms, adapting to diverse environmental stimuli and exhibiting distinct virulence. Existing research works on antifungal blue light (ABL) therapy have either focused solely on hyphae or neglected to differentiate between morphologies, obscuring potential differential effects. To address this gap, we established a novel dataset of 150 C. albicans-infected mouse skin tissue slice images with meticulously annotated hyphae and yeast. Eleven representative convolutional neural networks were trained and evaluated on this dataset using seven metrics to identify the optimal model for segmenting hyphae and yeast in original high pixel size images. Leveraging the segmentation results, we analyzed the differential impact of blue light on the invasion depth and density of both morphologies within the skin tissue. U-Net-BN outperformed other models in segmentation accuracy, achieving the best overall performance. While both hyphae and yeast exhibited significant reductions in invasion depth and density at the highest ABL dose (180 J/cm2), only yeast was significantly inhibited at the lower dose (135 J/cm2). This novel finding emphasizes the importance of developing more effective treatment strategies for both morphologies.


We studied the effects of blue light therapy on hyphal and yeast forms of Candida albicans. Through image segmentation techniques, we discovered that the changes in invasion depth and density differed between these two forms after exposure to blue light.


Assuntos
Candida albicans , Hifas , Animais , Camundongos , Candida albicans/efeitos da radiação , Pele/microbiologia , Fototerapia/métodos , Processamento de Imagem Assistida por Computador/métodos , Luz , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Redes Neurais de Computação , Modelos Animais de Doenças , Candidíase/microbiologia
2.
J Dermatolog Treat ; 35(1): 2350231, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38754985

RESUMO

Background: Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma.Objectives: This study was conducted to evaluate efficacy and safety of interferon (IFN) α-2a combined with phototherapy for early-stage MF.Methods: Thirteen patients with early-stage MF received subcutaneous injections of IFN α-2a at 3 million IU combined with phototherapy three times per week for 6 months. Treatment efficacy was measured by changes in body surface area (BSA) score and modified severity-weighted assessment tool (mSWAT) score at 1, 3, and 6 months after treatment. Histopathologic examinations of skin lesions were performed before and after treatment.Results: After 3 months of treatment, all 13 patients achieved a partial response, and BSA and mSWAT scores were significantly lower than those at baseline (p < 0.001). After 6 months, BSA and mSWAT scores were significantly lower than those at baseline (p < 0.001) and after 3 months (p < 0.05). Eleven patients achieved complete remission and two patients achieved a partial response (overall response rate, 100%). Histopathologic examination showed a significant decrease in the number of atypical lymphocytes in both epidermis and dermis. No severe adverse effects occurred.Conclusion: IFN α-2a in combination with phototherapy may be an effective and safe alternative modality for early-stage MF.


Assuntos
Interferon alfa-2 , Interferon-alfa , Micose Fungoide , Neoplasias Cutâneas , Humanos , Micose Fungoide/terapia , Micose Fungoide/patologia , Micose Fungoide/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Prospectivos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Interferon alfa-2/administração & dosagem , Resultado do Tratamento , Idoso , Injeções Subcutâneas , Interferon-alfa/administração & dosagem , Interferon-alfa/efeitos adversos , Terapia Combinada , Fototerapia/efeitos adversos , Estadiamento de Neoplasias , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos
3.
Int J Nanomedicine ; 19: 3167-3186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585473

RESUMO

Introduction: Due to its distinct advantage of non-invasive application in treatment, photothermal therapy (PTT) is being studied by many researchers to reduce the need for surgical incisions. It is characterized by the injection of nanoparticles into biological tissue as photothermal agents (PTAs) which diffuse within the tissue. In this study, the diffusion behavior of various doses of gold nanoparticles (AuNPs) injected into tumor tissues is analyzed and the effectiveness of PTT at each elapsed time after injection is confirmed by numerical analysis. Methods: The diffusion behavior of AuNPs within biological tissues is assessed using the convection-diffusion equation, while the temperature distribution is determined using the Pennes bioheat transfer equation. In addition, the effect of the diffusion behavior of AuNPs on the effectiveness of PTT is quantitatively confirmed by analyzing the temperature distribution in the medium through the apoptotic variable. Numerical simulation parameters are selected with doses ranging from 100 to 400 µg/mL, elapsed time after injection from 1 min to 24 h, and laser power ranging from 0 to 1 W. Results: After evaluating PTT's efficacy in every situation, it was discovered that a dosage of 100-300 µg/mL produced the best therapeutic result, with the highest impact occurring 12 hours after injection. In contrast, when the dosage was 400 µg/mL, the highest therapeutic effect was achieved after 18 hours post-injection. Additionally, it was discovered that the ideal laser power at each injection dose was 0.22, 0.14, 0.12, and 0.12 W, respectively. Conclusion: The conditions required to achieve the optimal treatment effect at each dosage, presented here, are expected to accelerate the commercialization of PTT.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Fototerapia , Ouro , Terapia Fototérmica , Linhagem Celular Tumoral
4.
Photodermatol Photoimmunol Photomed ; 40(3): e12964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616405

RESUMO

INTRODUCTION: Pityriasis lichenoides chronica is the chronic end of the spectrum of pityriasis lichenoides which have several forms of papulosuamous conditions. Several treatments obtained complete clearance of the condition including phototherapy and specifically narrow band ultraviolet B. The Excimer light 308 is a monochromatic light that acts within the ultraviolet B wavelength and used as a targeted phototherapy in several skin conditions. METHODS: Thirty-four patients with histopathologically diagnosed pityriasis lichenoides chronica underwent treatment with biweekly sessions of excimer light 308 nm. Treatment continued until complete clearance was obtained or to a maximum of 48 sessions (24 weeks). RESULTS: Thirty-one patients obtained complete clearance with no recurrence till the end of the study period, two patients had partial response and only one patient showed poor response to treatment. CONCLUSION: Excimer light can be a safe and effective treatment of pityriasis lichinoides chronica in different ages and genders.


Assuntos
Pitiríase Liquenoide , Humanos , Feminino , Masculino , Pitiríase Liquenoide/radioterapia , Fototerapia , Cinética
5.
Luminescence ; 39(4): e4736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590043

RESUMO

In recent trends, radiation falls under the narrowband ultraviolet-B region (305-315 nm) widely used in phototherapy lamp applications in the treatment of skin diseases. In this paper, we report a Gd3+-doped NaYF4 luminescent material synthesized for the first time using the low-temperature co-precipitation method. It crystallized into a face-centred cubic structure, as confirmed by X-ray diffraction characterization techniques and Rietveld refinement. The photoluminescence property of the as-prepared sample shows a highly intense, sharp emission band obtained at 311 nm, which belongs to the narrowband ultraviolet-B region and corresponds to the transition of the 6P7/2→8S7/2 level of the Gd3+ ions under 272 nm excitation (8S7/2 to 6IJ). The transitions of the Gd3+ ions are detected entirely with different concentrations of Gd3+ ions. Scanning electron microscopy analysis indicated that the average particle was 288 nm. The critical distance for energy transfer was calculated to be equal to 11.5017 Å. Dipole-dipole interaction is responsible for energy transfer, as analyzed by Dexter theory. These excellent optical characteristics, together with their highly efficient and low-cost synthesis approach, indicate that synthesized NaYF4:Gd3+ phosphors have excessive potential for phototherapeutic lamp applications.


Assuntos
Luminescência , Fototerapia , Transferência de Energia , Difração de Raios X , Íons
6.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581365

RESUMO

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Fosfatidiletanolaminas , Polietilenoglicóis , Doxorrubicina/farmacologia , Óxido Nítrico , Fototerapia , Nanopartículas/uso terapêutico , Mitocôndrias , Lipídeos , Linhagem Celular Tumoral
7.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622591

RESUMO

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia/métodos , Verde de Indocianina , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
8.
J Nanobiotechnology ; 22(1): 163, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600506

RESUMO

Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.


Assuntos
Indazóis , Nanopartículas , Neoplasias , Humanos , Fototerapia , Piroptose , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
9.
Biomed Pharmacother ; 174: 116586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626516

RESUMO

Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.


Assuntos
Lipossomos , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Fototerapia/métodos , Terapia Fototérmica/métodos
10.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631280

RESUMO

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Assuntos
Cobre , Ácido Hialurônico , Imageamento por Ressonância Magnética , Compostos de Manganês , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Óxidos/química , Óxidos/farmacologia , Humanos , Cobre/química , Cobre/farmacologia , Tamanho da Partícula , Nanoestruturas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Propriedades de Superfície , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Animais
11.
Acta Biomater ; 180: 140-153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604467

RESUMO

Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy. Eutectic gallium-indium LM particles were first stabilized with 1,2-Distearoyl-sn­glycero-3-phosphoethanolamine (DSPE) lipids. They were then incorporated into an interpenetrating hydrogel network composed of thiolated gelatin conjugated with 6-mercaptopurine (MP) chemodrug and poly(ethylene glycol)-diacrylate. The resulted composite hydrogel exhibited sufficient capability to induce MDA-MB-231 breast cancer cell death through a multi-step mechanism: (1) hyperthermic cancer cell death due to temperature elevation by near-infrared laser irradiation via LM particles, (2) leakage of glutathione (GSH) and cleavage of disulfide bonds due to destruction of cancer cells. As a consequence, additional chemotherapy was facilitated by GSH, leading to accelerated release of MP within the tumor microenvironment. The effectiveness of our composite hydrogel system was evaluated both in vitro and in vivo, demonstrating significant tumor suppression and killing. These results demonstrate the potential of this injectable composite hydrogel for spatiotemporal cancer treatment. In conclusion, integration of PTT and chemotherapy within our hydrogel platform offers enhanced therapeutic efficacy, suggesting promising prospects for future clinical applications. STATEMENT OF SIGNIFICANCE: Our research pioneers a breakthrough in cancer treatments by developing an injectable hydrogel platform incorporating liquid metal (LM) particle-mediated photothermal therapy and 6-mercaptopurine (MP)-based chemotherapy. The combination of gallium-based LM and MP achieves synergistic anticancer effects, and our injectable composite hydrogel acts as a localized reservoir for specific delivery of both therapeutic agents. This platform induces a multi-step anticancer mechanism, combining NIR-mediated hyperthermic tumor death and drug release triggered by released glutathione from damaged cancer populations. The synergistic efficacy validated in vitro and in vivo studies highlights significant tumor suppression. This injectable composite hydrogel with synergistic therapeutic efficacy holds immense promise for biomaterial-mediated spatiotemporal treatment of solid tumors, offering a potent targeted therapy for triple negative breast cancers.


Assuntos
Neoplasias da Mama , Gálio , Hidrogéis , Hidrogéis/química , Gálio/química , Gálio/farmacologia , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Animais , Linhagem Celular Tumoral , Injeções , Fototerapia , Camundongos Nus , Camundongos , Terapia Fototérmica , Camundongos Endogâmicos BALB C
12.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674067

RESUMO

Photobiomodulation (PBM) is a procedure that uses light to modulate cellular functions and biological processes. Over the past decades, PBM has gained considerable attention for its potential in various medical applications due to its non-invasive nature and minimal side effects. We conducted a narrative review including articles about photobiomodulation, LED light therapy or low-level laser therapy and their applications on dermatology published over the last 6 years, encompassing research studies, clinical trials, and technological developments. This review highlights the mechanisms of action underlying PBM, including the interaction with cellular chromophores and the activation of intracellular signaling pathways. The evidence from clinical trials and experimental studies to evaluate the efficacy of PBM in clinical practice is summarized with a special emphasis on dermatology. Furthermore, advancements in PBM technology, such as novel light sources and treatment protocols, are discussed in the context of optimizing therapeutic outcomes and improving patient care. This narrative review underscores the promising role of PBM as a non-invasive therapeutic approach with broad clinical applicability. Despite the need for further research to develop standard protocols, PBM holds great potential for addressing a wide range of medical conditions and enhancing patient outcomes in modern healthcare practice.


Assuntos
Terapia com Luz de Baixa Intensidade , Pele , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Pele/efeitos da radiação , Pele/metabolismo , Animais , Dermatopatias/radioterapia , Dermatopatias/terapia , Luz , Fototerapia/métodos
13.
Int J Biol Macromol ; 267(Pt 2): 131286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583851

RESUMO

Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.


Assuntos
Ácido Hialurônico , Melaninas , Urease , Humanos , Linhagem Celular Tumoral , Decapodiformes , Ácido Hialurônico/química , Melaninas/química , Nanopartículas/química , Fototerapia/métodos , Urease/química , Urease/metabolismo , Animais
14.
J Biophotonics ; 17(5): e202400023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576140

RESUMO

Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.


Assuntos
Luz , Humanos , Saúde , Fototerapia , Iluminação
15.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592730

RESUMO

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Assuntos
Terapia Fototérmica , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Animais , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Imunoterapia , Fototerapia/métodos
17.
Acta Derm Venereol ; 104: adv39927, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629891

RESUMO

Narrow-band TL-01 ultraviolet B phototherapy (TL-01) is an effective and widely used treatment for many skin diseases. The purpose of the investigation was to assess the risk of skin cancers in patients treated with TL-01 phototherapy who have not received any other phototherapy modalities. This cohort study included 4,815 TL-01 treated patients in Finland with psoriasis or atopic dermatitis. Clinical information was collected from the hospital records and linked with Finnish Cancer Registry data. The follow-up started from the first TL-01 treatment and the mean follow-up time was 8.4 years. Standardized incidence ratios were calculated for basal cell carcinoma, cutaneous melanoma, and squamous cell carcinoma. The standardized incidence ratio for basal cell carcinoma was 2.5 (95% confidence interval 1.8-3.5), for cutaneous melanoma 4.0 (95% confidence interval 2.1-6.8) and for squamous cell carcinoma 3.7 (95% confidence interval 1.7-7.0). For basal cell carcinoma and squamous cell carcinoma, the standardized incidence ratios remained similar during the whole follow-up time while the standardized incidence ratio for cutaneous melanoma was markedly higher during the first 5 years of follow-up. In conclusion, an increased incidence of skin cancers was observed among TL-01 treated patients. It should be confirmed in the future whether the skin cancer risk of TL-01 phototherapy will remain high in a longer follow-up.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Melanoma , Psoríase , Neoplasias Cutâneas , Terapia Ultravioleta , Humanos , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Melanoma/epidemiologia , Melanoma/complicações , Estudos de Coortes , Fototerapia/efeitos adversos , Terapia Ultravioleta/efeitos adversos , Psoríase/tratamento farmacológico , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/terapia , Carcinoma Basocelular/epidemiologia , Carcinoma Basocelular/terapia
18.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658952

RESUMO

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Assuntos
Autofagia , Neoplasias Colorretais , Reposicionamento de Medicamentos , Ivermectina , Nanopartículas , Autofagia/efeitos dos fármacos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Humanos , Camundongos , Nanopartículas/química , Ivermectina/farmacologia , Ivermectina/química , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Fototerapia/métodos , Ácido Hialurônico/química , Hidroxicloroquina/farmacologia , Hidroxicloroquina/química , Terapia Fototérmica/métodos
19.
J Nanobiotechnology ; 22(1): 151, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575943

RESUMO

BACKGROUND: As the lethal bone tumor, osteosarcoma often frequently occurs in children and adolescents with locally destructive and high metastasis. Distinctive kinds of nanoplatform with high therapeutical effect and precise diagnosis for osteosarcoma are urgently required. Multimodal optical imaging and programmed treatment, including synergistic photothermal-chemodynamic therapy (PTT-CDT) elicits immunogenetic cell death (ICD) is a promising strategy that possesses high bio-imaging sensitivity for accurate osteosarcoma delineating as well as appreciable therapeutic efficacy with ignorable side-effects. METHODS AND RESULTS: In this study, mesoporous Cu and Ce based oxide nanoplatform with Arg-Gly-Asp (RGD) anchoring is designed and successfully constructed. After loading with indocyanine green, this nanoplatform can be utilized for precisely targeting and efficaciously ablating against osteosarcoma via PTT boosted CDT and the closely following ICD stimulation both in vitro and in vivo. Besides, it provides off-peak fluorescence bio-imaging in the second window of near-infrared region (NIR II, 1000-1700 nm) and Magnetic resonance signal, serves as the dual-mode contrast agents for osteosarcoma tissue discrimination. CONCLUSION: Tumor targeted Cu&Ce based mesoporous nanoplatform permits efficient osteosarcoma suppression and dual-mode bio-imaging that opens new possibility for effectively diagnosing and inhibiting the clinical malignant osteosarcoma.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Criança , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/terapia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral , Fototerapia
20.
J Mater Chem B ; 12(17): 4097-4117, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587869

RESUMO

Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.


Assuntos
Imunoterapia , Manganês , Humanos , Manganês/química , Manganês/farmacologia , Imunoterapia/métodos , Fototerapia/métodos , Química Verde , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Nanoestruturas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA