Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 252: 106314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201872

RESUMO

ABC export proteins including Multidrug resistance-related protein 2 (Mrp2) serve as detoxification mechanism in renal proximal tubules due to active transport of xenobiotics and metabolic waste products into primary urine. The environmental pollutants aluminum and arsenic interfere with a multitude of regulatory mechanisms in the body and here their impact on ABC transporter function was studied. NaAsO2 but not AlCl3 rapidly stimulated Mrp2-mediated Texas Red (TR) transport in isolated renal proximal tubules from killifish, a well-established laboratory model for the determination of efflux transporter activity by utilizing fluorescent substrates for the ABC transporters of interest and confocal microscopy followed by image analysis. This observed stimulation remained unaffected by the translation inhibitor cycloheximide (CHX), but it was abrogated by antagonists and inhibitors of the endothelin receptor type B (ETB)/nitric oxide synthase (NOS)/protein kinase C (PKC) signaling pathway. NaAsO2-triggered effects were abolished as a consequence of PKCα inhibition through Gö6976 and PKCα inhibitor peptide C2-4. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294,002 as well as the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed NaAsO2-triggered stimulation of luminal TR transport. In addition, the stimulatory effect of NaAsO2 was abolished by GSK650394, an inhibitor of serum- and glucocorticoid-inducible kinase 1 (SGK1), which is an important downstream target. Environmentally relevant concentrations of NaAsO2 further stimulated transport function of P-glycoprotein (P-gp), Multidrug resistance-related protein 4 (Mrp4) and Breast cancer resistance protein (Bcrp) while AlCl3 was ineffective. To our knowledge, this is the first report engaging in the impact of NaAsO2 on efflux transporter signaling and it may contribute to the understanding of defense mechanisms versus this worrying pollutant.


Assuntos
Arsênio , Fundulidae , Poluentes Químicos da Água , Animais , Fundulidae/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína Quinase C-alfa/metabolismo , Cloretos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cloreto de Alumínio , Cicloeximida , Glucocorticoides , Arsênio/metabolismo , Proteínas de Neoplasias/metabolismo , Poluentes Químicos da Água/toxicidade , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Óxido Nítrico Sintase/metabolismo , Resíduos , Sirolimo , Mamíferos/metabolismo
2.
Gen Comp Endocrinol ; 325: 114051, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533740

RESUMO

Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.


Assuntos
Aquaporinas , Fundulidae , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Claudinas/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Brânquias/metabolismo , Filogenia , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Salinidade , Água do Mar , Ovinos
3.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638748

RESUMO

Neurotrophins (NTs) and their signal-transducing Trk receptors play a crucial role in the development and maintenance of specific neuronal subpopulations in nervous and sensory systems. NTs are supposed to regulate two sensory systems in fish, the inner ear and the lateral line system (LLS). The latter is one of the major mechanosensory systems in fish. Considering that annual fishes of the genus Nothobranchius, with their short life expectancy, have become a suitable model for aging studies and that the occurrence and distribution of neurotrophin Trk receptors have never been investigated in the inner ear and LLS of killifish (Nothobranchius guentheri), our study aimed to investigate the localization of neurotrophin-specific Trk receptors in mechanosensory systems of N. guentheri. For histological and immunohistochemical analysis, adult specimens of N. guentheri were processed using antibodies against Trk receptors and S100 protein. An intense immunoreaction for TrkA and TrkC was found in the sensory cells of the inner ear as well as in the hair cells of LLS. Moreover, also the neurons localized in the acoustic ganglia displayed a specific immunoreaction for all Trk receptors (TrkA, B, and C) analyzed. Taken together, our results demonstrate, for the first time, that neurotrophins and their specific receptors could play a pivotal role in the biology of the sensory cells of the inner ear and LLS of N. guentheri and might also be involved in the hair cells regeneration process in normal and aged conditions.


Assuntos
Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Sistema da Linha Lateral/metabolismo , Mecanotransdução Celular , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Animais , Proteínas de Peixes/genética , Fundulidae/genética , Receptor trkA/genética , Receptor trkC/genética
4.
Anal Bioanal Chem ; 413(26): 6457-6468, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476522

RESUMO

Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2'3' cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3'3' cGAMP, 2'3' cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract.


Assuntos
GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/análise , Nucleotídeos Cíclicos/análise , Animais , Cromatografia Líquida , GMP Cíclico/análise , Escherichia coli/química , Fundulidae/metabolismo , Espectrometria de Massas em Tandem
5.
J Comp Physiol B ; 190(2): 219-230, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31980891

RESUMO

Mummichogs (Fundulus heteroclitus) can tolerate abrupt changes in environmental salinity because of their ability to rapidly adjust the activities of ionocytes in branchial and opercular epithelia. In turn, the concerted expression of sub-cellular effectors of ion transport underlies adaptive responses to fluctuating salinities. Exposure to seawater (SW) stimulates the expression of Na+/K+/2Cl- cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator (cftr) mRNAs in support of ion extrusion by SW-type ionocytes. Given the incomplete understanding of how freshwater (FW)-type ionocytes actually operate in mummichogs, the transcriptional responses essential for ion absorption in FW environments remain unresolved. In a subset of species, a 'fish-specific' Na+/Cl- cotransporter denoted Ncc2 (Slc12a10) is responsible for the uptake of Na+ and Cl- across the apical surface of FW-type ionocytes. In the current study, we identified an ncc2 transcript that is highly expressed in gill filaments and opercular epithelium of FW-acclimated mummichogs. Within 1 day of transfer from SW to FW, ncc2 levels in both tissues increased in parallel with reductions in nkcc1 and cftr. Conversely, mummichogs transferred from FW to SW exhibited marked reductions in ncc2 concurrent with increases in nkcc1 and cftr. Immunohistochemical analyses employing a homologous antibody revealed apical Ncc2-immunoreactivity in Na+/K+-ATPase-immunoreactive ionocytes of FW-acclimated animals. Our combined observations suggest that Ncc2/ncc2-expressing ionocytes support the capacity of mummichogs to inhabit FW environments.


Assuntos
Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Brânquias/metabolismo , Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Aclimatação , Animais , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Proteínas de Peixes/genética , Brânquias/efeitos dos fármacos , Salinidade , Simportadores de Cloreto de Sódio-Potássio/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-31863842

RESUMO

Cystic Fibrosis Transmembrane conductance Regulator (CFTR) anion channels are the regulated exit pathway in Cl- secretion by teleost salt secreting ionocytes of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase Focal Adhesion Kinase (FAK) phosphorylated at Y407 (FAKpY407) and FAKpY397 are colocalized at the apical membrane and in subjacent membrane vesicles of ionocytes. Hypotonic shock and the α-2 adrenergic agonist clonidine rapidly and reversibly inhibit Cl- secretion by isolated opercular epithelia, simultaneous with dephosphorylation of FAKpY407 and increased FAKpY397, located in the apical membrane of ionocytes in the opercular epithelium. FAKpY407 is re-phosphorylated at the apical membrane of ionocytes and Cl- secretion rapidly restored by hypertonic shock, detectable at 2 min., maximum at 5 min and still elevated at 30 min. In isolated opercular epithelia, the FAK phosphorylation inhibitor Y15 and p38MAP kinase inhibitor SB203580 significantly blunted the recovery of short-circuit current (Isc, equal to Cl- secretion rate) after hypertonic shock. The cSRC inhibitor saracatinib dephosphorylated FAKpY861 seen near tight junctions of pavement cells, and reduced the increase in epithelial resistance normally seen with clonidine inhibition of ion transport, while FAKpY397 was unaffected. The results show rapid osmosensitive responses in teleost fish ionocytes involve phosphorylation of CFTR by FAKpY407, an opposing role for FAKpY397 and a possible role for FAKpY861 in tight junction dynamics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fundulidae/fisiologia , Animais , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Inibidores Enzimáticos/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Fundulidae/metabolismo , Transporte de Íons , Osmorregulação , Pressão Osmótica , Fosforilação , Quinazolinas/farmacologia , Tirosina/metabolismo , Equilíbrio Hidroeletrolítico
7.
Environ Toxicol Chem ; 37(9): 2361-2371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29878480

RESUMO

Freshwater organisms are increasingly exposed to combinations of stressors. However, because it is time-consuming and costly, research on the interaction of stressors, such as compound toxicity and global warming on vertebrates, is scarce. Studies on multigenerational effects of these combined stressors are almost nonexistent. In the present study, we tested the combined effects of 4 °C warming and cadmium (Cd) exposure on life-history traits, biomarkers, bioaccumulation, and multigenerational tolerance in the turquoise killifish, Nothobranchius furzeri. The extremely short life cycle of this vertebrate model allows for assessment of sublethal and multigenerational effects within 4 mo. The applied Cd concentrations had only limited effects on the measured endpoints, which suggests that N. furzeri is more resistant to Cd than fathead minnow and rainbow trout. In contrast, the temperature increase of 4 °C was stressful: it delayed female maturation and lowered adult mass and fecundity. Finally, indications of synergistic effects were found on peak fecundity and embryonic survival. Overall, these results indicate the importance of studying chronic and multigenerational effects of combined stressors. Environ Toxicol Chem 2018;37:2361-2371. © 2018 SETAC.


Assuntos
Cádmio/toxicidade , Exposição Ambiental/análise , Fundulidae/metabolismo , Temperatura , Aclimatação/efeitos dos fármacos , Animais , Tamanho Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Fundulidae/anatomia & histologia , Fundulidae/crescimento & desenvolvimento , Resposta ao Choque Térmico/efeitos dos fármacos , Masculino , Metalotioneína/metabolismo , Análise de Sobrevida , Fatores de Tempo
8.
Nat Commun ; 9(1): 327, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382830

RESUMO

Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/genética , Diabetes Mellitus/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Criança , Pré-Escolar , Doença Crônica , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Fundulidae/genética , Fundulidae/crescimento & desenvolvimento , Fundulidae/metabolismo , Ontologia Genética , Genoma Humano , Humanos , Lactente , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/patologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
9.
Metallomics ; 10(2): 287-295, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29313547

RESUMO

Polyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 µM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 µM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 µM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 µM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 µM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 µM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 µM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 µM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.


Assuntos
Fundulidae/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Animais , Fundulidae/crescimento & desenvolvimento , Conformação Proteica , Compostos de Tungstênio/química
10.
J Exp Biol ; 221(Pt 1)2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29150449

RESUMO

To provide insight into claudin (Cldn) tight junction (TJ) protein contributions to branchial salt secretion in marine teleost fishes, this study examined cldn-10 TJ protein isoforms of a euryhaline teleost (mummichog; Fundulus heteroclitus) in association with salinity change and measurements of transepithelial cation selectivity. Mummichogs were transferred from freshwater (FW) to seawater (SW, 35‰) and from SW to hypersaline SW (2SW, 60‰) in a time course with transfer control groups (FW to FW, and SW to SW). FW to SW transfer increased mRNA abundance of cldn-10d and cldn-10e twofold, whilst cldn-10c and cldn-10f transcripts were unchanged. Transfer from SW to 2SW did not alter cldn-10d, and transiently altered cldn-10e abundance, but increased cldn-10c and cldn-10f fourfold. This was coincident with an increased number of single-stranded junctions (observed by transmission electron microscopy). For both salinity transfers, (1) cldn-10e mRNA was acutely responsive (i.e. after 24 h), (2) other responsive cldn-10 isoforms increased later (3-7 days), and (3) cystic fibrosis transmembrane conductance regulator (cftr) mRNA was elevated in accordance with established changes in transcellular Cl- movement. Changes in mRNA encoding cldn-10c and -10f appeared linked, consistent with the tandem repeat locus in the Fundulus genome, whereas mRNA for tandem cldn-10d and cldn-10e seemed independent of each other. Cation selectivity sequence measured by voltage and conductance responses to artificial SW revealed Eisenman sequence VII: Na+>K+>Rb+∼Cs+>Li+ Collectively, these data support the idea that Cldn-10 TJ proteins create and maintain cation-selective pore junctions in salt-secreting tissues of teleost fishes.


Assuntos
Cátions/metabolismo , Claudinas/genética , Proteínas de Peixes/genética , Fundulidae/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Animais , Transporte Biológico , Claudinas/metabolismo , Epitélio/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Cloreto de Sódio/metabolismo
11.
Arch Environ Contam Toxicol ; 73(1): 63-75, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28695255

RESUMO

Following the Deepwater Horizon oil spill, shorelines throughout the Barataria Basin of the northern Gulf of Mexico in Louisiana were heavily oiled for months with Macondo-252 oil, potentially impacting estuarine species. The Gulf killifish (Fundulus grandis) has been identified as a sentinel species for the study of site-specific effects of crude oil contamination on biological function. In November and December 2010, 4-5 months after the Macondo well was plugged and new oil was no longer spilling into the Gulf waters, Gulf killifish were collected across the Barataria Basin from 14 sites with varying degrees of oiling. Fish collected from oiled sites exhibited biological indications of exposure to oil, including increase in cytochrome P4501A (CYP1A) mRNA transcript and protein abundances in liver tissues. Immunohistochemistry revealed increases in gill, head kidney, and intestinal CYP1A protein at heavily oiled sites. Intestinal CYP1A protein was a sensitive indicator of exposure, indicating that intestinal tissue plays a key role in biotransformation of AHR ligands and that ingestion is a probable route of exposure, warranting additional consideration in future studies.


Assuntos
Monitoramento Ambiental , Fundulidae/metabolismo , Poluição por Petróleo , Petróleo/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Golfo do México , Áreas Alagadas
12.
Environ Toxicol Chem ; 36(4): 976-987, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27595668

RESUMO

Kejimkujik National Park and National Historic Site, Nova Scotia, Canada, is considered a biological mercury (Hg) hotspot because the tissues of yellow perch (Perca flavescens) and common loons (Gavia immer) inhabiting the lakes frequently exceed so-called safe levels of Hg. In the present study, the relationships between Hg and overall health of males and females of 3 forage fish species (brown bullhead Ameirus nebulosus, banded killifish Fundulus diaphanus, and golden shiner Notemigonus crysoleucas; n = 6-18/sex/lake) in 6 lakes at the park were assessed using condition factor, liversomatic index (LSI), and macrophage aggregates (MAs; indicators of tissue damage). Mean muscle total Hg (THg) concentrations of brown bullhead, banded killifish, and golden shiner across lakes were 0.32 µg/g, 0.27 µg/g, and 0.34 µg/g, respectively. Condition was negatively related to muscle THg in golden shiner and banded killifish, LSI was not related to THg in any species, and all species showed evidence of increasing MA prevalence (counts and area) with increasing THg concentrations. The MAs were most prevalent in spleen tissues of golden shiner, with mean percentage cover ranging from 0.36% to 5.59% across lakes. In addition, the area of MAs appeared to be better predicted by THg concentration than was the number of MAs in the same tissue. These findings suggest that Hg is affecting the health of wild fishes in Kejimkujik National Park and National Historic Site and that other populations with similar or higher concentrations of this metal may also be at risk. Environ Toxicol Chem 2017;36:976-987. © 2016 SETAC.


Assuntos
Peixes/metabolismo , Macrófagos/efeitos dos fármacos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Músculos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Agregação Celular/efeitos dos fármacos , Monitoramento Ambiental/métodos , Feminino , Fundulidae/metabolismo , Ictaluridae/metabolismo , Lagos/química , Macrófagos/patologia , Masculino , Músculos/química , Nova Escócia , Especificidade de Órgãos
13.
PLoS One ; 11(9): e0162699, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27682216

RESUMO

Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern Gulf of Mexico have confirmed oil exposure of resident marsh fish following the Macondo blowout in 2010. Using these same fish, we evaluated otolith microchemistry as a method for assessing oil exposure history. Laser-ablation inductively-coupled-plasma mass spectrometry was used to analyze the chemical composition of sagittal otoliths to assess whether a trace metal signature could be detected in the otoliths of F. grandis collected from a Macondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish from areas not impacted by the spill. We found no evidence of increased concentrations of two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths regardless of Macondo oil exposure history. One potential explanation for this is that Macondo oil is relatively depleted of those metals compared to other crude oils globally. During and after the spill, however, elevated levels of barium, lead, and to a lesser degree, copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisiana. This may reflect oil contact or other environmental perturbations that occurred concomitant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed (temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not conclusively demonstrate) freshwater diversions from the Mississippi River (with previously recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a mechanism for elevated elemental uptake in otoliths of Louisiana marsh fishes. These results highlight the potentially complex and indirect effects of the Macondo oil spill and human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider the multiple stressors acting simultaneously on inshore fish communities.


Assuntos
Fundulidae/metabolismo , Membrana dos Otólitos/efeitos dos fármacos , Petróleo/toxicidade , Animais , Níquel/análise , Membrana dos Otólitos/química , Membrana dos Otólitos/metabolismo , Poluição por Petróleo , Salinidade , Estações do Ano , Temperatura , Oligoelementos/análise , Vanádio/análise
14.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R185-96, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582639

RESUMO

Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range.


Assuntos
Aclimatação , Fundulidae/metabolismo , Miocárdio/metabolismo , Fosforilação Oxidativa , Temperatura , Difosfato de Adenosina/metabolismo , Animais , Respiração Celular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Peixes/metabolismo , Fundulidae/classificação , Mitocôndrias/metabolismo , Especificidade da Espécie , Fatores de Tempo
15.
Artigo em Inglês | MEDLINE | ID: mdl-26505693

RESUMO

The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Fundulidae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Fundulidae/embriologia , Rios/química , Virginia
16.
J Exp Biol ; 218(Pt 8): 1259-69, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25750413

RESUMO

In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 µmol l(-1)) and filipin (1.5 µmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.


Assuntos
Fundulidae/metabolismo , Sódio/metabolismo , Aclimatação , Animais , Transporte Biológico Ativo , Clorpromazina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/metabolismo , Filipina/farmacologia , Potenciais da Membrana , Salinidade
17.
Arch Environ Contam Toxicol ; 68(2): 382-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542148

RESUMO

The mechanisms of nickel (Ni) toxicity in marine fish remain unclear, although evidence from freshwater (FW) fish suggests that Ni can act as a pro-oxidant. This study investigated the oxidative stress effects of Ni on the euryhaline killifish (Fundulus heteroclitus) as a function of salinity. Killifish were exposed to sublethal levels (5, 10, and 20 mg L(-1)) of waterborne Ni for 96 h in FW (0 ppt) and 100 % saltwater (SW) (35 ppt). In general, SW was protective against both Ni accumulation and indicators of oxidative stress [protein carbonyl formation and catalase (CAT) activity]. This effect was most pronounced at the highest Ni exposure level. For example, FW intestine showed increased Ni accumulation relative to SW intestine at 20 mg Ni L(-1), and this was accompanied by significantly greater protein carbonylation and CAT activity in this tissue. There were exceptions, however, in that although liver of FW killifish at the highest exposure concentration showed greater Ni accumulation relative to SW liver, levels of CAT activity were greatly decreased. This may relate to tissue- and salinity-specific differences in oxidative stress responses. The results of the present study suggest (1) that there was Ni-induced oxidative stress in killifish, (2) that the effects of salinity depend on differences in the physiology of the fish in FW versus SW, and (3) that increased levels of cations (sodium, calcium, potassium, and magnesium) and anions (SO4 and Cl) in SW are likely protective against Ni accumulation in tissues exposed to the aquatic environment.


Assuntos
Níquel/metabolismo , Estresse Oxidativo/fisiologia , Salinidade , Poluentes Químicos da Água/metabolismo , Animais , Fundulidae/metabolismo , Níquel/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
18.
Environ Toxicol Chem ; 33(2): 370-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24122941

RESUMO

Ecosystem effects of polycyclic aromatic hydrocarbons (PAHs) remain under investigation following the Gulf of Mexico Deepwater Horizon oil spill. Fundulus grandis, an established indicator of aquatic ecosystem health, was investigated because this species shares genes and biochemical pathways with higher trophic-level fish and plays an important role in the gulf food chain. Oxidative stress responses including hepatic cytochrome P4501A (CYP1A) and serum antioxidant capacity were evaluated in fish exposed to PAHs. Fish were exposed to water-accommodated fractions (WAFs) of crude oil (7.0 ± 0.10 mg/L C6-C28) after which solutions were diluted below the level of detection over 8 h using 15 ppt aerated artificial seawater. Before euthanasia, fish remained in aquaria for 12 h, 24 h, or 48 h. Three replicate experiments were conducted at each time point using unexposed fish as experimental controls. Significant differences (p < 0.05) in CYP1A induction were observed in exposed versus control fish at 24 h. Expression of CYP1A increased by 25%, 66%, and 23% in exposed fish at 12 h, 24 h, and 48 h, respectively. Significant increases were observed in antioxidant capacity of nonenzymatic antioxidants in exposed versus control fish at each time point. Given the activity of CYP1A, radicals formed during PAH detoxification likely resulted in increased oxidant load requiring elevated antioxidant defenses. Research is needed to determine the duration of oxidative stress responses considering the potential for lipid oxidation in exposed fish or species feeding on exposed fish.


Assuntos
Fundulidae/metabolismo , Estresse Oxidativo , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/genética , Cadeia Alimentar , Fundulidae/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Poluição por Petróleo , RNA Mensageiro/metabolismo
19.
Evolution ; 68(1): 63-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24134703

RESUMO

Adaptation to salinity affects species distributions, promotes speciation, and guides many evolutionary patterns in fishes. To uncover the basis of a complex trait like osmoregulation, genome-level analyses are sensible. We combine population genomic scans with genome expression profiling to discover candidate genes and pathways associated with divergence between osmotic environments. We compared transcriptome sequence divergence between multiple freshwater and saltwater populations of the rainwater killifish, Lucania parva. We also compared sequence divergence between L. parva and its sister species, Lucania goodei, a freshwater specialist. We found highly differentiated single nucleotide polymorphisms (SNPs) between freshwater and saltwater L. parva populations in cell junction and ion transport genes, including V-type H(+) ATPase. Between species, we found divergence in reproduction and osmotic stress genes. Genes that were differentially expressed between species during osmotic acclimation included genes involved in ion transport and cell volume regulation. Gene sets that were divergent in coding sequence and divergent in expression did not overlap, although they did converge in function. Like many studies using genomic scans, our approach may miss some loci that contribute to adaptation but have complicated patterns of allelic variation. Our study suggests that gene expression and coding sequence may evolve independently as populations adapt to a complex physiological challenge.


Assuntos
Adaptação Fisiológica/genética , Fundulidae/genética , Especiação Genética , Genoma , Osmorregulação/genética , Salinidade , Animais , Ecossistema , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Fundulidae/fisiologia , Osmose , Polimorfismo de Nucleotídeo Único , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Estresse Fisiológico , Transcriptoma
20.
Zoolog Sci ; 30(12): 1050-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24320183

RESUMO

In our previous study, we clarified the toxicity of 2,2'-dipyridyldisulfide [(PS)2], one of photodegradation products of a metal pyrithione that is used as an alternative antifouling paint biocides to organotin compounds in Japan. In early life stage toxicity tests, we exposed the mummichog, (Fundulus heteroclitus) to (PS)2, and the hatched larvae subsequently displayed notochord undulations and skeletal deformities ( Mochida et al., 2012 ). Runx2, a transcription factor of the runt family, is a key regulator in skeletal development in mammals. It is possible that (PS)2 inhibits Runx2 gene expression, inducing the skeletal deformities in mummichog. In the present study, we cloned two Runx2 cDNAs (type I and type II) from mummichog embryos. The deduced amino acid sequences of type I and type II contain an open reading frame encoding 450 and 464 amino acid residues, respectively. The derived amino acid sequence of Fundulus Runx2 type I showed the highest identity (93.8%) with Takifugu Runx2 type I, and Fundulus Runx2 type II showed 94.6% homology with medaka Runx2. The expression level of Runx2 mRNA in the early stage series was measured using a real-time quantitative PCR assay. Expression levels tended to increase in both the blastula-gastrula and the retinal pigmentation stage. To examine the effect of toxic compounds on skeletal formation, mummichog embryos in the late blastula to retinal pigmentation stage were exposed to (PS)2. After exposure to (PS)2 for one week, the expression level of Runx2 mRNA was unchanged. These results suggest that there is no inhibition of Runx2 gene expression due to (PS)2 exposure.


Assuntos
Clonagem Molecular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fundulidae/embriologia , Fundulidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sequência de Aminoácidos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Embrião não Mamífero/metabolismo , Fundulidae/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA