Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.906
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Phys Chem B ; 128(37): 8869-8877, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39226480

RESUMO

Fucosylated carbohydrate antigens play critical roles in physiology and pathology with function linked to their structural details. However, the separation and structural characterization of isomeric fucosylated epitopes remain challenging analytically. Here, we report for the first time the influence of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) and halogen anions (Cl-, Br-, and I-) on the gas-phase conformational landscapes of common fucosylated trisaccharides (Lewis A, X, and H types 1 and 2) and tetrasaccharides (Lewis B and Y) using trapped ion mobility spectrometry coupled to mass spectrometry and theoretical calculations. Inspection of the mobility profiles of individual standards showed a dependence on the number of mobility bands with the oligosaccharide and the alkali metal and halogen; collision cross sections are reported for all of the observed species. Results showed that trisaccharides (Lewis A, X, and H types 1 and 2) can be best mobility resolved in the positive mode using the [M + Li]+ molecular ion form (baseline resolution r ≈ 2.88 between Lewis X and A); tetrasaccharides can be best mobility resolved in the negative mode using the [M + I]- molecular ion form (baseline separation r ≈ 1.35 between Lewis B and Y). The correlation between the number of oligosaccharide conformers as a function of the molecular ion adduct was studied using density functional theory. Theoretical calculations revealed that smaller cations can form more stable structures based on the number of coordinations, while larger cations induced greater oligosaccharide reorganizations; candidate structures are proposed to better understand the gas-phase oligosaccharide rearrangement trends. Inspection of the candidate structures suggests that the interplay between ion size/charge density and molecular structure dictated the conformational preferences and, consequently, the number of mobility bands and the mobility separation across isomers. This work provides a fundamental understanding of the gas-phase structural dynamics of fucosylated oligosaccharides and their interaction with alkali metals and halogens.


Assuntos
Gases , Halogênios , Metais Alcalinos , Oligossacarídeos , Metais Alcalinos/química , Oligossacarídeos/química , Halogênios/química , Gases/química , Espectrometria de Mobilidade Iônica , Configuração de Carboidratos , Fucose/química
2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273687

RESUMO

The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential side effects, with limited success in improving obesity through increased energy expenditure. This study explores the potential of a refined sulfated polysaccharide (SPSL), derived from the brown seaweed Scytosiphon lomentaria (SL), as a safe and effective anti-obesity treatment by promoting energy expenditure. Chemical characterization revealed that SPSL, rich in sulfate and L-fucose content, comprises nine distinct sulfated glycan structures. In vitro analysis demonstrated potent anti-lipogenic properties in adipocytes, mediated by the downregulation of key adipogenic modulators, including 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Inhibiting AMPK attenuated the anti-adipogenic effects of SPSL, confirming its involvement in the mechanism of action. Furthermore, in vivo studies using zebrafish models showed that SPSL increased energy expenditure and reduced lipid accumulation. These findings collectively highlight the therapeutic potential of SPSL as a functional food ingredient for mitigating obesity-related metabolic dysregulation by promoting energy expenditure. Further mechanistic and preclinical investigations are warranted to fully elucidate its mode of action and evaluate its efficacy in obesity management, potentially offering a novel, natural therapeutic avenue for this global health concern.


Assuntos
Adipogenia , Metabolismo Energético , Fucose , Alimento Funcional , Obesidade , Polissacarídeos , Alga Marinha , Peixe-Zebra , Animais , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Fucose/metabolismo , Adipogenia/efeitos dos fármacos , Camundongos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Humanos , Sulfatos/química , Sulfatos/metabolismo , PPAR gama/metabolismo , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/uso terapêutico , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo
3.
J Am Chem Soc ; 146(38): 26408-26415, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39279393

RESUMO

Core fucosylation, the attachment of an α-1,6-linked-fucose to the N-glycan core pentasaccharide, is an abundant protein modification that plays critical roles in various biological processes such as cell signaling, B cell development, antibody-dependent cellular cytotoxicity, and oncogenesis. However, the tools currently used to detect core fucosylation suffer from poor specificity, exhibiting cross-reactivity against all types of fucosylation. Herein we report the development of a new chemoenzymatic strategy for the rapid and selective detection of core fucosylated glycans. This approach employs a galactosyltransferase enzyme identified fromCaenorhabditis elegansthat specifically transfers an azido-appended galactose residue onto core fucose via a ß-1,4 glycosidic linkage. We demonstrate that the approach exhibits superior specificity toward core fucose on a variety of complex N-glycans. The method enables detection of core fucosylated glycoproteins from complex cell lysates, as well as on live cell surfaces, and it can be integrated into a diagnostic platform to profile protein-specific core fucosylation levels. This chemoenzymatic labeling approach offers a new strategy for the identification of disease biomarkers and will allow researchers to further characterize the fundamental role of this important glycan in normal and disease physiology.


Assuntos
Fucose , Polissacarídeos , Fucose/metabolismo , Fucose/química , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química , Polissacarídeos/análise , Galactosiltransferases/metabolismo , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/análise , Glicoproteínas/química
4.
Cell Rep Med ; 5(9): 101716, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39241773

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that presents significant challenges for early detection. This study introduces the GlyExo-Capture method for isolating fucosylated extracellular vesicles (Fu-EVs) from serum. We analyze microRNA (miRNA) profiles from Fu-EVs in 88 HCC patients and 179 non-HCC controls using next-generation sequencing (NGS) and identify five miRNAs (hsa-let-7a, hsa-miR-21, hsa-miR-125a, hsa-miR-200a, and hsa-miR-150) as biomarkers for HCC diagnosis. The five-miRNA panel demonstrates exceptional HCC diagnostic performance, with a sensitivity of 0.90 and specificity of 0.92 in a combined cohort of 194 HCC and 412 non-HCC controls, significantly surpassing the performance of alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP). Notably, the miRNA model achieves recall rates of 85.7% and 90.8% for stage 0 and stage A early-stage HCC, respectively, identifies 88.1% of AFP-negative HCC cases, and effectively differentiates HCC from other cancers. This study provides a high-throughput, rapid, and non-invasive approach for early HCC detection.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/genética , MicroRNAs/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Fucose/metabolismo , Idoso , Sequenciamento de Nucleotídeos em Larga Escala/métodos , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/genética
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(6): 903-913, 2024 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39311786

RESUMO

OBJECTIVES: Hepatic fibrosis is a common pathological basis for many chronic liver diseases and can progress to cirrhosis, a leading cause of mortality in liver diseases. Early identification and reversal of hepatic fibrosis are key in the treatment of chronic liver disease. This study aims to compare the expression levels of serum core fucosylated low molecular weight kininogen (LMWK-Fc) and alpha-galactosylated (α-Gal) antibodies in patients with hepatic fibrosis at different stages, and to evaluate their diagnostic efficacy for hepatic fibrosis. METHODS: A retrospective analysis was conducted on 275 patients with chronic liver disease who visited the Department of Infectious Diseases at the Second Xiangya Hospital of Central South University between June 2022 and March 2023. Among these, 115 patients underwent liver biopsy. Based on the extent of collagen deposition and its impact on liver structure and microcirculation, patients were staged from 0 to 4: S0 (no significant collagen deposition in liver tissues; liver structure and microcirculation are normal), S1 (mild collagen deposition in liver tissues, with partial disruption of lobule structure, but microcirculation remains largely normal), S2 (moderate collagen deposition in liver tissues, with partial disruption of lobule structure and microcirculation), S3 (extensive collagen deposition in liver tissues, with substantial disruption of lobule structure and microcirculation), and S4 (development of cirrhosis, with heavy collagen deposition, complete disruption of lobule structure, and severe impairment of microcirculation). Patients were grouped as no fibrosis (S0), fibrosis (S1-S2), and significant fibrosis (S3-S4). For the 160 patients without liver biopsy, they were categorized based on liver stiffness measurement (LSM) value: no fibrosis (F0: LSM<7.3 kPa), fibrosis (F1-F2: LSM 7.3-12.4 kPa), and significant fibrosis (F3-F4: LSM>12.4 kPa). Demographic data (age, gender) and laboratory indicators (alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, alkaline phosphatase, alpha-fetoprotein, platelet count) were collected to calculate the fibrosis-4 index (FIB-4) and aspartate aminotransferase-to-platelet ratio index (APRI). Serum LMWK-Fc and α-Gal antibodies were measured and compared across the groups, and their correlation with fibrosis severity was analyzed. The receiver operating characteristic (ROC) curve was used to assess the predictive value of serum LMWK-Fc and α-Gal antibody levels for hepatic fibrosis. RESULTS: Among the 160 patients without complete liver biopsy, serum α-Gal antibody and LMWK-Fc levels increased progressively from the no fibrosis group to the significant fibrosis group, with statistically significant differences (P<0.05). Among the 115 patients with liver biopsy, serum LMWK-Fc levels were significantly higher in the fibrosis group and the significant fibrosis groups compared with the no fibrosis group, and α-Gal antibody levels were significantly higher in the significant fibrosis group compared with the no fibrosis group and the fibrosis group (P<0.001, P=0.032, respectively). Univariate and multivariate linear regression analyses showed that hepatic fibrosis was correlated with gender and LMWK-Fc levels (both P<0.05), but not with age, α-Gal antibody levels, FIB-4, or APRI (all P>0.05). CONCLUSIONS: The expression levels of serum LMWK-Fc and α-Gal antibodies vary across different stages of hepatic fibrosis, suggesting a potential association with fibrosis progression. LMWK-Fc levels have a certain predictive value for the diagnosis of hepatic fibrosis.


Assuntos
Cirrose Hepática , Humanos , Estudos Retrospectivos , Fígado/patologia , Feminino , Masculino , Fucose/metabolismo , Galactose , Pessoa de Meia-Idade , Adulto , Valor Preditivo dos Testes , Anticorpos/sangue , Cininogênios
6.
Glycobiology ; 34(8)2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976017

RESUMO

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Assuntos
Fibroblastos , Fucose , Fucosiltransferases , Receptor Notch1 , Humanos , Fibroblastos/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Receptor Notch1/metabolismo , Receptor Notch1/química , Família de Proteínas EGF/metabolismo
7.
Stem Cells ; 42(9): 809-820, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982795

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS: C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.


Assuntos
Células Epiteliais Alveolares , Autofagia , Células-Tronco Mesenquimais , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco Mesenquimais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bleomicina/toxicidade , Camundongos Knockout , Fucose/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética
8.
Sci Rep ; 14(1): 16512, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020051

RESUMO

Prostate-specific antigen (PSA) levels are widely used to screen for prostate cancer, yet the test has poor sensitivity, specificity and predictive value, which leads to overdiagnosis and overtreatment. Alterations in the glycosylation status of PSA, including fucosylation, may offer scope for an improved biomarker. We sought to generate a monoclonal antibody (mAb) targeting α-1,6-fucosylated PSA (fuc-PSA) and to develop a tissue-based immunological assay for fuc-PSA detection. Immunogens representing fuc-PSA were used for immunisation and resultant mAbs were extensively characterised. The mAbs reacted specifically with fuc-PSA-specific glycopeptide, but not with aglycosylated PSA or glycan without the PSA peptide. Reactivity was confirmed using high-throughput surface plasmon resonance spectroscopy. X-ray crystallography investigations showed that the mAbs bound to an α-helical form of the peptide, whereas the native PSA epitope is linear. Protein unfolding was required for detection of fuc-PSA in patient samples. Peptide inhibition of fuc-PSA mAbs was observed with positive screening reagents, and target epitope specificity was observed in formalin-fixed, paraffin-embedded tissue samples. This research introduces a well-characterised, first-in-class antibody targeting fuc-PSA and presents the first crystal structure of an antibody demonstrating glycosylation-specific binding to a peptide.


Assuntos
Anticorpos Monoclonais , Fucose , Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Antígeno Prostático Específico/imunologia , Antígeno Prostático Específico/metabolismo , Masculino , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Glicosilação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/imunologia , Fucose/metabolismo , Epitopos/imunologia , Epitopos/química , Animais , Cristalografia por Raios X , Camundongos
9.
Methods Mol Biol ; 2810: 249-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926284

RESUMO

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.


Assuntos
Sistemas CRISPR-Cas , Cricetulus , Fucose , Fucosiltransferases , Edição de Genes , Células CHO , Animais , Edição de Genes/métodos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Fucose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cricetinae , Humanos
10.
Glycobiology ; 34(8)2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38869882

RESUMO

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Assuntos
Manose , Polissacarídeos , Humanos , Feminino , Polissacarídeos/metabolismo , Polissacarídeos/química , Manose/metabolismo , Manose/química , Pessoa de Meia-Idade , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Glicômica , Mama/metabolismo , Mama/química , Mama/patologia , Fucose/metabolismo , Fucose/química , Adulto , Microambiente Tumoral
11.
Anal Chem ; 96(26): 10506-10514, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874382

RESUMO

Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.


Assuntos
Fucose , Polissacarídeos , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/análise , Fucose/química , Fucose/metabolismo , Glicosilação , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Glicopeptídeos/química , Glicopeptídeos/análise , Glicopeptídeos/metabolismo
12.
Mini Rev Med Chem ; 24(19): 1712-1722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591197

RESUMO

Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.


Assuntos
Neoplasias , RNA Longo não Codificante , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Fucose/metabolismo , Fucose/química , Glicosilação , Hidroliases/metabolismo , Animais
13.
Glycobiology ; 34(6)2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38590172

RESUMO

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Fucose , Glicoproteínas , Antígenos de Histocompatibilidade , Jejuno , Organoides , Glicômica , Proteômica , Genótipo , Fenótipo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fucose/metabolismo , Glicosilação , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Humanos , Glicopeptídeos/química , Infecções por Caliciviridae/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Organoides/metabolismo , Jejuno/metabolismo , Jejuno/virologia
14.
Front Immunol ; 15: 1333848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596683

RESUMO

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Assuntos
Fucose , Polissacarídeos , Cloreto de Sódio na Dieta , Camundongos , Animais , Fucose/farmacologia , Inflamação/metabolismo , Dieta
15.
Front Immunol ; 15: 1353570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646527

RESUMO

Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.


Assuntos
Células Dendríticas , Fucose , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Fucose/metabolismo , Apresentação de Antígeno , Feminino , Camundongos Endogâmicos C57BL , Polaridade Celular , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Melanoma Experimental/imunologia , Ativação Linfocitária/imunologia
16.
J Exp Clin Cancer Res ; 43(1): 123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654325

RESUMO

BACKGROUND: Aberrant fucosylation observed in cancer cells contributes to an augmented release of fucosylated exosomes into the bloodstream, where miRNAs including miR-4732-3p hold promise as potential tumor biomarkers in our pilot study. However, the mechanisms underlying the sorting of miR-4732-3p into fucosylated exosomes during lung cancer progression remain poorly understood. METHODS: A fucose-captured strategy based on lentil lectin-magnetic beads was utilized to isolate fucosylated exosomes and evaluate the efficiency for capturing tumor-derived exosomes using nanoparticle tracking analysis (NTA). Fluorescence in situ hybridization (FISH) and qRT-PCR were performed to determine the levels of miR-4732-3p in non-small cell lung cancer (NSCLC) tissue samples. A co-culture system was established to assess the release of miRNA via exosomes from NSCLC cells. RNA immunoprecipitation (RIP) and miRNA pull-down were applied to validate the interaction between miR-4732-3p and heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein. Cell functional assays, cell derived xenograft, dual-luciferase reporter experiments, and western blot were applied to examine the effects of miR-4732-3p on MFSD12 and its downstream signaling pathways, and the impact of hnRNPK in NSCLC. RESULTS: We enriched exosomes derived from NSCLC cells using the fucose-captured strategy and detected a significant upregulation of miR-4732-3p in fucosylated exosomes present in the serum, while its expression declined in NSCLC tissues. miR-4732-3p functioned as a tumor suppressor in NSCLC by targeting 3'UTR of MFSD12, thereby inhibiting AKT/p21 signaling pathway to induce cell cycle arrest in G2/M phase. NSCLC cells preferentially released miR-4732-3p via exosomes instead of retaining them intracellularly, which was facilitated by the interaction of miR-4732-3p with hnRNPK protein for selective sorting into fucosylated exosomes. Moreover, knockdown of hnRNPK suppressed NSCLC cell proliferation, with the elevated levels of miR-4732-3p in NSCLC tissues but the decreased expression in serum fucosylated exosomes. CONCLUSIONS: NSCLC cells escape suppressive effects of miR-4732-3p through hnRNPK-mediated sorting of them into fucosylated exosomes, thus supporting cell malignant properties and promoting NSCLC progression. Our study provides a promising biomarker for NSCLC and opens a novel avenue for NSCLC therapy by targeting hnRNPK to prevent the "exosome escape" of tumor-suppressive miR-4732-3p from NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Fucose , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Glicosilação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Exossomos/metabolismo , MicroRNAs/sangue , MicroRNAs/metabolismo , Genes Supressores de Tumor , Fucose/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Regulação para Baixo , Animais , Camundongos , Camundongos Nus , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Prognóstico , Transdução de Sinais , Progressão da Doença , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue
17.
J Proteome Res ; 23(4): 1379-1398, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507902

RESUMO

Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of N-glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their N-glycosylation profile and protein expression as an effect of the knockdown of the FUT8 gene that encodes FucT-8. Using label-free, semiquantitative mass spectrometry (MS) analysis, we found noticeable differences in N-glycosylation patterns in FUT8-knockdown cells, affecting core fucosylation and sialylation, the Hex/HexNAc ratio, and antennarity. Furthermore, stable isotopic labeling of amino acids in cell culture (SILAC)-based proteomic screening detected the alteration of species involved in protein folding, endoplasmic reticulum (ER) and Golgi post-translational stabilization, epithelial polarity, and cellular response to damage and therapy. This data is available via ProteomeXchange with identifier PXD050012. Overall, the results obtained merit further investigation to validate their feasibility as biomarkers of progression and malignization in CRC, as well as their potential usefulness in clinical practice.


Assuntos
Neoplasias Colorretais , Fucosiltransferases , Humanos , Neoplasias Colorretais/genética , Fucose/metabolismo , Fucosiltransferases/genética , Espectrometria de Massas , Polissacarídeos/química , Proteômica
18.
BMC Pediatr ; 24(1): 107, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347448

RESUMO

OBJECTIVE: As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates. MATERIALS AND METHODS: The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosaccharides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrating clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC). RESULTS: Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild (48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides (Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentrations of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age and Fuc-D, with an AUC of 0.96. CONCLUSION: A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely intervention and improved neonatal outcomes.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Masculino , Feminino , Gravidez , Recém-Nascido , Humanos , Idade Gestacional , Displasia Broncopulmonar/complicações , Fucose , Monossacarídeos
20.
Mar Biotechnol (NY) ; 26(1): 181-198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273163

RESUMO

Natural substances are strategic candidates for drug development in cancer research. Marine-derived molecules are of special interest due to their wide range of biological activities and sustainable large-scale production. Melanoma is a type of skin cancer that originates from genetic mutations in melanocytes. BRAF, RAS, and NF1 mutations are described as the major melanoma drivers, but approximately 20% of patients lack these mutations and are included in the triple wild-type (tripleWT) classification. Recent advances in targeted therapy directed at driver mutations along with immunotherapy have only partially improved patients' overall survival, and consequently, melanoma remains deadly when in advanced stages. Fucose-containing sulfated polysaccharides (FCSP) are potential candidates to treat melanoma; therefore, we investigated Fucan A, a FCSP from Spatoglossum schröederi brown seaweed, in vitro in human melanoma cell lines presenting different mutations. Up to 72 h Fucan A treatment was not cytotoxic either to normal melanocytes or melanoma cell lines. Interestingly, it was able to impair the tripleWT CHL-1 cell proliferation (57%), comparable to the chemotherapeutic cytotoxic drug cisplatin results, with the advantage of not causing cytotoxicity. Fucan A increased CHL-1 doubling time, an effect attributed to cell cycle arrest. Vascular mimicry, a close related angiogenesis process, was also impaired (73%). Fucan A mode of action could be related to gene expression modulation, in special ß-catenin downregulation, a molecule with protagonist roles in important signaling pathways. Taken together, results indicate that Fucan A is a potential anticancer molecule and, therefore, deserves further investigation.


Assuntos
Antineoplásicos , Melanoma , Phaeophyceae , Humanos , Fucose , Sulfatos/farmacologia , Melanoma/tratamento farmacológico , Linhagem Celular , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA