RESUMO
To improve the crop yield and quality, the cytosolic fructose-1,6-bisphosphatase (cFBPase) from mung bean (Vigna radiata), a rate-limiting enzyme in gluconeogenesis, was cloned, purified, and structurally characterised. To function it required Mg2+ and Mn2+ at 0.01-10 mM. The Michaelis-Menton constant and adenosine monophosphate (AMP) inhibitory constant (Ki) were 7.96 and 111.09 µM, respectively. The functional site residues of AMP binding (Arg30, Asp32, and Phe33) and the active site residues (Asn218 and Met251) were tested via site-directed mutagenesis and molecular docking. Asn218 and Met251 were replaced by Tyr and Leu, respectively. The M251L mutant showed enhanced substrate affinity and activity, resulting from decreased binding energy (-2.58 kcal·mol-1) and molecular distance (4.2 Å). AMP binding site mutations changed the enzyme activities, indicating a connection between the binding and active sites. Furthermore, Ki and docking analysis revealed that Asp32 plays a key role in maintaining the AMP binding conformation.
Assuntos
Citosol/enzimologia , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Vigna/enzimologia , Vigna/genética , Monofosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Vigna/citologiaRESUMO
Rationale: Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor and could mediate the activities of multiple transcriptional factors via its non-canonical functions. However, the underlying mechanism of posttranscriptional modification on the non-canonical functions of FBP1 remains elusive. Methods: We employed immunoaffinity purification to identify binding partner(s) and used co-immunoprecipitation to verify their interactions. Kinase reaction was used to confirm PIM2 could phosphorylate FBP1. Overexpression or knockdown proteins were used to assess the role in modulating p65 protein stability. Mechanistic analysis was involved in protein degradation and polyubiquitination assays. Nude mice and PIM2-knockout mice was used to study protein functions in vitro and in vivo. Results: Here, we identified Proviral Insertion in Murine Lymphomas 2 (PIM2) as a new binding partner of FBP1, which could phosphorylate FBP1 on Ser144. Surprisingly, phosphorylated FBP1 Ser144 abrogated its interaction with NF-κB p65, promoting its protein stability through the CHIP-mediated proteasome pathway. Furthermore, phosphorylation of FBP1 on Ser144 increased p65 regulated PD-L1 expression. As a result, phosphorylation of FBP1 on Ser144 promoted breast tumor growth in vitro and in vivo. Moreover, the levels of PIM2 and pSer144-FBP1 proteins were positively correlated with each other in human breast cancer and PIM2 knockout mice. Conclusions: Our findings revealed that phosphorylation noncanonical FBP1 by PIM2 was a novel regulator of NF-κB pathway, and highlights PIM2 inhibitors as breast cancer therapeutics.
Assuntos
Neoplasias da Mama/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Estabilidade Proteica , Proteínas Proto-Oncogênicas/química , Fator de Transcrição RelA/química , Fator de Transcrição RelA/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para CimaRESUMO
BACKGROUND: The accurate ranking of analogs of lead molecules with respect to their estimated binding free energies to drug targets remains highly challenging in molecular docking due to small relative differences in their free energy values. METHODS: Free energy perturbation (FEP) method, which provides the most accurate relative binding free energy values were earlier used to calculate free energies of many ligands for several important drug targets including Fructose-1,6-BisphosPhatase (FBPase). The availability of abundant structural and experimental binding affinity data for FBPase inhibitors provided an ideal system to evaluate four widely used docking programs, AutoDock, Glide, GOLD and SurflexDock, distinct from earlier comparative evaluation studies. RESULTS: The analyses suggested that, considering various parameters such as docking pose, scoring and ranking accuracy, sensitivity analysis and newly introduced relative ranking score, Glide provided reasonably consistent results in all respects for the system studied in the present work. Whereas GOLD and AutoDock also demonstrated better performance, AutoDock results were found to be significantly superior in terms of scoring accuracy compared to the rest. CONCLUSION: Present analysis serves as a useful guide for researchers working in the field of lead optimization and for developers in upgradation of the docking programs.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Frutose-Bifosfatase/química , Simulação de Acoplamento Molecular , Software , Monofosfato de Adenosina/metabolismo , Sítios de Ligação , Desenho de Fármacos , Frutose-Bifosfatase/metabolismo , Ligantes , Ligação Proteica , TermodinâmicaRESUMO
Specific residues of the highly regulated fructose-1,6-bisphosphatase (FBPase) enzyme serve as important contributors to the catalytic activity of the enzyme. Previous clinical studies exploring the genetic basis of hypoglycemia revealed two significant mutations in the coding region of the FBPase gene in patients with hypoglycemia, linking the AMP-binding site to the active site of the enzyme. In the present study, a full kinetic analysis of similar mutants was performed. Kinetic results of mutants Y164A and M177A revealed an approximate two to three-fold decrease in inhibitory constants (Ki's) for natural inhibitors AMP and fructose-2,6-bisphosphate (F2,6-BP) compared with the Wild-type enzyme (WT). A separate mutation (M248D) was performed in the active site of the enzyme to investigate whether the enzyme could be activated. This mutant displayed an approximate seven-fold increase in Ki for F2,6-BP. Interfacial mutants L56A and L73A exhibited an increase in Ki for F2,6-BP by approximately five-fold. Mutations in the AMP-binding site (K112A and Y113A) demonstrated an eight to nine-fold decrease in AMP inhibition. Additionally, mutant M248D displayed a four-fold decrease in its apparent Michelis constant (Km), and a six-fold increase in catalytic efficiency (CE). The importance-and medical relevance-of specific residues for FBPase structural/functional relationships in both the catalytic site and AMP-binding site is discussed.
Assuntos
Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Mutação , Monofosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Ativação Enzimática , Frutose-Bifosfatase/química , Humanos , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , SuínosRESUMO
Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects.
Assuntos
Frutose-Bifosfatase/metabolismo , Glucose/biossíntese , Fígado/enzimologia , Metformina/farmacologia , Monofosfato de Adenosina/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Sequência de Bases , Galinhas , Modelos Animais de Doenças , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Intolerância à Glucose/patologia , Homeostase/efeitos dos fármacos , Humanos , Hipoglicemia/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação/genética , Obesidade/patologia , Pró-Fármacos/química , Ribonucleotídeos/farmacologiaRESUMO
The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6â Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus. This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and is probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis (MtFBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of MtFBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of MtFBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.
Assuntos
Regulação Alostérica , Citratos/antagonistas & inibidores , Frutose-Bifosfatase/química , Mycobacterium tuberculosis/enzimologia , Catálise , Domínio Catalítico , Inibidores Enzimáticos , Proteínas de Escherichia coli , Frutose-Bifosfatase/genética , Cinética , Proteínas Mutantes/química , Mutação , Multimerização Proteica , Synechocystis/químicaRESUMO
The gluconeogenic enzyme fructose-1,6-bisphosphatase has been proposed as a potential drug target against Leishmania parasites that cause up to 20,000-30,000 deaths annually. A comparison of three crystal structures of Leishmania major fructose-1,6-bisphosphatase (LmFBPase) along with enzyme kinetic data show how AMP acts as an allosteric inhibitor and provides insight into its metal-dependent reaction mechanism. The crystal structure of the apoenzyme form of LmFBPase is a homotetramer in which the dimer of dimers adopts a planar conformation with disordered "dynamic loops". The structure of LmFBPase, complexed with manganese and its catalytic product phosphate, shows the dynamic loops locked into the active sites. A third crystal structure of LmFBPase complexed with its allosteric inhibitor AMP shows an inactive form of the tetramer, in which the dimer pairs are rotated by 18° relative to each other. The three structures suggest an allosteric mechanism in which AMP binding triggers a rearrangement of hydrogen bonds across the large and small interfaces. Retraction of the "effector loop" required for AMP binding releases the side chain of His23 from the dimer-dimer interface. This is coupled with a flip of the side chain of Arg48 which ties down the key catalytic dynamic loop in a disengaged conformation and also locks the tetramer in an inactive rotated T-state. The structure of the effector site of LmFBPase shows different structural features compared with human FBPases, thereby offering a potential and species-specific drug target.
Assuntos
Monofosfato de Adenosina/metabolismo , Frutose-Bifosfatase/antagonistas & inibidores , Frutose-Bifosfatase/química , Leishmania major/enzimologia , Regulação Alostérica , Coenzimas , Cristalografia por Raios X , Inibidores Enzimáticos , Humanos , Cinética , Manganês/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização ProteicaRESUMO
Pyrobaculum calidifontis genome harbors an open reading frame Pcal_0111 annotated as fructose bisphosphate aldolase. Although the gene is annotated as fructose bisphosphate aldolase, it exhibits a high homology with previously reported fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus. To examine the biochemical properties of Pcal_0111, we have cloned and expressed the gene in Escherichia coli. Purified recombinant Pcal_0111 catalyzed both phosphatase and aldolase reactions with specific activity values of 4 U and 1.3 U, respectively. These values are highest among the fructose 1,6-bisphosphatases/aldolases characterized from archaea. The enzyme activity increased linearly with the increase in temperature until 100 °C. Recombinant Pcal_0111 is highly stable with a half-life of 120 min at 100 °C. There was no significant change in the circular dichroism spectra of the protein up to 90 °C. The enzyme activity was not affected by AMP but strongly inhibited by ATP with an IC50 value of 0.75 mM and mildly by ADP. High thermostability and inhibition by ATP make Pcal_0111 a unique fructose 1,6-bisphosphatase/aldolase.
Assuntos
Proteínas Arqueais/metabolismo , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Pyrobaculum/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Estabilidade Enzimática , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Temperatura Alta , Desnaturação Proteica , Pyrobaculum/genéticaRESUMO
The dual-function fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) in cyanobacteria carries out two activities in the Calvin cycle. Structures of this enzyme from the cyanobacterium Synechocystis sp. PCC 6803 exist, but only with adenosine monophosphate (AMP) or fructose-1,6-bisphosphate and AMP bound. The mechanisms which control both selectivity between the two sugars and the structural mechanisms for redox control are still unresolved. Here, the structure of the dual-function FBP/SBPase from the thermophilic cyanobacterium Thermosynechococcus elongatus is presented with sedoheptulose-7-phosphate bound and in the absence of AMP. The structure is globally very similar to the Synechocystis sp. PCC 6803 enzyme, but highlights features of selectivity at the active site and loop ordering at the AMP-binding site. Understanding the selectivity and control of this enzyme is critical for understanding the Calvin cycle in cyanobacteria and for possible biotechnological application in plants.
Assuntos
Cianobactérias/enzimologia , Frutose-Bifosfatase/química , Monoéster Fosfórico Hidrolases/química , Fosfatos Açúcares/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Dados de Sequência Molecular , Oxirredução , Synechocystis/enzimologiaRESUMO
Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.
Assuntos
Metabolismo Energético , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Gluconeogênese , Glicólise , Hepatócitos/metabolismo , Modelos Biológicos , Animais , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Imunofluorescência , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Células HeLa , Hepatócitos/citologia , Hepatócitos/enzimologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Masculino , Microscopia Confocal , Transporte Proteico , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel-Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.
Assuntos
Carcinoma de Células Renais/enzimologia , Frutose-Bifosfatase/metabolismo , Neoplasias Renais/enzimologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Células Epiteliais/metabolismo , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Glicólise , Humanos , Neoplasias Renais/genética , Neoplasias Renais/fisiopatologia , Modelos Moleculares , NADP/metabolismo , Estrutura Terciária de Proteína , SuínosRESUMO
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) â His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) â His, Thr(46) â Arg, and Leu(186) â Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.
Assuntos
Monofosfato de Adenosina/metabolismo , Frutose-Bifosfatase/metabolismo , Frutosedifosfatos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Evolução Molecular , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , SuínosRESUMO
Cyanobacterial fructose-1,6/sedoheptulose-1,7-bisphosphatase (cy-FBP/SBPase) plays a vital role in gluconeogenesis and in the photosynthetic carbon reduction pathway, and is thus a potential enzymatic target for inhibition of harmful cyanobacterial blooms. Here, we describe the crystal structure of cy-FBP/SBPase in complex with AMP and fructose-1,6-bisphosphate (FBP). The allosteric inhibitor AMP and the substrate FBP exhibit an unusual binding mode when in complex with cy-FBP/SBPase. Binding mode analysis suggested that AMP bound to the allosteric sites near the interface across the up/down subunit pairs C1C4 and C2C3 in the center of the tetramer, while FBP binds opposite to the interface between the horizontal subunit pairs C1C2 or C3C4. We identified a series of residues important for FBP and AMP binding, and suggest formation of a disulfide linkage between Cys75 and Cys99. Further analysis indicates that cy-FBP/SBPase may be regulated through ligand binding and alteration of the structure of the enzyme complex. The interactions between ligands and cy-FBP/SBPase are different from those of ligand-bound structures of other FBPase family members, and thus provide new insight into the molecular mechanisms of structure and catalysis of cy-FBP/SBPase. Our studies provide insight into the evolution of this enzyme family, and may help in the design of inhibitors aimed at preventing toxic cyanobacterial blooms.
Assuntos
Proteínas de Bactérias/metabolismo , Frutose-Bifosfatase/metabolismo , Modelos Moleculares , Monoéster Fosfórico Hidrolases/metabolismo , Synechocystis/enzimologia , Monofosfato de Adenosina/antagonistas & inibidores , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Dicroísmo Circular , Frutose-Bifosfatase/antagonistas & inibidores , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Frutosedifosfatos/química , Frutosedifosfatos/metabolismo , Cinética , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Difração de Raios XRESUMO
Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle Fru-1,6-Pase, the AMP-bound (1.6 Å), and product-bound complexes of the Q32R mutant, which was firstly introduced by an error in the cloning. Our high-resolution structure reveals for the first time that the higher sensitivity of the muscle isozyme towards AMP originates from an additional water-mediated, H-bonded network established between AMP and the binding pocket. Also present in our structures are a metaphosphate molecule, alternate conformations of Glu97 coordinating Mg(2+), and possible metal migration during catalysis. Although the individual subunit is similar to previously reported Fru-1,6-Pase structures, the tetrameric assembly of all these structures deviates from the canonical R- or T-states, representing novel tetrameric assemblies. Intriguingly, the concentration of AMP required for 50% inhibition of the Q32R mutant is increased 19-fold, and the cooperativity of both AMP and Mg(2+) is abolished or decreased. These structures demonstrate the Q32R mutation affects the conformations of both N-terminal residues and the dynamic loop 52-72. Also importantly, structural comparison indicates that this mutation in helix α2 is detrimental to the R-to-T conversion as evidenced by the absence of quaternary structural changes upon AMP binding, providing direct evidence for the critical role of helix α2 in the allosteric signal transduction.
Assuntos
Monofosfato de Adenosina/metabolismo , Frutose-Bifosfatase/química , Músculos/enzimologia , Transdução de Sinais , Regulação Alostérica , Cristalografia por Raios X , Frutose-Bifosfatase/metabolismo , Humanos , Cinética , Modelos Moleculares , Estrutura Quaternária de ProteínaRESUMO
AMP triggers a 15° subunit-pair rotation in fructose-1,6-bisphosphatase (FBPase) from its active R state to its inactive T state. During this transition, a catalytically essential loop (residues 50-72) leaves its active (engaged) conformation. Here, the structures of Ile(10) â Asp FBPase and molecular dynamic simulations reveal factors responsible for loop displacement. The AMP/Mg(2+) and AMP/Zn(2+) complexes of Asp(10) FBPase are in intermediate quaternary conformations (completing 12° of the subunit-pair rotation), but the complex with Zn(2+) provides the first instance of an engaged loop in a near-T quaternary state. The 12° subunit-pair rotation generates close contacts involving the hinges (residues 50-57) and hairpin turns (residues 58-72) of the engaged loops. Additional subunit-pair rotation toward the T state would make such contacts unfavorable, presumably causing displacement of the loop. Targeted molecular dynamics simulations reveal no steric barriers to subunit-pair rotations of up to 14° followed by the displacement of the loop from the active site. Principal component analysis reveals high-amplitude motions that exacerbate steric clashes of engaged loops in the near-T state. The results of the simulations and crystal structures are in agreement: subunit-pair rotations just short of the canonical T state coupled with high-amplitude modes sterically displace the dynamic loop from the active site.
Assuntos
Frutose-Bifosfatase/química , Sus scrofa/genética , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Ativação Enzimática , Frutose-Bifosfatase/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Sus scrofa/metabolismoRESUMO
Dysfunction of protein quality control contributes to the cellular pathology of polyglutamine (polyQ) expansion diseases and other neurodegenerative disorders associated with aggregate deposition. Here we analyzed how polyQ aggregation interferes with the clearance of misfolded proteins by the ubiquitin-proteasome system (UPS). We show in a yeast model that polyQ-expanded proteins inhibit the UPS-mediated degradation of misfolded cytosolic carboxypeptidase Y(∗) fused to green fluorescent protein (GFP) (CG(∗)) without blocking ubiquitylation or proteasome function. Quantitative proteomic analysis reveals that the polyQ aggregates sequester the low-abundant and essential Hsp40 chaperone Sis1p. Overexpression of Sis1p restores CG(∗) degradation. Surprisingly, we find that Sis1p, and its homolog DnaJB1 in mammalian cells, mediates the delivery of misfolded proteins into the nucleus for proteasomal degradation. Sis1p shuttles between cytosol and nucleus, and its cellular level limits the capacity of this quality control pathway. Upon depletion of Sis1p by polyQ aggregation, misfolded proteins are barred from entering the nucleus and form cytoplasmic inclusions.
Assuntos
Peptídeos/metabolismo , Dobramento de Proteína , Proteólise , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , UbiquitinaçãoRESUMO
Cell-free biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it was essential to produce (purified) enzymes at low costs and stabilize them for a long time so to decrease biocatalyst costs. We studied the stability of the four recombinant enzyme mixtures, all of which originated from thermophilic microorganisms: triosephosphate isomerase (TIM) from Thermus thermophiles, fructose bisphosphate aldolase (ALD) from Thermotoga maritima, fructose bisphosphatase (FBP) from T. maritima, and phosphoglucose isomerase (PGI) from Clostridium thermocellum. It was found that TIM and ALD were very stable at evaluated temperature so that they were purified by heat precipitation followed by gradient ammonia sulfate precipitation. In contrast, PGI was not stable enough for heat treatment. In addition, the stability of a low concentration PGI was enhanced by more than 25 times in the presence of 20 mg/L bovine serum albumin or the other three enzymes. At a practical enzyme loading of 1000 U/L for each enzyme, the half-life time of free PGI was prolong to 433 h in the presence of the other three enzymes, resulting in a great increase in the total turn-over number of PGI to 6.2×10(9) mole of product per mole of enzyme. This study clearly suggested that the presence of other proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme PGI due to in vitro macromolecular crowding effect. Also, this result could be used to explain why not all enzymes isolated from thermophilic microorganisms are stable in vitro because of a lack of the macromolecular crowding environment.
Assuntos
Proteínas de Bactérias/isolamento & purificação , Frutose-Bifosfatase/isolamento & purificação , Frutose-Bifosfato Aldolase/isolamento & purificação , Glucose-6-Fosfato Isomerase/isolamento & purificação , Triose-Fosfato Isomerase/isolamento & purificação , Proteínas de Bactérias/química , Biocatálise , Clostridium thermocellum/química , Clostridium thermocellum/enzimologia , Ensaios Enzimáticos , Estabilidade Enzimática , Frutose-Bifosfatase/química , Frutose-Bifosfato Aldolase/química , Glucose-6-Fosfato Isomerase/química , Meia-Vida , Cinética , Soroalbumina Bovina/química , Temperatura , Thermotoga maritima/química , Thermotoga maritima/enzimologia , Thermus thermophilus/química , Thermus thermophilus/enzimologia , Triose-Fosfato Isomerase/químicaRESUMO
Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO(2) assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO(2) assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.
Assuntos
Brassinosteroides/biossíntese , Dióxido de Carbono/metabolismo , Cloroplastos/enzimologia , Cucumis sativus/enzimologia , Ácido Ascórbico/biossíntese , Transporte de Elétrons , Estabilidade Enzimática , Frutose-Bifosfatase/biossíntese , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Regulação Enzimológica da Expressão Gênica , Glutationa/biossíntese , Dissulfeto de Glutationa/metabolismo , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , ProteóliseRESUMO
In vitro enzymatic activity highly depends on the reaction medium. One of the most important parameters is the buffer used to keep the pH stable. The buffering compound prevents a severe pH-change and therefore a possible denaturation of the enzyme. However buffer agents can also have negative effects on the enzymatic activity, such as competitive substrate inhibition. We assess this effect with a computational approach based on a protein-ligand docking method and the HYDE scoring function. Our method predicts competitive binding of the buffer compound to the active site of the enzyme. Using data from literature and new experimental data, the procedure is evaluated on nine different enzymatic reactions. The method predicts buffer-enzyme interactions and is able to score these interactions with the correct trend of enzymatic activities. Using the new method, possible buffers can be selected or discarded prior to laboratory experiments.
Assuntos
Álcool Desidrogenase/química , Frutose-Bifosfatase/química , Glucose-6-Fosfato Isomerase/química , Glucosefosfato Desidrogenase/química , Ligação Competitiva , Soluções Tampão , Biologia Computacional/métodos , LigantesRESUMO
Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.