RESUMO
From a perspective focused on phyto-nutraceuticals, alkaloids are considered to be the most significant metabolites, as they exhibit a broad range of pharmacological applications. Therefore, it is essential, to conduct a thorough investigation of the extraction techniques employed and to optimize the overall process. Considering this, we delved into tailor-made natural deep eutectic solvents coupled with ultrasonic-assisted extraction and macroporous resins aided recovery of therapeutics alkaloids from Thalictrum foliolosum DC. The extraction parameters including duty cycle (X1), extraction time (X2), water content (X3), and liquid-to-solid ratio (X4) were optimized through response surface methodology. Under the optimal extraction conditions [duty cycle- 61 %, ultrasonication extraction time- 10.35 min, water content- 30.51 %, and liquid-to-solid ratio- 30 mL/g], the yield of berberine (11.91 ± 0.12 mg/g DW), berbamine (11.85 ± 0.16 mg/g DW), magnoflorine (6.06 ± 0.05 mg/g DW), and palmatine (2.53 ± 0.015 mg/g DW) were found to be near the model prediction. Further, adsorption/desorption characteristics were investigated, and the results highlight AB-8 resin as most effective for the recovery of berberine and palmatine, while, XAD-7HP resin is best suited for berbamine and magnoflorine. FT-IR analysis shows similar spectra among the purified extracts with significantly (p < 0.05) higher antioxidant and anti-glycemic activities. In conclusion, the developed method complies with the criteria of green extraction which can be harnessed as a natural antioxidant in pharmaceutical and nutraceutical industries.
Assuntos
Alcaloides , Benzilisoquinolinas , Extratos Vegetais , Benzilisoquinolinas/química , Benzilisoquinolinas/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Alcaloides/química , Alcaloides/isolamento & purificação , Suplementos Nutricionais/análise , Solventes/química , Fracionamento Químico/métodosRESUMO
This study aimed to enhance the ultrasonic-assisted extraction (UAE) yield of seawater Arthrospira platensis polysaccharides (APPs) and investigate its structural characteristics and bioactivities. The optimization of UAE achieved a maximum crude polysaccharides yield of 14.78%. The optimal extraction conditions were a liquid-solid ratio of 30.00 mL/g, extraction temperature of 81 °C, ultrasonic power at 92 W and extraction time at 30 min. After purification through cellulose DEAE-52 and Sephadex G-100 columns, two polysaccharide elutions (APP-1 and APP-2) were obtained. APP-2 had stronger antioxidant and immunoregulatory activities than APP-1, thus the characterization of APP-2 was conducted. APP-2 was an acidic polysaccharide consisting of rhamnose, glucose, mannose and glucuronic acid at a ratio of 1.00:24.21:7.63:1.53. It possessed a molecular weight of 72.48 kDa. Additionally, APP-2 had linear and irregular spherical particles and amorphous structures, which contained pyranoid polysaccharides with alpha/beta glycosidic bonds. These findings offered the foundation for APP-2 as an antioxidant and immunomodulator applied in the food, pharmaceutical and cosmetic industries.
Assuntos
Antioxidantes , Spirulina , Spirulina/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Animais , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/isolamento & purificação , Ondas Ultrassônicas , Peso Molecular , Camundongos , Ultrassom , Fracionamento Químico/métodosRESUMO
Histone post-translational modifications (PTMs) are critical epigenetic regulatory factors. Histone PTMs are highly dynamic and complicated, encompassing over 30 structurally diverse modifications across nearly 180 amino acid residues, which generated extensive information regarding histone marks. In proteomics-based characterization of histone PTMs, chemical derivatization and antibody-based affinity enrichment were frequently utilized to improve the identification depth. However, chemical derivatization suffered from the occurrence of side reactions, and antibody-based affinity enrichment focused on specific PTM types of interest. In this research, we developed a multi-step fractionation strategy for comprehensively unbiased detection of histone PTM sites. By combining protein-level fractionation with peptide-level alkaline and acid phase fractionation, we developed the Multidimensional Fractionation based Histone Mark Identification Technology (MudFIT) and increased PTM identification to a total of 264 histone PTM sites. To the best of our knowledge, this strategy achieved the most comprehensive characterization of histone PTM sites in a single proteomics study. Using the same starting amount of sample, MudFIT identified more Kac sites and Kac peptides than those in antibody-based acetylated peptide enrichment. Moreover, in addition to well-studied histone marks, we discovered 36 potential new histone PTM sites including H2BK116bu, H4R45me2, H1K63pr, and uncovered unknown histone PTM types like aminoadipic on lysine and nitrosylation on tyrosine. Our data provided a method and resource for in-depth characterization of histone PTM sites, facilitating further biological understanding of histone marks.
Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Proteômica , Histonas/química , Cromatografia Líquida de Alta Pressão/métodos , Proteômica/métodos , Humanos , Espectrometria de Massas em Tandem/métodos , Fracionamento Químico/métodos , Peptídeos/química , Peptídeos/análiseRESUMO
Tubocapsicum anomalum, a Chinese medicinal plant rich in anti-tumor withanolides, requires efficient extraction methods. In this paper, an HPLC method was first established for the detection of withanolides, and gradient elution was carried out using a methanol-water solvent system. It was found that the content of withanolides was the highest in the leaves of T. anomalum, followed by the stems and fruits, and almost none in the roots. During the actual picking process, the quantity of leaves collected was relatively small, while the number of stems was the highest. Therefore, the Box-Behnken response surface method was used to optimize the ultrasonic-assisted extraction process of withanolides from the stems of T. anomalum. The optimal extraction conditions were determined as follows: the liquid-solid ratio was 20:1, the extraction solvent was 70 % ethanol, the ultrasonic power was 250 W, the ultrasonic time was 40 min, and the ultrasonic temperature was 50 °C. Under these conditions, the average yields of tubocapsenolide A (Te-A) and tubocapsanolide A (Ta-A) can reach 2.87 ± 0.12 mg/g and 1.18 ± 0.05 mg/g, respectively. We further compared extraction rates of two withanolides from different parts of T. anomalum using ultrasonic and traditional extraction methods. Ultrasonic extraction significantly increased rates, with the highest yields from leaves, followed by stems and fruits. The results show that ultrasonic optimization can improve extraction rate, reduce time, lower costs, enhance quality, and increase yield. Therefore, the optimized ultrasonic-assisted extraction process was adopted to extract the aerial parts of T. anomalum and separate the components. After optimization, the extract underwent several chromatographic separations to isolate eight previously undescribed withanolides (1-8) and two artificial withanolides (9-10), in addition to fifteen known compounds (11-25). Their structures were established through extensive spectroscopic data analysis. The compounds were evaluated for their antiproliferative effects against multiple cancer cell lines, including human hepatocellular carcinoma cells (HepG2, Hep3B, and MHCC97-H), human lung cancer cells (A549), human fibro-sarcoma cancer cells (HT1080), human chronic myeloid leukemia cells (K562), and human breast cancer cells (MDA-MB-231 and MCF7). Compounds 1-3, 5, 7, 11, 13, 15-16, and 22 displayed significant activity with IC50 values of 5.14-19.87 µM. The above results indicate that ultrasonic-assisted extraction technology can be used to obtain new withanolides more efficiently from T. anomalum, thereby enhancing the utilization rate of T. anomalum resources.
Assuntos
Proliferação de Células , Fracionamento Químico , Ondas Ultrassônicas , Vitanolídeos , Vitanolídeos/isolamento & purificação , Vitanolídeos/farmacologia , Vitanolídeos/química , Humanos , Proliferação de Células/efeitos dos fármacos , Fracionamento Químico/métodos , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/químicaRESUMO
The interaction between organic phosphorus (OP) and iron oxide significantly influences the phosphorus cycle in the natural environment. In shallow lakes, intense oxidation-reduction fluctuations constantly alter the existing form of iron oxides, but little is known about their impact on the adsorption and fractionation of OP molecules. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) was used to investigate the fractionation of OP from alkali-extracted sediment induced by crystalline goethite and amorphous ferrihydrite adsorption at a molecular scale. The results showed that ferrihydrite and goethite both exhibited high OP adsorption, and the adsorption amount decreased as the pH increased. The adsorption kinetics matched the pseudo-second-order equation. The ESI-FT-ICR MS analysis showed that 91â¯P-containing formulas were detected in the alkaline-extracted sediment solution. Ferrihydrite and goethite adsorbed 51 and 24â¯P-containing formulas, respectively, with adsorption rates of 56.0â¯% and 26.4â¯%. Ferrihydrite could adsorb more OP compounds than goethite, but no obvious molecular species selectivity was observed during the adsorption. The P-containing compounds, including unsaturated hydrocarbons-, lignin/carboxyl-rich alicyclic molecule (CRAM)-, tannin-, and carbohydrate-like molecular compounds, were more suitable for iron oxide adsorption. The double bond equivalence (DBE) is a valuable parameter that indicates OP fractionation during adsorption, and P-containing compounds with lower DBE values such as lipid- and protein-like molecular were prone to remain in the solution after adsorption. These research results provide insights into the biogeochemical cycling process of P in the natural environment.
Assuntos
Compostos Férricos , Sedimentos Geológicos , Compostos de Ferro , Minerais , Fósforo , Espectrometria de Massas por Ionização por Electrospray , Adsorção , Compostos Férricos/química , Fósforo/química , Fósforo/análise , Sedimentos Geológicos/química , Compostos de Ferro/química , Minerais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Fracionamento Químico/métodos , Lagos/química , Cinética , Análise de Fourier , Concentração de Íons de HidrogênioRESUMO
In this research, yarrow phenolic-rich extract was produced using pulsed electric field (PEF)-ultrasound assisted technology. The highest extraction efficiency (5.99 %) was obtained at 6.25 kV/cm of PEF and the sonication time of 60 min. As the PEF intensity and sonication time rose, the total phenolic content (TPC) and ferric-reducing power (RP) of the extracts increased. The PEF intensity of 2.70 kV/cm and sonication time of 45.83 min were the optimum extraction conditions resulting in the highest extraction efficiency, TPC, and RP. Then, this optimum extract was loaded into nanoliposomes. At higher extract levels, the encapsulation efficiency lowered, while the particle size, polydispersity index (PDI), and zeta potential of the nanoliposomal samples elevated. The results of Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) confirmed the successful encapsulation of yarrow extract into nanoliposomal carriers; the sample containing the extract had the highest enthalpy (3600 J/g) and nanoliposomes loaded with yarrow antioxidant extract (0.11 mL/mg) was the optimum sample. Finally, the sesame oil containing 500 ppm free and nanoliposome extract, as well as the sample with 200 ppm BHT were evaluated for oxidative stability. The highest oxidation stability (14.21 h) belonged to the oil containing nanoliposomal yarrow phenolic extract.
Assuntos
Lipossomos , Oxirredução , Fenóis , Óleo de Gergelim , Lipossomos/química , Fenóis/química , Fenóis/isolamento & purificação , Óleo de Gergelim/química , Eletricidade , Ondas Ultrassônicas , Sonicação/métodos , Fracionamento Químico/métodos , Tamanho da PartículaRESUMO
This study explored the potential of ultrasonic-assisted three-phase partitioning (UTPP) to simultaneously extract lipids, proteins, and polysaccharides from Idesia polycarpa Maxim (IPM) cake meal, a significant byproduct of oil extraction. The impact of variables such as inorganic salt type, solid-liquid ratio, salt concentration, pH, ultrasonic time, temperature, and volume of dimethyl carbonate was examined. Based on the single-factor tests and response surface methodology (RSM), optimal conditions were identified as 30 % ammonium citrate, a 1:26 solid-liquid ratio, pH 3, 31 min of ultrasonic time, 30 °C temperature, and 15 mL of dimethyl carbonate. These conditions achieved extraction rates of 8.10 % for lipids, 5.03 % for proteins, and 10.03 % for polysaccharides, with recovery rates of 91.62 %, 83.08 %, and 93.95 % respectively. Chemical analysis showed the lipid fraction rich in linoleic acid, and the protein fraction high in glutamic acid, aspartate, and serine. The polysaccharide fraction, mainly RG-I pectin with a molecular weight of 226.58 kDa, exhibited strong thermal stability and inhibitory effects on α-glucosidase and glycation, suggesting potential for functional food and dietary supplement applications. This highlights UTPP as a sustainable method for effectively utilizing valuable compounds from IPM cake meal, outperforming traditional extraction techniques.
Assuntos
Fracionamento Químico , Polissacarídeos , Ondas Ultrassônicas , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Fracionamento Químico/métodos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Temperatura , Óleos de Plantas/química , Concentração de Íons de Hidrogênio , alfa-Glucosidases/metabolismoRESUMO
Ultrasound-assisted extraction (UAE) shows great potential in exploiting microalgal compounds. However, upgrading the extraction system lacks concerns. This study proposes a novel sono-reactor featuring a microbubble distributor for increasing bubble abundance and correspondingly improving microalgal compound extraction. Results indicate that protein concentrations increase with ultrasound powers and extraction time while an optimized gas flow rate exists. The optimal parameters by Box-Behnken design are power 646.0 W, nitrogen flow rate 25.0 mL/min, and time 40.0 min, with an optimal protein concentration of 249.1 mg/L - a substantial improvement over gas-free extraction. The strategic increase in bubble abundance enhances microalgal compound extraction efficiency and extraction kinetics. The system innovation will contribute to the advancement of bioresource utilization and sustainability.
Assuntos
Microalgas , Microbolhas , Microalgas/metabolismo , Fracionamento Químico/métodos , Cinética , Sonicação/métodosRESUMO
During the last years, there has been an increasing research interest in the analysis of biological fluids requiring non-invasive sampling for biomedical and clinical applications. In this work, we have focused on the nasal exudate with the aim of investigating the potential use of this fluid to know the role of iron in stroke and also for diagnosis. Potential differences in the nasal exudate, collected in swabs, from diagnosed hemorrhagic stroke, ischemic stroke, and control groups were investigated with regard to total iron by inductively coupled plasma-mass spectrometry, iron fractionation studies by size exclusion chromatography together with post-column isotope dilution analysis, and four proteins containing iron (ferritin, transferrin, lactoferrin, and ferroportin) with ELISA kits. All these analyses represent an analytical challenge, considering the rather limited amount of sample (10-40 mg) available, being the nasal exudate extracted from the swab with 300 µL 10 mM Tris/HCl, pH = 7.4. Studies to obtain reliable analytical information, such as the blank contribution of the sampling step, evaluation of the extraction efficiency of the nasal exudate from the swab, and normalization strategies for data treatment, have been carried out. Results showed that despite the limited number of investigated samples, fractionation studies as well as the concentrations of ferritin and ferroportin obtained with ELISA kits showed a differential behavior between the different cohorts.
Assuntos
Ferro , Acidente Vascular Cerebral , Humanos , Ferro/análise , Acidente Vascular Cerebral/diagnóstico , Masculino , Feminino , Fracionamento Químico/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Lactoferrina/análise , Pessoa de Meia-Idade , Idoso , Transferrina/análise , Exsudatos e Transudatos/química , Ferritinas/análise , Espectrometria de Massas/métodos , Proteínas de Transporte de CátionsRESUMO
Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer a high-quality protein source with promising bioactive compounds for food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) to isolate faba bean protein (U-FBPI). The ultrasound-assisted method achieved a protein extraction yield of 19.75 % and a protein content of 92.87 %, outperforming the control method's yield of 16.41 % and protein content of 89.88 %. Electrophoretic analysis confirmed no significant changes in the primary structure of U-FBPI compared to the control. However, Fourier-transform infrared spectroscopy revealed modifications in the secondary structure due to ultrasound treatment. The U-FBPI demonstrated superior water and oil holding capacities compared to the control protein isolate, although its foaming capacity was reduced by ultrasound. Thermal analysis indicated minimal impact on the protein's thermal properties under the applied ultrasound conditions. This research highlights the potential of ultrasound-assisted extraction for improving the functional properties of faba bean protein isolates, presenting a viable approach for advancing plant-based food production and contributing to sustainable protein consumption.
Assuntos
Proteínas de Plantas , Temperatura , Vicia faba , Vicia faba/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Fracionamento Químico/métodos , Ondas Ultrassônicas , Sonicação/métodos , Água/químicaRESUMO
Fabiana punensis S. C. Arroyo is a subshrub or shrub that is indigenous to the arid and semiarid region of northern Argentina and is known to possess several medicinal properties. The objective of this study was to optimize the extraction conditions so as to maximize the yield of bioactive total phenolic compound (TPC) and flavonoids (F) of F. punensis' aerial parts by using non-conventional extraction methods, namely ultrasound-assisted extraction, UAE, and microwave-assisted extraction, MAE, and to compare the biological activities and toxicity of optimized extracts vs. conventional extracts, i.e., those gained by maceration. Response Surface Methodology (RSM) was used to apply factorial designs to optimize the parameters of extraction: solid-to-liquid ratio, extraction time, ultrasound amplitude, and microwave power. The experimental values for TPC and F and antioxidant activity under the optimal extraction conditions were not significantly different from the predicted values, demonstrating the accuracy of the mathematical models. Similar HPLC-DAD patterns were found between conventional and UAE- and MAE-optimized extracts. The main constituents of the extracts correspond to phenolic compounds (flavonoids and phenolic acids) and apigenin was identified. All extracts showed high scavenger capacity on ABTSâ¢+, O2â¢- and H2O2, enabling the inhibition of the pro-inflammatory enzymes xanthine oxidase (XO) and lipoxygenase (LOX). They also showed an antimutagenic effect in Salmonella Typhimurium assay and cytotoxic/anti-proliferative activity on human melanoma cells (SKMEL-28). Toxicological evaluation indicates its safety. The results of this work are important in the development of efficient and sustainable methods for obtaining bioactive compounds from F. punensis for the prevention of chronic degenerative diseases associated with oxidative stress, inflammation, and DNA damage.
Assuntos
Antioxidantes , Micro-Ondas , Fenóis , Componentes Aéreos da Planta , Extratos Vegetais , Fenóis/química , Fenóis/farmacologia , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Componentes Aéreos da Planta/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Humanos , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ondas Ultrassônicas , Fracionamento Químico/métodos , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismoRESUMO
Ultrasound-assisted extraction (UAE) was evaluated as a green procedure to produce faba beans protein isolates from faba beans. Magnetic stirring was performed as conventional extraction. A three-level five-factor Box-Behnken Design (BBD) was applied to obtain the optimal UAE conditions to concurrently maximize extraction yield and protein content. The response surface methodology (RSM) showed a quadratic curvature for extraction yield and protein. The optimal extraction conditions were determined as: Power of 123 W, solute/solvent ratio of 0.06 (1:15 g/mL), sonication time of 41 min, and total volume of 623 mL with a desirability value of 0.82. Under these conditions, the extraction yield of 19. 75 ± 0.87 % (Protein yield of 67.84 %) and protein content of 92.87 ± 0.53 % were obtained for optimum ultrasound extraction. Control samples using magnetic stirring under similar conditions without ultrasound treatment showed an extraction yield of 16.41 ± 0.02 % (Protein yield of 54.65 %) and a protein content of 89. 88 ± 0.40 %. This shows that BBD can effectively be used to optimize the extraction of proteins from faba beans using optimal extraction conditions, resulting in a higher extraction yield and protein purity.
Assuntos
Fracionamento Químico , Proteínas de Plantas , Vicia faba , Vicia faba/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Fracionamento Químico/métodos , Sonicação/métodosRESUMO
A contribution to the use of deep eutectic solvents (DES) and microwave-assisted extraction (MAE) was made for bioactive compounds recovery, especially those with lipophilic character, from tomato and carrot samples rich in carotenoids. For the first time, a novel deep eutectic solvent was synthesized, comprising tributyl phosphate (TBP) as a hydrogen bond acceptor and acetic acid (AcOH) as a hydrogen bond donor. The total antioxidant capacity (TAC) of tomato and carrot extracts obtained by MAE, in which optimization of operational parameters and modeling were made with the use of Box-Behnken design of the response surface methodology (RSM), was evaluated using the Cupric Reducing Antioxidant Capacity (CUPRAC) method. For the highest TAC, operational parameters that best suit the MAE procedure were set at 80 °C, 35 min, and 25 mL/2.0 g. The TAC values of extracts obtained by MAE using TBP:AcOH, 1:2 (mol/mol) were examined against those of extracts acquired by classical solvent extraction using a mixture of hexane, ethanol and acetone (H:E:A, 2:1:1 (v/v/v)) mixture. TAC of extracts in DES varied between 5.10 and 0.71 lycopene equivalents (mmol LYC kg-1). The highest extraction yield comparable to conventional organic solvents was obtained with TBP:AcOH (1:2). It was observed that, in addition to lipophilic antioxidants, some hydrophilic antioxidant compounds were partially extracted with the proposed DES. Moreover, the extracted antioxidant compounds were identified and quantified by HPLC analysis. The proposed DES and MAE process will find potential application for hydrophobic antioxidant extraction from tomatoes and carrots on an industrial scale after further studies.
Assuntos
Carotenoides , Daucus carota , Solventes Eutéticos Profundos , Micro-Ondas , Extratos Vegetais , Solanum lycopersicum , Carotenoides/química , Carotenoides/isolamento & purificação , Solanum lycopersicum/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Daucus carota/química , Solventes Eutéticos Profundos/química , Fracionamento Químico/métodos , Organofosfatos/química , Organofosfatos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Solventes/químicaRESUMO
The objective of this study was to optimize the ultrasound-assisted extraction (UAE) of Inula viscosa, focusing on the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity and to evaluate its antioxidant effect in sunflower oil (SFO) storage. A water-ethanol binary solvent system was applied to extract bioactive components sustainably. Extraction parameters (temperature, time, ethanol concentration, and solvent-to-solid ratio) were optimized using a central composite rotatable design, achieving high accuracy (R2 > 0.974). Optimum conditions were 54 % (v/v) ethanol concentration, 60 °C, 31 min, and a 15 (mL/g) solvent-to-solid ratio resulting in a yield of 24.72 g/g (%), TPC of 489.54 mg gallic acid/g, TFC of 149.81 mg quercetin/g, and IC50 of 18.21 µg/mL. UAE outperformed Soxhlet extraction in yield, bioactive compound composition, and antioxidant capacity. Strong correlations were found between TPC, TFC, and antioxidant capacity, with TFC having a more significant impact. I. viscosa extract was found to be a potent antioxidant and delay the oxidation of SFO during accelerated storage due to peroxide value and oxidative induction time analysis. Microstructural analysis illuminated the structural changes induced by the extraction methods. In conclusion, this study not only optimized UAE of I.viscosa, showing superior efficiency and antioxidant capacity, but also demonstrated the practical application of I.viscosa in enhancing sunflower oil shelf life, thereby providing valuable insights for the field of food engineering and antioxidant research.
Assuntos
Antioxidantes , Fracionamento Químico , Inula , Óleos de Plantas , Óleo de Girassol , Ondas Ultrassônicas , Óleo de Girassol/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Fracionamento Químico/métodos , Inula/química , Fenóis/isolamento & purificação , Fenóis/química , Flavonoides/isolamento & purificação , Flavonoides/química , TemperaturaRESUMO
Extraction of coconut paring oil (CPO) from processing by-products adds value to the product and reduces resource wastage. This study aims to assess the impact of 20 kHz, 20/80 kHz and 20/40/80 kHz of multi-frequency ultrasonic-assisted enzymatic extraction (MFUAEE) on the yield, physicochemical properties, fatty acid composition, total phenolic content, antioxidant activity, and emulsion stability of CPO derived from wet coconut parings (WCP). Results revealed that the CPO extraction yield with MFUAEE was 32.58 % - 43.31 % higher compared to AEE. The tri-frequency 20/40/80 kHz mode of multi-frequency ultrasound pretreatment exhibited the highest CPO extraction yield (70.08 %). The oil extracted through MFUAEE displayed similar fatty acid profiles to AEE, but had lower peroxide value, K232 and K270 values. Particularly, MFUAEE oil contained higher total phenolic content and exhibited potent DPPH free radical scavenging capacity. Results observed by SEM indicated that the pretreatment with multi-frequency ultrasound more efficiently disrupts the cellular structure of the WCP. Additionally, MFUAEE enhanced emulsion stability through the cavitation effect of ultrasound. These findings suggest that MFUAEE is a valuable approach for method for obtaining CPO with elevated extraction yield and superior quality, thereby enhancing the utilization of coconut by-products.
Assuntos
Óleo de Coco , Cocos , Emulsões , Ondas Ultrassônicas , Óleo de Coco/química , Cocos/química , Antioxidantes/isolamento & purificação , Antioxidantes/química , Fenômenos Químicos , Fracionamento Químico/métodos , Ácidos Graxos/química , Fenóis/isolamento & purificação , Fenóis/químicaRESUMO
To develop an environmentally sustainable and efficient extraction method for flavonoids from Moringa oleifera Lam. (M. oleifera) leaves, natural deep eutectic solvents (NADES) with ultrasound-assisted extraction was utilized in this study. After optimization of extraction parameters of NADES, including ultrasonic power, ultrasonic time, and liquid-solid ratio, the extraction yield of ultrasound-assisted NADES (UAN) composed of betaine and urea (Bet-Urea) reached 54.69 ± 0.19 mg RE/g DW, which made a 1.7-fold increase compared to traditional ultrasound-assisted traditional solvent (UATS). UPLC-Q Exactive/MS analysis revealed that M. oleifera leaves flavonoids (MOLF) was mainly composed of Quercetin 3-ß-D-glucoside, Rutin, Kaempferol-3-O-glucoside, Vitexin and Quercetin. Furthermore, the COSMO-RS model was employed to verify the optimal compatibility of solubility and activity coefficient between Bet-Urea and the five primary flavonoids in MOLF. In vitro antioxidant assays verified that MOLF extracted by UAN exhibited superior antioxidant activity compared to MOLF extracted by UATS. Overall, the devised process not only augmented the extraction yield of MOLF but also effectively preserved the bioactive compounds, thus promoting the utilization of green extraction solvents in the food industry.
Assuntos
Antioxidantes , Flavonoides , Química Verde , Moringa oleifera , Folhas de Planta , Ondas Ultrassônicas , Folhas de Planta/química , Flavonoides/isolamento & purificação , Flavonoides/química , Moringa oleifera/química , Antioxidantes/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Química Verde/métodos , Solventes Eutéticos Profundos/química , Fracionamento Químico/métodos , Solventes/químicaRESUMO
Faba bean ingredients are rich in proteins and good sources of calcium (Ca), although containing phytic acid (PA) molecules. PA, a polyphosphate compound, can affect the bioavailability of minerals/proteins through complex formation. This study evaluates the impact of two extraction processes, Alkaline Extraction-IsoElectric Precipitation (AE-IEP) and Sequential Extraction (SE), on the ability of faba bean globulin systems to bind added calcium ions. Increasing concentrations of CaCl2 were introduced into 2.5% (w/v) protein dispersions at pHs 4.5, 5.5, 6.5, and 7.5, and free Ca monitored. Near the isoelectric point of globulin (pH â¼ 4-5), Ca binding capacity was found to be low. At higher pHs, significant Ca chelation occurred, initially attributed to free PA binding sites, resulting in the formation of insoluble complexes and subsequent protein precipitation. The AE-IEP globulin fraction exhibited a higher Ca binding capacity than the SE globulin, attributed to its higher PA and lower initial Ca concentrations.
Assuntos
Cálcio , Globulinas , Proteínas de Plantas , Vicia faba , Cálcio/química , Cálcio/metabolismo , Vicia faba/química , Vicia faba/metabolismo , Concentração de Íons de Hidrogênio , Globulinas/química , Globulinas/metabolismo , Globulinas/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Fracionamento Químico/métodosRESUMO
Tiliroside is a natural polyphenolic compound with a wide range of biological activity, and defatted strawberry seeds are its rich source. The goal of this study was to optimize accelerated solvent extraction (ASE) conditions, including temperature, solvent composition, and the number of extraction cycles, using Box-Behnken design to maximize the yield of tiliroside. UPLC-DAD-MS was applied to investigate the polyphenolic composition of the extracts, and preparative liquid chromatography (pLC) was used for isolation. All obtained mathematical models generally showed an increase in the efficiency of isolating polyphenolic compounds with an increase in temperature, ethanol content, and the number of extraction cycles. The optimal established ASE conditions for tiliroside were as follows: a temperature of 65 °C, 63% ethanol in water, and four extraction cycles. This allowed for the obtainment of a tiliroside-rich fraction, and the recovery of isolated tiliroside from plant material reached 243.2 mg from 100 g. Our study showed that ASE ensures the isolation of a tiliroside-rich fraction with high effectiveness. Furthermore, defatted strawberry seeds proved to be a convenient source of tiliroside because the matrix of accompanying components is relatively poor, which facilitates separation.
Assuntos
Fragaria , Extratos Vegetais , Polifenóis , Sementes , Solventes , Fragaria/química , Polifenóis/química , Polifenóis/isolamento & purificação , Sementes/química , Solventes/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/química , Flavonoides/isolamento & purificação , Fracionamento Químico/métodosRESUMO
The demand for polyphenols and essential oils (EOs) on the food market is high and grows every year. Its partially the result of the fact that these compounds can be used in formulation of clean label foods, a fast growing food sector. A significant share of polyphenols and EOs are extracted from herbs. The quality of the extracts is determined mainly by the extraction method. Conventional extraction techniques of phytochemicals are time-consuming, operate at high temperatures, and require usage of organic solvents and energy in large quantities. According to the United Nations Sustainability Development Plan, chemical processes should be replaced by green alternatives that would reduce the use of solvents and energy. Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE) and Cold Plasma-Assisted Extraction (CPAE) meets these criteria. The review shows that each of these techniques seems to be a great alternative for conventional extraction methods ensuring higher yields of bioactive compounds.
Assuntos
Química Verde , Óleos Voláteis , Extratos Vegetais , Polifenóis , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Fracionamento Químico/métodos , Fracionamento Químico/instrumentação , Micro-Ondas , Plantas Medicinais/químicaRESUMO
Rosemary has many medicinal and therapeutic properties and therefore it is important to study how to maximize the recovery of its bioactive compounds. In the present study, four different extraction techniques were used, namely stirring extraction (STE), pulsed electric field-assisted extraction (PEF), ultrasound probe-assisted extraction (UPAE), and ultrasound bath-assisted extraction (UBAE). First, some primary experiments were carried out in order to optimize each technique individually through the Plackett-Burman design. Then, each technique was applied under optimal conditions and the results were compared with each other. The optimal total polyphenol content (TPC) of STE is ~19 mg gallic acid equivalents per gram of dry weight (dw), while the antioxidant activity of the extract is 162 µmol ascorbic acid equivalents (AAEs) per gram of dw via FRAP and ~110 µmol AAE per gram of dw via DPPH. As for PEF, the optimal TPC is ~12 mg GAE/g dw, and the FRAP and DPPH values are ~102 and ~70 µmol AAE per gram of dw, respectively. When it comes to UPAE, the optimal TPC is ~16 mg GAE/g dw and the antioxidant capacity of the extract is ~128 µmol AAE/g dw through FRAP and ~98 µmol AAE/g dw through DPPH. UBAE optimal extract yielded ~17 mg GAE/g dw TPC, ~146 µmol AAE/g dw for FRAP, and ~143 µmol AAE/g dw for DPPH. The highest flavonoid content (~6.5 mg rutin equivalent/g dw) and DPPH (~143 µmol ascorbic acid equivalent/g dw) is obtained through UBAE. UPAE has been shown to be more efficient in recovering ascorbic acid (~20 mg/g dw). Additionally, the chlorophyll-to-carotenoid ratios of UPAE and UBAE were 2.98 and 2.96, respectively, indicating that the extracts had a generally positive impact on health. Considering the environmental impact of each extraction technique but also which antioxidant factor needs to be maximized, the most suitable extraction technique will be chosen.