Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Front Immunol ; 15: 1375461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711514

RESUMO

Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.


Assuntos
Frutose , Neoplasias , Microambiente Tumoral , Humanos , Frutose/metabolismo , Frutose/efeitos adversos , Neoplasias/metabolismo , Neoplasias/etiologia , Animais , Reprogramação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Reprogramação Metabólica
2.
Nutrients ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612947

RESUMO

We aimed to investigate how dietary fructose and sodium impact blood pressure and risk of hypertensive target organ damage 10 years later. Data from n = 3116 individuals were obtained from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Four groups were identified based on the four possible combinations of the lower and upper 50th percentile for sodium (in mg) and fructose (expressed as percent of total daily calories). Differences among groups were ascertained and logistic regression analyses were used to assess the risk of hypertensive target organ damage (diastolic dysfunction, coronary calcification and albuminuria). Individuals in the low-fructose + low-sodium group were found to have lower SBP compared to those in the low-fructose + high-sodium and high-fructose + high-sodium groups (p < 0.05). The highest risk for hypertensive target organ damage was found for albuminuria only in the high-fructose + high-sodium group (OR = 3.328, p = 0.006) while female sex was protective across all groups against coronary calcification. Our findings highlight that sodium alone may not be the culprit for hypertension and hypertensive target organ damage, but rather when combined with an increased intake of dietary fructose, especially in middle-aged individuals.


Assuntos
Calcinose , Hipertensão , Pessoa de Meia-Idade , Adulto Jovem , Feminino , Humanos , Vasos Coronários , Sódio , Albuminúria , Hipertensão/epidemiologia , Hipertensão/etiologia , Dieta Hipossódica , Frutose/efeitos adversos
3.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532128

RESUMO

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Assuntos
Resistência à Insulina , Gravidez , Feminino , Camundongos , Animais , Resistência à Insulina/genética , Frutose/efeitos adversos , Frutose/metabolismo , Progesterona/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Fígado/metabolismo , Lipídeos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167029, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325224

RESUMO

High fructose diets are associated with an increased risk of liver cancer. Previous studies in mice suggest increased lipogenesis is a key mechanism linking high fructose diets to liver tumour growth. However, these studies administered fructose to mice at supraphysiological levels. The aim of this study was to determine whether liver tumour growth and lipogenesis were altered in mice fed fructose at physiological levels. To test this, we injected male C57BL/6 mice with the liver carcinogen diethylnitrosamine and then fed them diets without fructose or fructose ranging from 10 to 20 % total calories. Results showed mice fed diets with ≥15 % fructose had significantly increased liver tumour numbers (2-4-fold) and total tumour burden (∼7-fold) vs mice fed no-fructose diets. However, fructose-associated tumour burden was not associated with lipogenesis. Conversely, unbiased metabolomic analyses revealed bile acids were elevated in the sera of mice fed a 15 % fructose diet vs mice fed a no-fructose diet. Using a syngeneic ectopic liver tumour model, we show that ursodeoxycholic acid, which decreases systemic bile acids, significantly reduced liver tumour growth in mice fed the 15 % fructose diet but not mice fed a no-fructose diet. These results point to a novel role for systemic bile acids in mediating liver tumour growth associated with a high fructose diet. Overall, our study shows fructose intake at or above normal human consumption (≥15 %) is associated with increased liver tumour numbers and growth and that modulating systemic bile acids inhibits fructose-associated liver tumour growth in mice.


Assuntos
Ácidos e Sais Biliares , Neoplasias Hepáticas , Humanos , Camundongos , Masculino , Animais , Frutose/efeitos adversos , Camundongos Endogâmicos C57BL , Neoplasias Hepáticas/induzido quimicamente
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354758

RESUMO

For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-ß1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.


Assuntos
Nefropatias Diabéticas , Células Mesangiais , Camundongos , Animais , Células Endoteliais/patologia , Frutose/efeitos adversos , Nefropatias Diabéticas/patologia , Camundongos Endogâmicos , Obesidade/complicações , Comunicação Celular
6.
Nutr J ; 23(1): 16, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302919

RESUMO

Labels do not disclose the excess-free-fructose/unpaired-fructose content in foods/beverages. Objective was to estimate excess-free-fructose intake using USDA loss-adjusted-food-availability (LAFA) data (1970-2019) for high fructose corn syrup (HFCS) and apple juice, major sources of excess-free-fructose, for comparison with malabsorption dosages (~ 5 g-children/ ~ 10 g-adults). Unlike sucrose and equimolar fructose/glucose, unpaired-fructose triggers fructose malabsorption and its health consequences. Daily intakes were calculated for HFCS that is generally-recognized-as-safe/ (55% fructose/45% glucose), and variants (65/35, 60/40) with higher fructose-to-glucose ratios (1.9:1, 1.5:1), as measured by independent laboratories. Estimations include consumer-level-loss (CLL) allowances used before (20%), and after, subjective, retroactively-applied increases (34%), as recommended by corn-refiners (~ 2012). No contributions from crystalline-fructose or agave syrup were included due to lack of LAFA data. High-excess-free-fructose-fruits (apples/pears/watermelons/mangoes) were not included. Eaten in moderation they are less likely to trigger malabsorption. Another objective was to identify potential parallel trends between excess-free-fructose intake and the "unexplained" US asthma epidemic. The fructose/gut-dysbiosis/lung axis is well documented, case-study evidence and epidemiological research link HFCS/apple juice intake with asthma, and unlike gut-dysbiosis/gut-fructosylation, childhood asthma prevalence data spans > 40 years. Results Excess-free-fructose daily intake for individuals consuming HFCS with an average 1.5:1 fructose-to-glucose ratio, ranged from 0.10 g/d in 1970, to 11.3 g/d in 1999, to 6.5 g/d in 2019, and for those consuming HFCS with an average 1.9:1 ratio, intakes ranged from 0.13 g/d to 16.9 g/d (1999), to 9.7 g/d in 2019, based upon estimates with a 20% CLL allowance. Intake exceeded dosages that trigger malabsorption (~ 5 g) around ~ 1980. By the early 1980's, tripled apple juice intake had added ~ 0.5 g to average-per-capita excess-free-fructose intake. Contributions were higher (~ 3.8 g /4-oz.) for individuals consuming apple juice consistent with a healthy eating pattern (4-oz. children, 8-oz. adults). The "unexplained" childhood asthma epidemic (1980-present) parallels increasing average-per-capita HFCS/apple juice intake trends and reflects epidemiological research findings. Conclusion Displacement of sucrose with HFCS, its ubiquitous presence in the US food-supply, the industry practice of adding more fructose to HFCS than generally-recognized-as-safe, and increased use of apple juice/crystalline fructose/agave syrup in foods/beverages has contributed to unprecedented excess-free-fructose intake levels, fructose malabsorption, gut-dysbiosis and gut-fructosylation (immunogen burden)-gateways to chronic disease.


Assuntos
Asma , Xarope de Milho Rico em Frutose , Leucemia Linfocítica Crônica de Células B , Malus , Adulto , Humanos , Criança , Xarope de Milho Rico em Frutose/efeitos adversos , Frutose/efeitos adversos , Disbiose , Glucose , Doença Crônica , Asma/epidemiologia , Sacarose
7.
Trends Endocrinol Metab ; 35(2): 88-90, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097465

RESUMO

High dietary fructose consumption is linked to multiple disease states, including cancer. Zhou and colleagues recently reported a novel mechanism where high dietary fructose levels increase acetate production by the gut microbiome increasing post-translational modification O-GlcNAcylation in liver cells, which contributes to disease progression in mouse models of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Frutose/efeitos adversos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Processamento de Proteína Pós-Traducional , Acetatos
8.
Sci Rep ; 13(1): 22704, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38123624

RESUMO

The consumption of fructose has increased dramaticly during the last few decades, inducing a great increase in the risk of intrahepatic lipid accumulation, hypertriglyceridemia, hyperuricemia and cancer. However, the underlying mechanism has not yet been fully elucidated. Amino acid metabolism may play an important role in the process of the diseases caused by fructose, but there is still a lack of corresponding evidence. In present study, we provide an evidence of how fructose affects amino acids metabolism in 1895 ordinary residents in Chinese community using UPLC-QqQMS based amino acid targeted metabolomics and the underlying mechanism of fructose exposure how interferes with amino acid metabolism related genes and acetylated modification of proteome in the liver of rats model. We found people with high fructose exposure had higher levels of Asa, EtN, Asp, and Glu, and lower levels of 1MHis, PEtN, Arg, Gln, GABA, Aad, Hyl and Cys. The further mechanism study displayed amino acid metabolic genes of Aspa, Cndp1, Dbt, Dmgdh, and toxic metabolites such as N-acetylethanolamines accumulation, interference of urea cycle, as well as acetylated modification of key enzymes in glutamine metabolic network and glutamine derived NEAAs synthesis pathway in liver may play important roles in fructose caused reprogramming in amino acid metabolism. This research provides novel insights of the mechanism of amino acid metabolic disorder caused by fructose and supplies new targets for clinical therapy.


Assuntos
Frutose , Glutamina , Humanos , Ratos , Animais , Glutamina/metabolismo , Frutose/efeitos adversos , Multiômica , Aminoácidos , China
9.
BMC Biol ; 21(1): 252, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950228

RESUMO

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Assuntos
Caenorhabditis elegans , Doenças Neurodegenerativas , Animais , Humanos , Caenorhabditis elegans/metabolismo , Oxidopamina/efeitos adversos , Oxidopamina/metabolismo , Dopamina/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Neurônios Dopaminérgicos/fisiologia , Trifosfato de Adenosina/metabolismo , Açúcares/efeitos adversos , Açúcares/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Modelos Animais de Doenças
10.
Atherosclerosis ; 385: 117342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879153

RESUMO

BACKGROUND AND AIMS: Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS: It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS: These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Calcificação Vascular , Animais , Humanos , Camundongos , Ratos , Adrenomedulina/metabolismo , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Miócitos de Músculo Liso/metabolismo , Hormônios Peptídicos/farmacologia , Transdução de Sinais , Calcificação Vascular/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 1145575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600712

RESUMO

Introduction: Emerging evidence demonstrates that the high-fructose and high-fat diet (HFHF) induced obesity and fatty liver disease has become one of the most common metabolic disorders worldwide. Therefore, innovative investigations on compounds targeting obesity and fatty liver diseases are urgently needed. Methods: The high-throughput natural compounds screen was performed to screen the important compounds. A rat HFHF model was constructed, the regulatory function of Oxymatrine in HFHF-induced obesity was further explored. Results: We identified Oxymatrine, a natural compound extracted from Sophora flavescens, showed a potential compacity in high-fat diet-induced fatty liver disease. We found that oxymatrine significantly inhibited HFHF-induced obesity using a rat HFHF model. Additionally, we found that oxymatrine altered the enhancer landscape of subcutaneous adipose tissues by ChIP-seq analysis using antibodies against the H3K27ac histone modification. Motif enrichment analysis showed the Smad motif was significantly enriched in enhancers altered post-oxymatrine treatment. Further chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis and luciferase reporter assays showed oxymatrine alters the binding of Smad3 on the enhancer regions of B-cell lymphoma 2 (Bcl2) and the enhancer activity of Bcl2. Discussion: Together, our study highlighted oxymatrine could suppress high-fructose and high-fat diet-induced obesity by inhibiting the suppressor of mothers against decapentaplegic 3 (Smad3) binding on obesity-related enhancers.


Assuntos
Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Ratos , Frutose/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Proteínas Proto-Oncogênicas c-bcl-2
12.
J Biol Chem ; 299(9): 105162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586586

RESUMO

Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound ß-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor ß1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.


Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Transferases (Outros Grupos de Fosfato Substituídos) , Animais , Humanos , Camundongos , Frutose/efeitos adversos , Glucosilceramidas/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias/genética , Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidiletanolaminas/sangue , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Camundongos Knockout , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos
13.
Artigo em Inglês | MEDLINE | ID: mdl-37429413

RESUMO

Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.


Assuntos
Estado Pré-Diabético , Fosfato de Sitagliptina , Camundongos , Ratos , Humanos , Animais , Exenatida/farmacologia , Frutose/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Modelos Animais de Doenças , Fatores de Transcrição , Triglicerídeos/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1885): 20220230, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37482773

RESUMO

The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.


Assuntos
Hominidae , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Frutose/efeitos adversos , Frutose/metabolismo , Obesidade/metabolismo , Fígado
15.
Can J Physiol Pharmacol ; 101(11): 565-573, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433224

RESUMO

Telomere length, a marker of ageing, is susceptible to developmental programming that may cause its accelerated attrition. Metabolic syndrome triggers telomere attrition. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, is protective against telomere attrition. We investigated the impact of fenofibrate administered during suckling on the lipid profile and leucocyte telomere lengths of rats fed a high-fructose diet post-weaning. Suckling Sprague-Dawley pups (n = 119) were allocated to four groups and gavaged with either 10 mL·kg-1 body mass 0.5% dimethyl sulfoxide, 100 mg·kg-1 body mass fenofibrate, fructose (20%, w / v), or a combination of fenofibrate and fructose for 15 days. Upon weaning, each of the initial groups was split into two subgroups: one had plain water while the other had fructose solution (20%, w / v) to drink for 6 weeks. Blood was collected for DNA extraction and relative leucocyte telomere length determination by real-time PCR. Plasma triglycerides and cholesterol were also quantified. The treatments had no effect (p > 0.05) on body mass, cholesterol concentration, and relative leucocyte telomere lengths in both sexes. Post-weaning fructose increased triglyceride concentrations (p < 0.05) in female rats. Fenofibrate administered during suckling did not affect ageing nor did it prevent high fructose-induced hypertriglyceridaemia in female rats.


Assuntos
Fenofibrato , Masculino , Ratos , Animais , Feminino , Fenofibrato/farmacologia , Frutose/efeitos adversos , Ratos Sprague-Dawley , Dieta , Colesterol , Triglicerídeos
16.
Nutrition ; 111: 112032, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182401

RESUMO

OBJECTIVES: We performed a systematic review and dose-response meta-analysis to assess the association of total sugars, added sugars, fructose, and sucrose with all-cause, cardiovascular disease (CVD), and cancer mortality. METHODS: We searched PubMed, Embase, and Web of Science for prospective cohort studies up to May 10, 2022. Pooled relative risks and 95% CIs were calculated by random effect models, and the linear and non-linear dose-response associations were explored by restricted cubic splines. RESULTS: Comparing the highest with the lowest categories of total sugars, the summary RR was 1.09 (95% CI, 1.02-1.15; I2 = 71.9%) for all-cause mortality, 1.10 (1.02-1.18; I2 = 12.7%) for CVD mortality, and 1.00 (0.94-1.05; I2 = 0) for cancer mortality. For fructose, the summary relative risk was 1.09 (1.03-1.16; I2 = 58.4%) for all-cause mortality, 1.11 (1.03-1.20; I2 = 37.4%) for CVD mortality, and 1.00 (0.95-1.06; I2 = 0) for cancer mortality. Restricted cubic splines found non-linear associations of total sugars and fructose with all-cause and CVD mortality (P for non-linearity < 0.001). A significant increment in risk of all-cause and CVD mortality was observed with >10% energy intake to 20% energy intake for total sugars and fructose. No association was found for the added sugars and sucrose with all-cause, CVD, and cancer mortality. CONCLUSIONS: Increased intake of total sugars and fructose is associated with all-cause and CVD mortality but not associated with cancer mortality, which could have implications for guideline recommendations regarding the risk of mortality related to sugar intake.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Açúcares/efeitos adversos , Frutose/efeitos adversos , Estudos Prospectivos , Sacarose , Doenças Cardiovasculares/etiologia , Carboidratos da Dieta
17.
J Cardiovasc Pharmacol Ther ; 28: 10742484231162249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995038

RESUMO

Cardiovascular diseases are the leading cause of death globally, including cardiac fibrosis, myocardial infarction, cardiac hypertrophy, and heart failure. High fat/ fructose induces metabolic syndrome, hypertension and obesity, which contributes to cardiac hypertrophy and fibrosis. Excessive fructose intake accelerates inflammation in different organs and tissues, and molecular and cellular mechanisms of organ and tissue injury have been demonstrated. However, the mechanisms of cardiac inflammation have not been fully documented in high-fructose diet. This study shows that there are significantly increased in cardiomyocytes size and relative wall thickness of LV in high-fructose fed adult mice. With echocardiographic analysis of cardiac function, the ejection fraction (EF%) and fractional shortening (FS%) are significantly reduced at 12 weeks after 60% high-fructose diet. The mRNA and protein levels of MCP-1 are notably increased in high-fructose treated HL-1 and primary cardiomyocyte respectively. Also, the increased protein level of MCP-1 has been detected in vivo mouse model after 12 weeks feeding, resulting in the production of pro-inflammatory makers, pro-fibrotic genes expression, and macrophage infiltration. These data demonstrate that high-fructose intake induces cardiac inflammation via macrophage recruitment in cardiomyocyte, which contributes to impair cardiac function.


Assuntos
Dieta , Frutose , Camundongos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Miócitos Cardíacos , Cardiomegalia , Macrófagos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
18.
Nutrients ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36986190

RESUMO

High-sugar diet-induced prediabetes and obesity are a global current problem that can be the result of glucose or fructose. However, a head-to-head comparison between both sugars on health impact is still lacking, and Lactiplantibacillus plantarum dfa1 has never been tested, and has recently been isolated from healthy volunteers. The mice were administered with the high glucose or fructose preparation in standard mouse chaw with or without L. plantarum dfa1 gavage, on alternate days, and in vitro experiments were performed using enterocyte cell lines (Caco2) and hepatocytes (HepG2). After 12 weeks of experiments, both glucose and fructose induced a similar severity of obesity (weight gain, lipid profiles, and fat deposition at several sites) and prediabetes condition (fasting glucose, insulin, oral glucose tolerance test, and Homeostatic Model Assessment for Insulin Resistance (HOMA score)). However, fructose administration induced more severe liver damage (serum alanine transaminase, liver weight, histology score, fat components, and oxidative stress) than the glucose group, while glucose caused more prominent intestinal permeability damage (FITC-dextran assay) and serum cytokines (TNF-α, IL-6, and IL-10) compared to the fructose group. Interestingly, all of these parameters were attenuated by L. plantarum dfa1 administration. Because there was a subtle change in the analysis of the fecal microbiome of mice with glucose or fructose administration compared to control mice, the probiotics altered only some microbiome parameters (Chao1 and Lactobacilli abundance). For in vitro experiments, glucose induced more damage to high-dose lipopolysaccharide (LPS) (1 µg/mL) to enterocytes (Caco2 cell) than fructose, as indicated by transepithelial electrical resistance (TEER), supernatant cytokines (TNF-α and IL-8), and glycolysis capacity (by extracellular flux analysis). Meanwhile, both glucose and fructose similarly facilitated LPS injury in hepatocytes (HepG2 cell) as evaluated by supernatant cytokines (TNF-α, IL-6, and IL-10) and extracellular flux analysis. In conclusion, glucose possibly induced a more severe intestinal injury (perhaps due to LPS-glucose synergy) and fructose caused a more prominent liver injury (possibly due to liver fructose metabolism), despite a similar effect on obesity and prediabetes. Prevention of obesity and prediabetes with probiotics was encouraged.


Assuntos
Fígado Gorduroso , Estado Pré-Diabético , Probióticos , Humanos , Camundongos , Animais , Interleucina-10 , Lipopolissacarídeos , Frutose/efeitos adversos , Células CACO-2 , Interleucina-6 , Fator de Necrose Tumoral alfa , Glucose , Lactobacillus , Obesidade , Camundongos Endogâmicos C57BL
19.
J Med Food ; 26(3): 176-184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637806

RESUMO

This study explored the effects of sesamin on nonalcoholic steatohepatitis (NASH). High-fat and high-fructose diet-fed mice supplemented with or without sesamin. The results suggested that sesamin-treated mice lost body weight and fat tissue weight, had lower levels of serum metabolic parameters, and insulin resistance was mitigated. Histological examinations showed that sesamin treatment mitigated the progression of hepatic steatosis, and inflammation. In addition, sesamin enhanced hepatic antioxidant capacity, and decreased the activations of hepatic c-jun N-terminal kinase, inhibitor of kappa B kinase α, and insulin receptor substrate 1 as well as hepatic interleukin-6 and tumor necrosis factor-alpha levels. Further experiments indicated that sesamin treatment downregulated GRP78 and phospho-inositol-requiring enzyme 1 (IRE1) expression, and upregulated x-box binding protein 1 (XBP1) expression in hepatic tissue. The aforementioned results suggest that sesamin alleviates obesity-associated NASH, which might be linked to the effect of sesamin on the regulation of the hepatic endoplasmic reticulum stress-IRE1/XBP1 pathway. Thus, sesamin may be a good food functional ingredient in the treatment of obesity-associated NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta , Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Frutose/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Dioxóis/farmacologia , Lignanas/farmacologia
20.
Metab Syndr Relat Disord ; 21(2): 122-131, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625880

RESUMO

Background and Aim: Excessive fructose consumption along with a sedentary lifestyle provokes metabolic disorders and cardiovascular diseases. Fructose overload causes cardiac insulin resistance and increases reliance on fatty acid (FA) uptake and catabolism. The cardiometabolic benefits of exercise training have long been appreciated. The goal of the presented study is to shed a new light to the preventive role of exercise training on cardiac lipid metabolism in fructose-fed rats. Methods: Male Wistar rats were divided into control (C), sedentary fructose (F), and exercised fructose (EF) groups. Fructose was given as a 10% fructose solution in drinking water for 9 weeks. Low-intensity exercise training was applied for 9 weeks. The protein expression and subcellular localization of Lipin1, peroxisome proliferator-activated receptor α (PPARα), and peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC1) were analyzed in the heart using Western blot. Cardiac forkhead box transcription factor 1 (FOXO1) and sirtuin 1 (SIRT1) protein levels were also evaluated. Gene expression of long-chain acyl-CoA dehydrogenase was analyzed by quantitative polymerase chain reaction. Results: Exercise training has augmented the expression of main regulators of FA oxidation in the heart and achieves its effect by increasing the nuclear content of PPARα, Lipin1, and FOXO1 compared with the fructose group (P = 0.0422, P = 0.000045, P = 0.00958, respectively). In addition, Lipin1, FOXO1, and SIRT1 were increased in nuclear extract after exercise compared with the control group (P = 0.000043, P = 0.0417, P = 0.0329, respectively). In cardiac lysate, low-intensity exercise caused significantly increased protein level of PPARα, PGC1, FOXO1, and SIRT1 compared with control (P = 0.0377, P = 0.0275, P = 0.0096, P = 0.0282, respectively) and PGC1 level compared with the fructose group (P = 0.0417). Conclusion: The obtained results imply that the heart with a metabolic burden additionally relies on FA as an energy substrate after low-intensity running.


Assuntos
Exercício Físico , Proteína Forkhead Box O1 , Metabolismo dos Lipídeos , PPAR alfa , Animais , Masculino , Ratos , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Metabolismo dos Lipídeos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos Wistar , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA