Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Sci Total Environ ; 879: 163052, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36963679

RESUMO

Engineered fullerene materials have attracted the attention of researchers in the biomedical sciences, especially when their synthetic methodology is developed to endow them with significant levels of water-solubility and bioavailability. In this study, we synthesized and characterized a water-soluble and red-fluorescent [70]fullerene nanomaterial, which fluoresced at 693 nm with a quantum yield of 0.065 and a large Stokes shift (around 300 nm). The fullerene nanomaterial generated mainly singlet oxygen after illumination with blue LED light, while superoxide anion radical production was minimal. The transmission electron microscopy as well as fluorescent studies of Drosophila melanogaster revealed that prepared [70]fullerene nanoparticles had better bioavailability than pristine [70]fullerene nanoparticles. The designed nanomaterials were observed in the apical, perinuclear, and basal regions of digestive cells, as well as the basal lamina of the digestive system's epithelium, with no damage to cell organelles and no activation of degenerative processes and cell death. Our findings provide a new perspective for understanding the in vivo behavior of fullerene nanomaterials and their future application in bioimaging and light-activated nanotherapeutics.


Assuntos
Fulerenos , Nanoestruturas , Animais , Fulerenos/toxicidade , Drosophila melanogaster , Água , Nanoestruturas/toxicidade , Luz
2.
Sci Total Environ ; 826: 154213, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240187

RESUMO

Nanomaterial fullerene (FLN) has different responses called the hormesis effect against stress conditions. The favorable/adverse impacts of hormesis on crop quality and productivity are under development in agrotechnology. In this study, the effect of FLN administration (100-250-500mg L-1 for FLN1-2-3, respectively) on growth, water management, gas exchange, chlorophyll fluorescence kinetics and cobalt (Co)-induced oxidative stress in Zea mays was investigated. The negative alterations in relative growth rate (RGR), water status (relative water content, osmotic potential and proline content) and gas exchange/stomatal regulation were removed by FLNs. FLNs were shown to protect photosynthetic apparatus and preserve the photochemistry of photosystems (PSI-PSII) in photosynthesis, chlorophyll fluorescence transients and energy flux damaged under Co stress. The maize leaves exposed to Co stress exhibited a high accumulation of hydrogen peroxide (H2O2) due to insufficient scavenging activity, which was confirmed by reactive oxygen species (ROS)-specific fluorescence visualization in guard cells. FLN regulated the gene expression of ribulose-1,5-bisphosphate carboxylase large subunit (rbcL), nodulin 26-like intrinsic protein1-1 (NIP1-1) and tonoplast intrinsic protein2-1 (TIP2-1) under stress. After stress exposure, FLNs successfully eliminated H2O2 content produced by superoxide dismutase (SOD) activity of catalase (CAT) and peroxidase (POX). The ascorbate (AsA) regeneration was achieved in all FLN applications together with Co stress through the elevated monodehydroascorbate reductase (MDHAR, under all FLNs) and dehydroascorbate reductase (DHAR, only FLN1). However, dose-dependent FLNs (FLN1-2) provided the induced pool of glutathione (GSH) and GSH redox state. Hydroponically applied FLNs removed the restrictions on metabolism and biological process induced by lipid peroxidation (TBARS content) and excessive ROS production. Considering all data, the modulation of treatment practices in terms of FLN concentrations and forms of its application will provide a unique platform for improving agricultural productivity and stress resistance in crops. The current study provided the first findings on the chlorophyll a fluorescence transient and localization of ROS in guard cells of Zea mays exposed to FLN and Co stress.


Assuntos
Aquaporinas , Fulerenos , Antioxidantes/metabolismo , Aquaporinas/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Cobalto/metabolismo , Fluorescência , Fulerenos/toxicidade , Expressão Gênica , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo , Movimentos da Água , Zea mays/metabolismo
3.
ACS Appl Mater Interfaces ; 13(38): 45854-45863, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520162

RESUMO

The design of catalysts with greater control over catalytic activity and stability is a major challenge with substantial impact on fundamental chemistry and industrial applications. Due to their unparalleled diversity, selectivity, and efficiency, enzymes are promising models for next-generation catalysts, and considerable efforts have been devoted to incorporating the principles of their mechanisms of action into artificial systems. We report a heretofore undocumented catalyst design that introduces fullerenes to the field of biocatalysis, which we refer to as fullerene nanocatalysts, and that emulates enzymatic active sites through multifunctional self-assembled nanostructures. As a proof-of-concept, we mimicked the reactivity of hydrolases using fullerene nanocatalysts functionalized with the basic components of the parent enzyme with remarkable activity. Owing to the versatile amino acid-based functionalization repertoire of fullerene nanocatalysts, these next-generation carbon/biomolecule hybrids have potential to mimic the activity of other families of enzymes and, therefore, offer new perspectives for the design of biocompatible, high-efficiency artificial nanocatalysts.


Assuntos
Materiais Biomiméticos/química , Fulerenos/química , Nanoestruturas/química , Aminoácidos/química , Aminoácidos/toxicidade , Materiais Biomiméticos/toxicidade , Catálise , Fulerenos/toxicidade , Humanos , Cinética , Células MCF-7 , Simulação de Dinâmica Molecular , Nanoestruturas/toxicidade , Oxirredução
4.
Bioorg Med Chem Lett ; 49: 128267, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271071

RESUMO

In the present study, we newly synthesized four types of novel fullerene derivatives: pyridinium/ethyl ester-type derivatives 3b-3l, pyridinium/carboxylic acid-type derivatives 4a, 4e, 4f, pyridinium/amide-type derivative 5a, and pyridinium/2-morpholinone-type derivative 6a. Among the assessed compounds, cis-3c, cis-3d, trans-3e, trans-3h, cis-3l, cis-4e, cis-4f, trans-4f, and cis-5a were found to inhibit HIV-1 reverse transcriptase (HIV-RT), HIV-1 protease (HIV-PR), and HCV NS5B polymerase (HCV NS5B), with IC50 values observed in the micromolar range. Cellular uptake of pyridinium/ethyl ester-type derivatives was higher than that of corresponding pyridinium/carboxylic acid-type derivatives and pyridinium/amide-type derivatives. This result might indicate that pyridinium/ethyl ester-type derivatives are expected to be lead compounds for multitargeting drugs to treat HIV/HCV coinfection.


Assuntos
Fármacos Anti-HIV/farmacologia , Fulerenos/farmacologia , Inibidores da Protease de HIV/farmacologia , Compostos de Piridínio/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Linhagem Celular Tumoral , Fulerenos/química , Fulerenos/toxicidade , Protease de HIV/metabolismo , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/toxicidade , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Hepacivirus/enzimologia , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Compostos de Piridínio/síntese química , Compostos de Piridínio/toxicidade , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/toxicidade , Relação Estrutura-Atividade
5.
Front Immunol ; 11: 1186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595644

RESUMO

Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 µg/mouse or C60F at a dose above 640 µg/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways.


Assuntos
Fulerenos/toxicidade , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Animais , Macrófagos/efeitos dos fármacos , Camundongos , Pneumonia/patologia
6.
Environ Res ; 188: 109716, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497874

RESUMO

Fullerene comprises the major allotrope of carbon holding several fruitful potentials to be applied in various industrial and biomedical scenarios. Scientists have acquired large number of data on fullerene research using its derivatives like C60, C70 etc. Nevertheless, a precise focus on fullerene soot nanopaticles and its toxic impacts in living tissue is still behind mainstay even if it represents the crude parent form of all other derivatives. Present study addresses an acute toxicity profiling of fullerene soot nanoparticles in alveolar epithelial cells (A549) as a paradigm of pulmonary exposure. Surface functionalization was given for fullerene soot nanoparticles using dextran polymer as a mean to establish a stable homogenous dispersion (denoted as dFSNPs hereafter). Following functionalization, dFSNPs were characterized for various parameters including size, surface charge, morphology and functional groups using DLS, Zeta potential analysis, TEM and FT-IR measurements respectively. Effective dextran functionalization was evident from the characteristic peaks in FTIR spectra. Cell viability assessed using MTT and NRU assays; both of which showed a dose dependent cytotoxic response. Thymidine incorporation also confirmed similar trend in viability rate. In accordance with literatures, DCFHDA assay confirmed free radical scavenging activity of fullerene nanoparticles. An altered cellular morphology was observed under fluorescent microscope. Sub-cellular functionalities including lysosomal integrity and mitochondrial stability were found to be compromised at highest tested concentration of dFSNPs (160 µg/ml) without any genotoxic impacts within nuclear premises. FACS analysis following Annexin-PI staining confirmed apoptotic cell death. Hence the overall study substantiated dose dependent toxicity of dFSNPs which is likely to occur during pulmonary exposure.


Assuntos
Fulerenos , Células A549 , Células Epiteliais Alveolares , Dextranos , Fulerenos/toxicidade , Fuligem , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Toxic Rep Ser ; (87)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33529180

RESUMO

Fullerene C60 (C60), a primary allotrope of carbon, is used in a variety of consumer applications including microelectronics, photovoltaics, batteries and fuel cells, and water treatment methods. Human exposure to engineered C60 due to industrial applications may occur via inhalation, oral, dermal, or parenteral routes. In these toxicity and tissue burden studies, male and female Wistar Han rats and B6C3F1/N mice were exposed to fullerene C60 (at least 95% pure) via nose-only inhalation for 3 months. Two different C60 fullerene aggregate sizes, 1 µm diameter (micro-C60) and 50 nm diameter (nano-C60) were studied to assess the potential for differential effects based on particle size. (Abstract Abridged).


Assuntos
Fulerenos/toxicidade , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Administração por Inalação , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Testes de Toxicidade
8.
Toxicol In Vitro ; 62: 104683, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31639450

RESUMO

One of the most studied fullerene members, C60, has a potential of application in various fields of biomedicine including reactive oxygen species (ROS) scavenging activity, inhibiting of tumours development, inactivating of viruses and bacteria, as well as elaboration of diagnostic and targeted drug delivery tools. However, the hydrophobicity of this molecule impedes its practical use, therefore the actuality of the research devoted to functionalisation of fullerenes leading to amphiphilic derivatives remains important. In this work, the water-soluble carboxylated fullerene derivative C60[C(COOH)2]3 was studied. Extensive biomedical investigation of this compound, namely, the binding with human serum albumin (HSA), radical scavenging activity in the reaction with diphenylpicrylhydrazyl (DPPH) radical, photodynamic properties, cytotoxicity in human embryonic kidney (HEK293) cell line, erythrocytes' haemolysis, platelet aggregation, and genotoxicity in human peripheral mononuclear cells (PBMC) was conducted. Moreover, the dynamic and structural characteristics of C60[C(COOH)2]3-H2O binary system were obtained using molecular dynamic (MD) method, and size distribution of C60[C(COOH)2]3 associates was measured.


Assuntos
Fulerenos/química , Fulerenos/toxicidade , Adulto , Compostos de Bifenilo/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Feminino , Sequestradores de Radicais Livres/farmacologia , Células HEK293 , Humanos , Masculino , Simulação de Dinâmica Molecular , Mutagênicos/toxicidade , Picratos/toxicidade , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica , Solubilidade , Água
9.
Mater Sci Eng C Mater Biol Appl ; 104: 109945, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499967

RESUMO

The toxicity of C60(OH)30, C70(OH)30, and C120O(OH)n fullerenols, prepared by a new original method, has been studied. This method allowed us to obtain high-purity fullerenols and eliminate the risks of synthesis of preparations containing insoluble fractions contaminated with impurities such as fullerenes not completely reacted by hydroxylation. All fullerenols were detected inside cultured cells. The MTT assay as well as the analysis of apoptosis and cell cycle showed that С60(ОН)30 and С70(OH)30 are non-toxic for cultured V79 и HeLa cells at concentrations exceeding physiological levels by an order of magnitude. С120O(OH)n caused low toxicity. Studies in Drosophila melanogaster showed that any preparations used did not result in a decreased lifespan or in behavior abnormalities in flies.


Assuntos
Fulerenos/química , Fulerenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Drosophila melanogaster/efeitos dos fármacos , Células HeLa , Humanos , Hidroxilação/efeitos dos fármacos
10.
Toxicol Sci ; 172(2): 398-410, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504961

RESUMO

Carbon nanomaterials (CNMs) are widely used in industrial and medical sectors. The increasing exposure of CNMs necessitates the studies of their potential environmental and health effects. High-mobility group box-1 (HMGB1) is a nuclear DNA-binding protein, but when released from cells, may cause sustained inflammatory response and promote cell migration and invasion. In this work, we found that 7-day exposure of 2.5 mg/kg/day CNMs, including C60, single-walled carbon nanotubes, and graphene oxides significantly elevated the level of HMGB1 in blood and lung lavage fluids in C57BL/6 mice. Subsequently, cellular effects and underlying mechanism were explored by using Raw264.7. The results showed that noncytotoxic CNMs enhanced HMGB1 intracellular translocation and release via activating P2X7 receptor. Released HMGB1 further activated receptor for advanced glycation endproducts (RAGE) and downstream signaling pathway by upregulating RAGE and Rac1 expression. Simultaneously, CNMs prepared the cells for migration and invasion by modulating MMP2 and TIMP2 gene expression as well as cytoskeleton reorganization. Intriguingly, released HMGB1 from macrophages promoted the migration of nearby lung cancer cell, which can be efficiently inhibited by neutralizing antibodies against HMGB1 and RAGE. Taken together, our work demonstrated that CNMs stimulated HMGB1 release and cell migration/invasion through P2X7R-HMGB1-RAGE pathway. The revealed mechanisms might facilitate a better understanding on the inflammatory property and subsequent cell functional alteration of CNMs.


Assuntos
Movimento Celular/efeitos dos fármacos , Fulerenos/toxicidade , Grafite/toxicidade , Proteína HMGB1/sangue , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Células A549 , Animais , Líquido da Lavagem Broncoalveolar/química , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
11.
Environ Pollut ; 251: 22-29, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071629

RESUMO

This study evaluated hormetic effect of oxidative stress exerted by fullerene crystals (nC60) on Daphnia pulex, employing transcriptomics and metabolomics. D. pulex were exposed to various concentrations of nC60 for 21 days. Hormetic effect of oxidative stress was most evident after 7 days, with markedly increased L-Glutathione (GSH) concentration and Superoxide Dismutase (SOD) activity at low doses of nC60 exposure, and oppositely at high doses. The transcriptomics and metabolomics were used to elucidate the molecular mechanism underlying the hormesis in oxidative stress. There were significant alterations in major pathways involving oxidative stress and energy metabolism in D. pulex. Some important intermediates and the expression of their regulatory genes coincided with each other with first up-regulated and then down-regulated with the concentration increased, consistent with the hormesis description. The nC60 interfered the TCA cycle of D. pulex. The synthesis of L-cysteine and glutamate was directly affected, and further disturbed the synthesis of GSH. This work is of great significance to provide the molecular-level evidence into the hormetic effect in oxidative stress of D. pulex exposed to nC60.


Assuntos
Daphnia/efeitos dos fármacos , Fulerenos/toxicidade , Hormese/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Daphnia/genética , Daphnia/metabolismo , Perfilação da Expressão Gênica , Glutationa/metabolismo , Metabolômica , Transcriptoma/efeitos dos fármacos
12.
Chem Biol Interact ; 307: 206-222, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054282

RESUMO

Application of nanomaterials in our daily life is increasing, day in day out and concerns have raised about their toxicity for human and other organisms. In this manner, carbon-based nanomaterials have been applied to different products due to their unique physicochemical, electrical, mechanical properties, and biological compatibility. But, there are several reports about the negative effects of these materials on biological systems and cellular compartments. This review article describes the various types of carbon-based nanomaterials and methods that use for determining these toxic effects that are reported recently in the papers. Then, extensively discussed the toxic effects of these materials on the human and other living organisms and also their toxicity routs including Neurotoxicity, Hepatotoxicity, Nephrotoxicity, Immunotoxicity, Cardiotoxicity, Genotoxicity and epigenetic toxicity, Dermatotoxicity, and Carcinogenicity.


Assuntos
Carbono/química , Nanoestruturas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fulerenos/química , Fulerenos/toxicidade , Grafite/química , Grafite/toxicidade , Humanos , Nanoestruturas/toxicidade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos
13.
Int J Mol Sci ; 19(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513951

RESUMO

There is a growing concern for the potential toxicity of engineered nanomaterials that have made their way into virtually all novel applications in the electronics, healthcare, cosmetics, technology, and engineering industries, and in particular, biomedical products. However, the potential toxicity of carbon 60 (C60) at the behavioral level has not been properly evaluated. In this study, we used idTracker, a multitracking algorithm to quantitatively assess behavioral toxicity induced by C60 nanoparticles (C60 NPs) in adult zebrafish. We demonstrated that locomotion, novel tank exploration, aggression, shoaling, and color preference activities of the C60 NPs-treated fish was significantly reduced. In addition, the C60 NPs-treated fish also displayed dysregulation of the circadian rhythm by showing lower locomotion activities in both day and night cycles. The biochemical results showed that C60 NPs exposure at low concentration induced oxidative stress and DNA damage, reduced anti-oxidative capacity and ATP (adenosine triphosphate) levels, and induced stress-associated hormones, hypoxia, as well as inflammation marker upregulation in muscle and gill tissues. Together, this work, for the first time, provide direct evidence showing that the chronic exposure of C60 NPs induced multiple behavioral abnormalities in adult zebrafish. Our findings suggest that the ecotoxicity of C60 NPs towards aquatic vertebrates should be carefully evaluated.


Assuntos
Comportamento Animal/efeitos dos fármacos , Exposição Ambiental/análise , Fulerenos/toxicidade , Nanopartículas/toxicidade , Testes de Toxicidade , Peixe-Zebra/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cor , Determinação de Ponto Final , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hipóxia/patologia , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Comportamento Predatório/efeitos dos fármacos , Comportamento Social
14.
Toxicol Appl Pharmacol ; 338: 197-203, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191454

RESUMO

The buckminsterfullerene (C60) is considered as a relevant candidate for drug and gene delivery to the brain, once it has the ability to cross the blood-brain barrier. However, the biological implications of this nanomaterial are not fully understood, and its safety for intracerebral delivery is still debatable. In this study, we investigated if C60 particle size could alter its biological effects. For this, two aqueous C60 suspensions were used with maximum particle size up to 200nm and 450nm. The suspensions were injected in the hippocampus, the main brain structure involved in memory processing and spatial localization. In order to assess spatial learning, male Wistar rats were tested in Morris water maze, and the hippocampal BDNF protein levels and gene expression were analyzed. Animals treated with C60 up to 450nm demonstrated impaired spatial memory with a significant decrease in BDNF protein levels and gene expression. However, an enhanced antioxidant capacity was observed in both C60 treatments. A decrease in reactive oxygen species levels was observed in the treatments with suspensions containing particles measuring with up to 450nm. Thiobarbituric acid reactive substances, glutamate cysteine ligase, and glutathione levels showed no alterations among the different treatments. In conclusion, different particle sizes of the same nanomaterial can lead to different behavioral outcomes and biochemical parameters in brain tissue.


Assuntos
Fulerenos/toxicidade , Hipocampo/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/análise , Hipocampo/metabolismo , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
J Biomater Sci Polym Ed ; 28(10-12): 1036-1050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28132586

RESUMO

As novel magnetic resonance imaging (MRI) contrast agent, gadofullerene encapsulated redox nanoparticles (Gd3NPs) were prepared by encapsulation of Gd3N@C80 in the core of core-shell-type polymer micelles composed of original polyamine with a reactive oxygen species (ROS)-scavenging ability. Because Gd3NPs possess biocompatible PEG shell with a smaller size (ca. 50 nm), they had high colloidal stability in a physiological environment, and showed low cytotoxicity. Specific accumulation of Gd3NPs in a tumor was confirmed in tumor-bearing mice after systemic administration. The tumor/muscle (T/M) ratio of the Gd ion reached five at 7.5 h after the administration. T1-weighted MRI signal enhancement of the T/M ratio increased by 8% at 6 h postinjection of Gd3NPs (Gd dose:14.35 µmol/kg). Although Gd3NPs showed a tendency for extended blood circulation, they did not have severe adverse effects, probably due to the confinement of Gd in a hydrophobic fullerene in addition to the ROS-scavenging capacity of these nanoparticles. In sharp contrast, systemic administration of Gd-chelate nanoparticles (GdCNPs) to mice disrupts liver function, increases leukocyte counts, and destroys spleen and skin tissues. Leaking of Gd ions from GdCNPs may cause such adverse effects. Based on these results, we expect that Gd3NPs is high-performance MRI contrast agents for tumor diagnosis.


Assuntos
Meios de Contraste/química , Fulerenos/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Animais , Cápsulas , Linhagem Celular Tumoral , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Fulerenos/farmacocinética , Fulerenos/toxicidade , Masculino , Camundongos , Oxirredução
16.
Mutagenesis ; 32(1): 77-90, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011749

RESUMO

We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).


Assuntos
Bivalves/efeitos dos fármacos , Dano ao DNA , Fulerenos/toxicidade , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteínas ras/efeitos dos fármacos , Animais , Benzo(a)pireno/farmacologia , Benzo(a)pireno/toxicidade , Bivalves/genética , Bivalves/metabolismo , Ensaio Cometa , DNA/efeitos dos fármacos , Fulerenos/farmacologia , Regulação da Expressão Gênica , Glutationa/análise , Glutationa/efeitos dos fármacos , Modelos Animais , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteínas ras/genética
17.
Drug Chem Toxicol ; 40(2): 215-227, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27424666

RESUMO

The present study was designed to evaluate and compare the time- and dose-dependent cellular response of human periodontal ligament fibroblasts (hPDLFs), and mouse dermal fibroblasts (mDFs) to three different types of nanoparticles (NPs); fullerenes (C60), single walled carbon nanotubes (SWCNTs) and iron (II,III) oxide (Fe3O4) nanoparticles via in vitro toxicity methods, and impedance based biosensor system. NPs were characterized according to their morphology, structure, surface area, particle size distribution and zeta potential by using transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, dynamic light scattering and zeta sizer analyses. The Mössbauer spectroscopy was used in order to magnetically characterize the Fe3O4 NPs. The hPDLFs and mDFs were exposed to different concentrations of the NPs (0.1, 1, 10, 50 and 100 µg/mL) for predetermined time intervals (6, 24 and 48 h) under controlled conditions. Subsequently, NP exposed cells were tested for viability, membrane leakage and generation of intracellular reactive oxygen species. Additional to in vitro cytotoxicity assays, the cellular responses to selected NPs were determined in real time using an impedance based biosensor system. Taken together, information obtained from all experiments suggests that toxicity of the selected NPs is cell type, concentration and time dependent.


Assuntos
Bioensaio , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fulerenos/toxicidade , Nanopartículas de Magnetita/toxicidade , Nanotubos de Carbono/toxicidade , Ligamento Periodontal/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Técnicas Biossensoriais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Derme/metabolismo , Derme/patologia , Relação Dose-Resposta a Droga , Difusão Dinâmica da Luz , Impedância Elétrica , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Difração de Pó , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
18.
Protoplasma ; 254(4): 1607-1616, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27913906

RESUMO

Adsorption of non-polar compounds by suspended fullerene nanoaggregates (nC60) may enhance their toxicity and affect the fate, transformation, and transport of non-polar compounds in the environment. The potential of stable fullerene nanoaggregates as contaminant carriers in aqueous systems and the influence of chloromethanes (trichloromethane and dichloromethane) were studied on the midgut epithelial cells of Daphnia magna by light and electron microscopy. The size and shape of fullerene nanoaggregates were observed and measured using dynamic light scattering, transmission electron microscopy, and low vacuum scanning electron microscopy. The nC60 in suspension appeared as a bulk of aggregates of irregular shape with a surface consisting of small clumps 20-30 nm in diameter. The presence of nC60 aggregates was confirmed in midgut lumen and epithelial cells of D. magna. After in vivo acute exposure to chloromethane, light and electron microscopy revealed an extensive cytoplasmic vacuolization with disruption and loss of specific structures of D. magna midgut epithelium (mitochondria, endoplasmic reticulum, microvilli, peritrophic membrane) and increased appearance of necrotic cells. The degree of observed changes depended on the type of treatment: trichloromethane (TCM) induced the most notable changes, whereas fullerene nanoaggregates alone had no negative effects. Transmission electron microscopy also indicated increased lysosomal degradation and severe peroxidative damages of enterocyte mitochondria following combined exposure to chloromethane and fullerene nanoaggregates. In conclusion, the adsorption of chloromethane by fullerene nanoaggregates enhances their toxicity and induces peroxidative mitochondrial damage in midgut enterocytes.


Assuntos
Clorofórmio/toxicidade , Fulerenos/toxicidade , Cloreto de Metileno/toxicidade , Mitocôndrias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Células Cultivadas , Daphnia , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Trato Gastrointestinal/citologia , Mitocôndrias/ultraestrutura , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Tamanho da Partícula
19.
Methods ; 99: 99-111, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546729

RESUMO

Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course.


Assuntos
Meios de Contraste/química , Fulerenos/química , Lesão Pulmonar/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Lesões Experimentais por Radiação/diagnóstico por imagem , Transplante de Células-Tronco , Animais , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , Células Cultivadas , Meios de Contraste/toxicidade , Fulerenos/toxicidade , Humanos , Limite de Detecção , Pulmão/patologia , Lesão Pulmonar/terapia , Imageamento por Ressonância Magnética , Metalocenos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Imagens de Fantasmas , Lesões Experimentais por Radiação/terapia , Coloração e Rotulagem , Células-Tronco/fisiologia
20.
J Hazard Mater ; 301: 119-26, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26348144

RESUMO

Mitochondrial dysfunction is considered as a crucial mechanism of nanomaterial toxicity. Herein, we investigated the effects of polyhydroxylated fullerene (C60(OH)44, fullerenol), a model carbon-based nanomaterial with high water solubility, on isolated mitochondria. Our study demonstrated that fullerenol enhanced the permeabilization of mitochondrial inner membrane to H(+) and K(+) and induced mitochondrial permeability transition (MPT). The fullerenol-induced swelling was dose-dependent and could be effectively inhibited by MPT inhibitors such as cyclosporin A (CsA), adenosine diphosphate (ADP), ruthenium red (RR) and ethylenediaminetetraacetic acid (EDTA). After treating the mitochondria with fullerenol, the mitochondrial membrane potential (MMP) was found collapsed in a concentration-independent manner. The fluorescence anisotropy of hematoporphyrin (HP) changed significantly with the addition of fullerenol, while that of 1,6-diphenyl-hexatriene (DPH) changed slightly. Moreover, a decrease of respiration state 3 and increase of respiration state 4 were observed when mitochondria were energized with complex II substrate succinate. The results of transmission electron microscopy (TEM) provided direct evidence that fullerenol damaged the mitochondrial ultrastructure. The investigations can provide comprehensive information to elucidate the possible toxic mechanism of fullerenols at subcellular level.


Assuntos
Fulerenos/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/fisiologia , Mitocôndrias Hepáticas/ultraestrutura , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/fisiologia , Membranas Mitocondriais/ultraestrutura , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA