Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Cell Rep ; 37(6): 109783, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758324

RESUMO

Micronuclei are a hallmark of cancer and several other human disorders. Recently, micronuclei were implicated in chromothripsis, a series of massive genomic rearrangements that may drive tumor evolution and progression. Here, we show that Aurora B kinase mediates a surveillance mechanism that integrates error correction during anaphase with spatial control of nuclear envelope reassembly to prevent micronuclei formation. Using high-resolution live-cell imaging of human cancer and non-cancer cells, we uncover that anaphase lagging chromosomes are more frequent than previously anticipated, yet they rarely form micronuclei. Micronuclei formation from anaphase lagging chromosomes is prevented by a midzone-based Aurora B phosphorylation gradient that stabilizes kinetochore-microtubule attachments and assists spindle forces required for anaphase error correction while delaying nuclear envelope reassembly on lagging chromosomes, independently of microtubule density. We propose that a midzone-based Aurora B phosphorylation gradient actively monitors and corrects frequent chromosome segregation errors to prevent micronuclei formation during human cell division.


Assuntos
Anáfase , Aurora Quinase B/metabolismo , Segregação de Cromossomos , Cinetocoros/enzimologia , Micronúcleos com Defeito Cromossômico , Membrana Nuclear/enzimologia , Fuso Acromático/enzimologia , Células HeLa , Humanos , Mecanotransdução Celular , Membrana Nuclear/genética , Fosforilação , Fuso Acromático/genética , Fatores de Tempo
2.
Cells ; 10(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440628

RESUMO

Tubulin post-translational modifications regulate microtubule properties and functions. Mitotic spindle microtubules are highly modified. While tubulin detyrosination promotes proper mitotic progression by recruiting specific microtubule-associated proteins motors, tubulin acetylation that occurs on specific microtubule subsets during mitosis is less well understood. Here, we show that siRNA-mediated depletion of the tubulin acetyltransferase ATAT1 in epithelial cells leads to a prolonged prometaphase arrest and the formation of monopolar spindles. This results from collapse of bipolar spindles, as previously described in cells deficient for the mitotic kinase PLK1. ATAT1-depleted mitotic cells have defective recruitment of PLK1 to centrosomes, defects in centrosome maturation and thus microtubule nucleation, as well as labile microtubule-kinetochore attachments. Spindle bipolarity could be restored, in the absence of ATAT1, by stabilizing microtubule plus-ends or by increasing PLK1 activity at centrosomes, demonstrating that the phenotype is not just a consequence of lack of K-fiber stability. We propose that microtubule acetylation of K-fibers is required for a recently evidenced cross talk between centrosomes and kinetochores.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/enzimologia , Células Epiteliais/enzimologia , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Células LLC-PK1 , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/genética , Mitose , Transdução de Sinais , Fuso Acromático/genética , Suínos , Quinase 1 Polo-Like
3.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34137789

RESUMO

WDR62 is a microcephaly-related, microtubule (MT)-associated protein (MAP) that localizes to the spindle pole and regulates spindle organization, but the underlying mechanisms remain elusive. Here, we show that WDR62 regulates spindle dynamics by recruiting katanin to the spindle pole and further reveal a TPX2-Aurora A-WDR62-katanin axis in cells. By combining cellular and in vitro experiments, we demonstrate that WDR62 shows preference for curved segments of dynamic GDP-MTs, as well as GMPCPP- and paclitaxel-stabilized MTs, suggesting that it recognizes extended MT lattice. Consistent with this property, WDR62 alone is inefficient in recruiting katanin to GDP-MTs, while WDR62 complexed with TPX2/Aurora A can potently promote katanin-mediated severing of GDP-MTs in vitro. In addition, the MT-binding affinity of WDR62 is autoinhibited through JNK phosphorylation-induced intramolecular interaction. We propose that WDR62 is an atypical MAP and functions as an adaptor protein between its recruiting factor TPX2/Aurora A and the effector katanin to orchestrate the regulation of spindle dynamics.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fuso Acromático/enzimologia , Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Katanina/genética , Cinética , Microcefalia/enzimologia , Microcefalia/genética , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Paclitaxel/farmacologia , Fosforilação , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/genética , Moduladores de Tubulina/farmacologia
4.
Sci Rep ; 11(1): 2616, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510346

RESUMO

Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis. Centrosomal Fyn increased in the G2 phase in a microtubule polymerization-dependent manner. A mass spectrometry analysis using mitotic spindle preparations was performed to identify tyrosine-phosphorylated substrates. Protein regulator of cytokinesis 1 (PRC1) and kinastrin/small kinetochore-associated protein (kinastrin/SKAP) were identified as SFK substrates. SFKs mainly phosphorylated PRC1 at Tyr-464 and kinastrin at Tyr-87. Although wild-type PRC1 is associated with microtubules, phosphomimetic PRC1 impaired the ability to bind microtubules. Phosphomimetic kinastrin at Tyr-87 also impaired binding with microtubules. Collectively, these results suggest that tyrosine phosphorylation of PRC1 and kinastrin plays a role in their delocalization from microtubules during mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Fuso Acromático/enzimologia , Ciclo Celular , Células HeLa , Humanos , Fosforilação
5.
Dig Dis Sci ; 66(5): 1510-1523, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32495257

RESUMO

BACKGROUND: Genomic instability is a hallmark of cancer cells contributing to tumor development and progression. Integrin-linked kinase (ILK) is a focal adhesion protein with well-established role in carcinogenesis. We have previously shown that ILK overexpression is critically implicated in human colorectal cancer (CRC) progression. In light of the recent findings that ILK regulates centrosomes and mitotic spindle formation, we aimed to determine its implication in mechanisms of genomic instability in human CRC. METHODS: Association of ILK expression with markers of genomic instability (micronuclei formation, nucleus size, and intensity) was investigated in diploid human colon cancer cells HCT116 upon ectopic ILK overexpression, by immunofluorescence and in human CRC samples by Feulgen staining. We also evaluated the role of ILK in mitotic spindle formation, by immunofluorescence, in HCT116 cells upon inhibition and overexpression of ILK. Finally, we evaluated association of ILK overexpression with markers of DNA damage (p-H2AX, p-ATM/ATR) in human CRC tissue samples by immunohistochemistry and in ILK-overexpressing cells by immunofluorescence. RESULTS: We showed that ILK overexpression is associated with genomic instability markers in human colon cancer cells and tissues samples. Aberrant mitotic spindles were observed in cells treated with specific ILK inhibitor (QLT0267), while ILK-overexpressing cells failed to undergo nocodazole-induced mitotic arrest. ILK overexpression was also associated with markers of DNA damage in HCT116 cells and human CRC tissue samples. CONCLUSIONS: The above findings indicate that overexpression of ILK is implicated in mechanisms of genomic instability in CRC suggesting a novel role of this protein in cancer.


Assuntos
Neoplasias Colorretais/enzimologia , Dano ao DNA , Instabilidade Genômica , Micronúcleos com Defeito Cromossômico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Histonas/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fuso Acromático/enzimologia , Fuso Acromático/genética , Fuso Acromático/patologia
6.
J Cell Biol ; 219(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33125045

RESUMO

Local phosphatase regulation is needed at kinetochores to silence the mitotic checkpoint (a.k.a. spindle assembly checkpoint [SAC]). A key event in this regard is the dephosphorylation of MELT repeats on KNL1, which removes SAC proteins from the kinetochore, including the BUB complex. We show here that PP1 and PP2A-B56 phosphatases are primarily required to remove Polo-like kinase 1 (PLK1) from the BUB complex, which can otherwise maintain MELT phosphorylation in an autocatalytic manner. This appears to be their principal role in the SAC because both phosphatases become redundant if PLK1 is inhibited or BUB-PLK1 interaction is prevented. Surprisingly, MELT dephosphorylation can occur normally under these conditions even when the levels or activities of PP1 and PP2A are strongly inhibited at kinetochores. Therefore, these data imply that kinetochore phosphatase regulation is critical for the SAC, but primarily to restrain and extinguish autonomous PLK1 activity. This is likely a conserved feature of the metazoan SAC, since the relevant PLK1 and PP2A-B56 binding motifs have coevolved in the same region on MADBUB homologues.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/enzimologia , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Fosforilação/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fuso Acromático/genética , Quinase 1 Polo-Like
7.
J Cell Biol ; 218(4): 1200-1217, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808706

RESUMO

Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin-Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity-dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling-dependent activation of the PI3K-Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.


Assuntos
Polaridade Celular , Proliferação de Células , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Células Neuroepiteliais/enzimologia , Lobo Óptico de Animais não Mamíferos/enzimologia , Fuso Acromático/enzimologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/genética , Mutação , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fuso Acromático/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718377

RESUMO

RecQ-like helicase 4 (RECQL4) is mutated in patients suffering from the Rothmund-Thomson syndrome, a genetic disease characterized by premature aging, skeletal malformations, and high cancer susceptibility. Known roles of RECQL4 in DNA replication and repair provide a possible explanation of chromosome instability observed in patient cells. Here, we demonstrate that RECQL4 is a microtubule-associated protein (MAP) localizing to the mitotic spindle. RECQL4 depletion in M-phase-arrested frog egg extracts does not affect spindle assembly per se, but interferes with maintaining chromosome alignment at the metaphase plate. Low doses of nocodazole depolymerize RECQL4-depleted spindles more easily, suggesting abnormal microtubule-kinetochore interaction. Surprisingly, inter-kinetochore distance of sister chromatids is larger in depleted extracts and patient fibroblasts. Consistent with a role to maintain stable chromosome alignment, RECQL4 down-regulation in HeLa cells causes chromosome misalignment and delays mitotic progression. Importantly, these chromosome alignment defects are independent from RECQL4's reported roles in DNA replication and damage repair. Our data elucidate a novel function of RECQL4 in mitosis, and defects in mitotic chromosome alignment might be a contributing factor for the Rothmund-Thomson syndrome.


Assuntos
Metáfase/genética , Proteínas Associadas aos Microtúbulos/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/enzimologia , Animais , Cromatina/metabolismo , Instabilidade Cromossômica/genética , Segregação de Cromossomos/genética , Códon sem Sentido/genética , Reparo do DNA , Replicação do DNA , Mutação da Fase de Leitura/genética , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Óvulo/enzimologia , Fuso Acromático/enzimologia , Xenopus/genética
9.
J Cell Biol ; 218(4): 1250-1264, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30728176

RESUMO

Cytokinesis begins upon anaphase onset. An early step involves local activation of the small GTPase RhoA, which triggers assembly of an actomyosin-based contractile ring at the equatorial cortex. Here, we delineated the contributions of PLK1 and Aurora B to RhoA activation and cytokinesis initiation in human cells. Knock-down of PRC1, which disrupts the spindle midzone, revealed the existence of two pathways that can initiate cleavage furrow ingression. One pathway depends on a well-organized spindle midzone and PLK1, while the other depends on Aurora B activity and centralspindlin at the equatorial cortex and can operate independently of PLK1. We further show that PLK1 inhibition sequesters centralspindlin onto the spindle midzone, making it unavailable for Aurora B at the equatorial cortex. We propose that PLK1 activity promotes the release of centralspindlin from the spindle midzone through inhibition of PRC1, allowing centralspindlin to function as a regulator of spindle midzone formation and as an activator of RhoA at the equatorial cortex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/enzimologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Fuso Acromático/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Quinase 1 Polo-Like
10.
Biochem J ; 475(12): 2025-2042, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946042

RESUMO

The protein kinase Aurora A (AurA) is essential for the formation of bipolar mitotic spindles in all eukaryotic organisms. During spindle assembly, AurA is activated through two different pathways operating at centrosomes and on spindle microtubules. Recent studies have revealed that these pathways operate quite differently at the molecular level, activating AurA through multifaceted changes to the structure and dynamics of the kinase domain. These advances provide an intimate atomic-level view of the finely tuned regulatory control operating in protein kinases, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop. Here, I review these advances in our understanding of AurA function, and discuss their implications for the use of allosteric small molecule inhibitors to address recently discovered roles of AurA in neuroblastoma, prostate cancer and melanoma.


Assuntos
Aurora Quinase A/metabolismo , Melanoma/enzimologia , Proteínas de Neoplasias/metabolismo , Neuroblastoma/enzimologia , Neoplasias da Próstata/enzimologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Centrômero/enzimologia , Centrômero/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Domínios Proteicos , Inibidores de Proteínas Quinases/uso terapêutico , Fuso Acromático/enzimologia , Fuso Acromático/genética
11.
J Cell Biol ; 216(8): 2339-2354, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28630147

RESUMO

In mitosis, cells undergo a precisely orchestrated series of spatiotemporal changes in cytoskeletal structure to divide their genetic material. These changes are coordinated by a sophisticated network of protein-protein interactions and posttranslational modifications. In this study, we report a bifurcation in a signaling cascade of the NIMA-related kinases (Neks) Nek6, Nek7, and Nek9 that is required for the localization and function of two kinesins essential for cytokinesis, Mklp2 and Kif14. We demonstrate that a Nek9, Nek6, and Mklp2 signaling module controls the timely localization and bundling activity of Mklp2 at the anaphase central spindle. We further show that a separate Nek9, Nek7, and Kif14 signaling module is required for the recruitment of the Rho-interacting kinase citron to the anaphase midzone. Our findings uncover an anaphase-specific function for these effector kinesins that is controlled by specific Nek kinase signaling modules to properly coordinate cytokinesis.


Assuntos
Anáfase , Citocinese , Cinesinas/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Fuso Acromático/enzimologia , Trifosfato de Adenosina/metabolismo , Cromatografia de Afinidade , Células HeLa , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Quinases Relacionadas a NIMA/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Espectrometria de Massas em Tandem , Fatores de Tempo , Transfecção
12.
Sci Signal ; 9(458): rs14, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27965426

RESUMO

Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Fosforilação/fisiologia , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fuso Acromático/genética , Tirosina/genética , Tirosina/metabolismo , Quinase 1 Polo-Like
13.
Oncotarget ; 7(20): 29023-35, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27296552

RESUMO

LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.


Assuntos
Mitose/fisiologia , Neoplasias/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Fuso Acromático/enzimologia , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia
14.
Cytoskeleton (Hoboken) ; 73(7): 351-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27220038

RESUMO

The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.


Assuntos
Anáfase/fisiologia , Metáfase/fisiologia , Miosinas/metabolismo , Fuso Acromático/enzimologia , Proteínas de Xenopus/metabolismo , Animais , Miosinas/genética , Domínios Proteicos , Fuso Acromático/genética , Proteínas de Xenopus/genética , Xenopus laevis
15.
J Biol Chem ; 291(9): 4684-97, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26710852

RESUMO

Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules.


Assuntos
Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitose , Fuso Acromático/enzimologia , Acetilação/efeitos dos fármacos , Substituição de Aminoácidos , Resistência a Medicamentos , Células HeLa , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Mutação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
16.
Mol Biol Cell ; 26(23): 4187-96, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26378257

RESUMO

In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Meiose/fisiologia , Fuso Acromático/enzimologia , Animais , Caenorhabditis elegans/citologia , Técnicas de Cultura de Células , Centrossomo/enzimologia , Feminino , Microtúbulos/metabolismo , Oócitos/enzimologia
18.
Nat Cell Biol ; 17(8): 1024-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26192437

RESUMO

Correct formation of the cell division axis requires the initial precise orientation of the mitotic spindle. Proper spindle orientation depends on centrosome maturation, and Polo-like kinase 1 (PLK1) is known to play a crucial role in this process. However, the molecular mechanisms that function downstream of PLK1 are not well understood. Here we show that LRRK1 is a PLK1 substrate that is phosphorylated on Ser 1790. PLK1 phosphorylation is required for CDK1-mediated activation of LRRK1 at the centrosomes, and this in turn regulates mitotic spindle orientation by nucleating the growth of astral microtubules from the centrosomes. Interestingly, LRRK1 in turn phosphorylates CDK5RAP2(Cep215), a human homologue of Drosophila Centrosomin (Cnn), in its γ-tubulin-binding motif, thus promoting the interaction of CDK5RAP2 with γ-tubulin. LRRK1 phosphorylation of CDK5RAP2 Ser 140 is necessary for CDK5RAP2-dependent microtubule nucleation. Thus, our findings provide evidence that LRRK1 regulates mitotic spindle orientation downstream of PLK1 through CDK5RAP2-dependent centrosome maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitose , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase CDC2 , Células COS , Proteínas de Ciclo Celular/genética , Centrossomo/enzimologia , Chlorocebus aethiops , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microtúbulos/enzimologia , Mutação , Proteínas do Tecido Nervoso/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção , Tubulina (Proteína)/metabolismo , Quinase 1 Polo-Like
19.
Elife ; 42015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25997937

RESUMO

Chromosome separation is regulated by a cycle that involves a protein undergoing an unusual topological conversion.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Fuso Acromático/enzimologia , Animais , Humanos
20.
Elife ; 42015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25918846

RESUMO

The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Fuso Acromático/enzimologia , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Endopeptidase Clp/química , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2/química , Proteínas Mad2/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA