Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Clin Exp Rheumatol ; 42(6): 1141-1149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607678

RESUMO

Fibromyalgia (FM) remains a condition with a pathogenesis that is not completely understood, affecting a significant portion of the global population. This article summarises the main advances in FM during the last year. Even in 2023, research on FM was notably active. From a clinimetric perspective, studies have been conducted to evaluate the possibilities of interchanging the primary indices of disease severity, primarily for studies with substantial case numbers. Regarding FM pathogenesis, ongoing research focuses on small fiber neuropathy: some studies have documented its association with central sensitisation, while others have revealed distinct sensory profiles in patients with FM and small fiber neuropathy compared to those solely with small fiber neuropathy. Dorsal root ganglia seem to play a crucial role in the pathogenesis of FM as they host satellite glial cells, which are targeted by pain-driving immunoglobulin G. These antibodies have been identified in a subset of patients exhibiting high symptom severity. An important study conducted on animal models confirmed the role of neuroinflammation at the level of dorsal root ganglia, in this case mediated by polymorphonuclear neutrophils. Mounting evidence underscores the link between COVID-19 and the persistence of FM symptoms after recovery. In identifying potential biomarkers aiding FM diagnosis, research has also concentrated on studying the expression of specific circulating microRNAs. Recent discoveries have unveiled novel therapeutic strategies for FM, especially focused in non-pharmacological interventions. This includes a focus on non-invasive brain stimulation and exercise programs, all directed towards relieving symptoms and improving functionality in individuals affected by the condition.


Assuntos
COVID-19 , Fibromialgia , Fibromialgia/diagnóstico , Fibromialgia/terapia , Fibromialgia/fisiopatologia , Fibromialgia/imunologia , Humanos , COVID-19/complicações , COVID-19/imunologia , COVID-19/diagnóstico , Animais , SARS-CoV-2/imunologia , Gânglios Espinais/fisiopatologia , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Índice de Gravidade de Doença , Biomarcadores/sangue
2.
J Virol ; 98(5): e0159623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587378

RESUMO

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Assuntos
Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Ribonucleotídeo Redutases , Animais , Feminino , Cobaias , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/virologia , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Células T de Memória/imunologia , Ribonucleotídeo Redutases/metabolismo , Vacinação , Vagina/virologia , Vagina/imunologia
3.
PLoS One ; 17(2): e0262892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157707

RESUMO

Mesenchymal stem cells (MSCs), which are isolated from adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), or bone marrow, have therapeutic potential including anti-inflammatory and immunomodulatory activities. It was recently reported that MSCs are also effective as a therapeutic treatment for neuropathic pain, although the underlying mechanisms have yet to be resolved. Therefore, in this study, we investigated the effects of human AD- and UC-MSCs on neuropathic pain and its mechanisms using rat models of partial sciatic nerve ligation (PSNL). AD- or UC-MSCs were intravenously administered 4 days after PSNL. Antinociceptive effects were then evaluated using the von Frey and weight-bearing tests. We found that, 3-9 days after the administration of AD- or UC-MSCs to PSNL-exposed rats, both the mechanical threshold and differences in weight-bearing of the right and left hind paws were significantly improved. To reveal the potential underlying antinociceptive mechanisms of MSCs, the levels of activation transcription factor 3- and ionized calcium-binding adapter molecule 1-positive cells were measured by immunohistochemical analysis. AD- and UC-MSCs significantly decreased the levels of these proteins that were induced by PSNL in the dorsal root ganglia. Additionally, UC-MSC significantly improved the PSNL-induced decrease in the myelin basic protein level in the sciatic nerve, indicating that UC-MSC reversed demyelination of the sciatic nerve produced by PSNL. These data suggest that AD- and UC-MSCs may help in the recovery of neuropathic pain via the different regulation; AD-MSCs exhibited their effects via suppressed neuronal damage and anti-inflammatory actions, while UC-MSCs exhibited their effects via suppressed neuronal damage, anti-inflammatory actions and remyelination.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neuralgia/terapia , Neurônios/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Tecido Adiposo/citologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/cirurgia , Cordão Umbilical/citologia
4.
Exp Neurol ; 347: 113909, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717939

RESUMO

Interleukin-4 (IL-4) has garnered interest as a cytokine that mediates regeneration across multiple tissues including peripheral nerve. Within nerve, we previously showed endogenous IL-4 was critical to regeneration across nerve gaps. Here, we determined a generalizable role of IL-4 in nerve injury and regeneration. In wild-type (WT) mice receiving a sciatic nerve crush, IL-4 expressing cells preferentially accumulated within the injured nerve compared to affected sites proximal, such as dorsal root ganglia (DRGs), or distal muscle. Immunohistochemistry and flow cytometry confirmed that eosinophils (CD45+, CD11b+, CD64-, Siglec-F+) were sources of IL-4 expression. Examination of targets for IL-4 within nerve revealed macrophages, as well as subsets of neurons expressed IL-4R, while Schwann cells expressed limited IL-4R. Dorsal root ganglia cultures were exposed to IL-4 and demonstrated an increased proportion of neurons that extended axons compared to cultures without IL-4 (control), as well as longer myelinated axons compared to cultures without IL-4. The role of endogenous IL-4 during nerve injury and regeneration in vivo was assessed following a sciatic nerve crush using IL-4 knockout (KO) mice. Loss of IL-4 affected macrophage accumulation within injured nerve compared to WT mice, as well as shifted macrophage phenotype towards a CD206- phenotype with altered gene expression. Furthermore, this loss of IL-4 delayed initial axon regeneration from the injury crush site and subsequently delayed functional recovery and re-innervation of neuromuscular junctions compared to wild-type mice. Given the role of endogenous IL-4 in nerve regeneration, exogenous IL-4 was administered daily to WT mice following a nerve crush to examine regeneration. Daily IL-4 administration increased early axonal extension and CD206+ macrophage accumulation but did not alter functional recovery compared to untreated mice. Our data demonstrate IL-4 promotes nerve regeneration and recovery after injury.


Assuntos
Interleucina-4/administração & dosagem , Interleucina-4/biossíntese , Regeneração Nervosa/fisiologia , Neuropatia Ciática/metabolismo , Animais , Células Cultivadas , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Injeções Intraperitoneais , Interleucina-4/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa/tendências , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-4/biossíntese , Receptores de Interleucina-4/imunologia , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/imunologia
5.
Inflamm Res ; 71(2): 187-190, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34940887

RESUMO

OBJECTIVE: We investigated whether it is possible to induce a state of "LPS-sensitization" in neurons of primary cultures from rat dorsal root ganglia by pre-treatment with ultra-low doses of LPS. METHODS: DRG primary cultures were pre-treated with low to ultra-low doses of LPS (0.001-0.1 µg/ml) for 18 h, followed by a short-term stimulation with a higher LPS-dose (10 µg/ml for 2 h). TNF-α in the supernatants was measured as a sensitive read out. Using the fura-2 340/380 nm ratio imaging technique, we further investigated the capsaicin-evoked Ca2+-signals in neurons from DRG, which were pre-treated with a wide range of LPS-doses. RESULTS: Release of TNF-α evoked by stimulation with 10 µg/ml LPS into the supernatant was not significantly modified by pre-exposure to low to ultra-low LPS-doses. Capsaicin-evoked Ca2+-signals were significantly enhanced by pre-treatment with LPS doses being above a certain threshold. CONCLUSION: Ultra-low doses of LPS, which per se do not evoke a detectable inflammatory response, are not sufficient to sensitize neurons (Ca2+-responses) and glial elements (TNF-α-responses) of the primary afferent somatosensory system.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/imunologia , Ratos , Ratos Wistar
6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884605

RESUMO

Autotomy, self-mutilation of a denervated limb, is common in animals after peripheral nerve injury (PNI) and is a reliable proxy for neuropathic pain in humans. Understanding the occurrence and treatment of autotomy remains challenging. The objective of this study was to investigate the occurrence of autotomy in nude and Wistar rats and evaluate the differences in macrophage activation and fiber sensitization contributing to the understanding of autotomy behavior. Autotomy in nude and Wistar rats was observed and evaluated 6 and 12 weeks after sciatic nerve repair surgery. The numbers of macrophages and the types of neurons in the dorsal root ganglion (DRG) between the two groups were compared by immunofluorescence studies. Immunostaining of T cells in the DRG was also assessed. Nude rats engaged in autotomy with less frequency than Wistar rats. Autotomy symptoms were also relatively less severe in nude rats. Immunofluorescence studies revealed increased macrophage accumulation and activation in the DRG of Wistar rats. The percentage of NF200+ neurons was higher at 6 and 12 weeks in Wistar rats compared to nude rats, but the percentage of CGRP+ neurons did not differ between two groups. Additionally, macrophages were concentrated around NF200-labeled A fibers. At 6 and 12 weeks following PNI, CD4+ T cells were not found in the DRG of the two groups. The accumulation and activation of macrophages in the DRG may account for the increased frequency and severity of autotomy in Wistar rats. Our results also suggest that A fiber neurons in the DRG play an important role in autotomy.


Assuntos
Comportamento Animal , Gânglios Espinais/imunologia , Ativação de Macrófagos/imunologia , Dor Pós-Operatória/patologia , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/lesões , Automutilação/patologia , Animais , Dor Pós-Operatória/etiologia , Ratos , Ratos Nus , Ratos Wistar , Automutilação/etiologia
7.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769297

RESUMO

Pulsed radiofrequency (PRF) works by delivering short bursts of radiofrequency to a target nerve, thereby affecting nerve signal transduction to reduce pain. Although preliminary clinical investigations have shown that PRF treatment can be used safely as an alternative interventional treatment in patients with refractory pain conditions, unexpected damage to a normal nerve/ganglion is still one of the possible complications of using the PRF strategy. Noxious pain may also be triggered if PRF treatment accidentally damages an intact nerve. However, few studies in the literature have described the intracellular modifications that occur in neuronal cells after PRF stimulation. Therefore, in this study, we evaluated the effects of PRF on unimpaired nerve function and investigated the potential mechanisms of PRF-induced pain. Wistar rats were stimulated with 30-60 V of PRF for 6 min, and mechanical allodynia, cold hypersensitivity, cytokine and matrix metalloproteinase (MMP) production, and mitogen-activated protein kinase activity (p38 MAPK, ERK1/2, JNK/SAPK) were analyzed. The results indicated that PRF stimulation induced a significant algesic effect and nociceptive response. In addition, the protein array and Western blotting analyses showed that the clinical application of 60 V of PRF can induce the activation of MAPKs and the production of inflammatory cytokines and MMPs in the lumbar dorsal horn, which is necessary for nerve inflammation, and it can be suppressed by MAPK antagonist treatment. These results indicate that PRF stimulation may induce inflammation of the intact nerve, which in turn causes inflammatory pain. This conclusion can also serve as a reminder for PRF treatment of refractory pain.


Assuntos
Síndromes Periódicas Associadas à Criopirina/terapia , Gânglios Espinais/imunologia , Hiperalgesia/terapia , Tratamento por Radiofrequência Pulsada/efeitos adversos , Medula Espinal/imunologia , Animais , Síndromes Periódicas Associadas à Criopirina/etiologia , Síndromes Periódicas Associadas à Criopirina/metabolismo , Citocinas/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Dor , Distribuição Aleatória , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Cells ; 10(8)2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34440650

RESUMO

A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.


Assuntos
Gânglios Espinais/metabolismo , Macrófagos/metabolismo , Neuroimunomodulação , Neurônios/metabolismo , Limiar da Dor , Dor/metabolismo , Transdução de Sinais , Animais , Comunicação Celular , Citocinas/metabolismo , Gânglios Espinais/imunologia , Gânglios Espinais/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Neurônios/imunologia , Neuropeptídeos/metabolismo , Dor/imunologia , Dor/fisiopatologia , Fenótipo
9.
Neurosci Lett ; 755: 135941, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33961945

RESUMO

It has become increasingly clear that the innate immune system plays an essential role in the generation of many types of neuropathic pain including that which accompanies cancer treatment. In this article we review current findings of the role of the innate immune system in contributing to cancer treatment pain at the distal endings of peripheral nerve, in the nerve trunk, in the dorsal root ganglion and in the spinal dorsal horn.


Assuntos
Antineoplásicos/efeitos adversos , Imunidade Inata/imunologia , Neuralgia/induzido quimicamente , Neuralgia/imunologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Neuralgia/patologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/imunologia
10.
Neurosci Lett ; 757: 135977, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34023413

RESUMO

BACKGROUND: Changes in inflammatory cytokine levels contribute to the induction and maintenance of neuropathic pain. We have shown that external low intensity focused ultrasound (liFUS) reduces allodynia in a common peroneal nerve injury (CPNI). Here, we investigate an underlying mechanism of action for this treatment and measure the effect of liFUS on inflammatory markers. METHODS: Male rats were divided into four groups: CPNI/liFUS, CPNI/shamliFUS, shamCPNI/liFUS, and shamCPNI/shamliFUS. Mechanical nociceptive thresholds were measured using Von Frey filaments (VFF) to confirm the absence/presence of allodynia at baseline, after CPNI, and after liFUS. Commercial microarray and ELISA assays were used to assess cytokine expression in the treated L5 dorsal root ganglion (DRG) and dorsal horn (DH) tissue 24 and 72 h after liFUS. RESULTS: VFF thresholds were significantly reduced following CPNI in both groups that received the injury (p < 0.001). After liFUS, only the CPNI/liFUS cohort showed a significant increase in mechanical thresholds (p < 0.001). CPNI significantly increased TNFa, IL6, CNTF, IL1b (p < 0.05 for all) levels in the DRG and DH, compared to baseline, consistent with previous work in sciatic nerve injury. LiFUS in CPNI rats resulted in a decrease in these cytokines in DRG 72 h post-therapy (TNFa, IL6, CNTF and IL1b, p < 0.001). In the DH, IL1b, CNTF, and TNFa (p < 0.05 for all) decreased 72 h after liFUS. CONCLUSION: We have demonstrated that liFUS modifies inflammatory cytokines in both DRG and DH in CPNI rats. These data provide evidence that liFUS, reverses the allodynic phenotype, in part, by altering inflammatory cytokine pathways.


Assuntos
Hiperalgesia/terapia , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/complicações , Terapia por Ultrassom/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/imunologia , Masculino , Neuralgia/diagnóstico , Neuralgia/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Nervo Fibular/lesões , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Corno Dorsal da Medula Espinal/imunologia , Corno Dorsal da Medula Espinal/metabolismo , Ondas Ultrassônicas
11.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621215

RESUMO

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown. The present study discovered that Rag-KO mice lacking T and B cells, as compared with WT mice, are insensitive to the anti-allodynic effects of A3AR agonists. Similar findings were observed in interleukin-10 and interleukin-10 receptor knockout mice. Adoptive transfer of CD4+ T cells from WT mice infiltrated the dorsal root ganglion (DRG) and restored A3AR agonist-mediated anti-allodynia in Rag-KO mice. CD4+ T cells from Adora3-KO or Il10-KO mice did not. Transfer of CD4+ T cells from WT mice, but not Il10-KO mice, into Il10-KO mice or Adora3-KO mice fully reinstated the anti-allodynic effects of A3AR activation. Notably, A3AR agonism reduced DRG neuron excitability when cocultured with CD4+ T cells in an IL-10-dependent manner. A3AR action on CD4+ T cells infiltrated in the DRG decreased phosphorylation of GluN2B-containing N-methyl-D-aspartate receptors at Tyr1472, a modification associated with regulating neuronal hypersensitivity. Our findings establish that activation of A3AR on CD4+ T cells to release IL-10 is required and sufficient evidence for the use of A3AR agonists as therapeutics.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Linfócitos T CD4-Positivos/imunologia , Gânglios Espinais/imunologia , Interleucina-10/imunologia , Neuralgia/tratamento farmacológico , Neurônios/imunologia , Receptor A3 de Adenosina/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD4-Positivos/patologia , Gânglios Espinais/patologia , Interleucina-10/genética , Camundongos , Camundongos Knockout , Neuralgia/genética , Neuralgia/imunologia , Neuralgia/patologia , Neurônios/patologia , Receptor A3 de Adenosina/genética
12.
Peptides ; 136: 170447, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33212101

RESUMO

The selection of control group is crucial, as the use of an inadequate group may strongly affect the results. In this study we examine the effect on contralateral tissue protein levels, in a model of unilateral UVB irradiation, as the contralateral side is commonly used as a control. Previous studies have shown that UVB irradiation increases immunoreactivity for inflammatory regulated neuropeptides. Unilateral UVB irradiation of rat hind paw was performed and corresponding contralateral spinal cord and dorsal root ganglia (DRG) were collected 2-96 h after and investigated for changes in galanin, substance P and c-fos immunoreactivity. Control tissue was collected from naïve rats. Measurement of skin blood flow from contralateral heel hind paws (Doppler), revealed no change compared to naïve rats. However, UVB irradiation caused a significant reduction in the contralateral proportion of galanin immunopositive DRG neurons, at all-time points, as well as an increase in the contralateral spinal cord dorsal horn, around the central canal and in the lateral spinal nucleus (2-48 h). The contralateral proportion of SP positive DRG neurons and dorsal horn immunoreactivity was unchanged, whereas the lateral spinal nucleus area showed increased immunoreactivity (48 h). UVB irradiation also induced a slight contralateral upregulation of c-fos in the dorsal horn/central canal area (24 and 48 h). In summary, unilateral UVB irradiation induced contralateral changes in inflammatory/nociceptive neuropeptides in spinal cord and afferent pathways involved in pain signaling already within 24 h, a time point when also ipsilateral neurochemical/physiological changes have been reported for rats and humans.


Assuntos
Galanina/imunologia , Neurônios/imunologia , Proteínas Proto-Oncogênicas c-fos/imunologia , Substância P/imunologia , Animais , Galanina/efeitos da radiação , Gânglios Espinais/imunologia , Gânglios Espinais/efeitos da radiação , Humanos , Bulbo/imunologia , Bulbo/efeitos da radiação , Neurônios/efeitos da radiação , Neuropeptídeos/genética , Dor/imunologia , Dor/patologia , Proteínas Proto-Oncogênicas c-fos/efeitos da radiação , Ratos , Nervo Isquiático/imunologia , Nervo Isquiático/efeitos da radiação , Medula Espinal/imunologia , Medula Espinal/efeitos da radiação , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos da radiação , Substância P/efeitos da radiação , Raios Ultravioleta/efeitos adversos
13.
J Allergy Clin Immunol ; 147(4): 1341-1353, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32781002

RESUMO

BACKGROUND: Chronic itch is a debilitating symptom of inflammatory skin diseases, but the underlying mechanism is poorly understood. We have recently demonstrated that astrocytes in the spinal dorsal horn become reactive in models of atopic and contact dermatitis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) and critically contribute to chronic itch. In general, STAT3 is transiently activated; however, STAT3 activation in reactive astrocytes of chronic itch model mice persistently occurs via an unknown mechanism. OBJECTIVE: We aimed to determine the mechanisms of persistent activation of astrocytic STAT3 in chronic itch conditions. METHODS: To determine the factors that are required for persistent activation of astrocytic STAT3, Western blotting and calcium imaging with cultured astrocytes or spinal cord slices were performed. Thereafter, chronic itch model mice were used for genetic and behavioral experiments to confirm the role of the factors determined to mediate persistent STAT3 activation from in vitro and ex vivo experiments in chronic itch. RESULTS: IP3 receptor type 1 (IP3R1) knockdown in astrocytes suppressed IL-6-induced persistent STAT3 activation and expression of lipocalin-2 (LCN2), an astrocytic STAT3-dependent inflammatory factor that is required for chronic itch. IP3R1-dependent astrocytic Ca2+ responses involved Ca2+ influx through the cation channel transient receptor potential canonical (TRPC), which was required for persistent STAT3 activation evoked by IL-6. IL-6 expression was upregulated in dorsal root ganglion neurons in a mouse model of chronic itch. Dorsal root ganglion neuron-specific IL-6 knockdown, spinal astrocyte-specific IP3R1 knockdown, and pharmacologic spinal TRPC inhibition attenuated LCN2 expression and chronic itch. CONCLUSION: Our findings suggest that IP3R1/TRPC channel-mediated Ca2+ signals elicited by IL-6 in astrocytes are necessary for persistent STAT3 activation, LCN2 expression, and chronic itch, and they may also provide new targets for therapeutic intervention.


Assuntos
Astrócitos/imunologia , Receptores de Inositol 1,4,5-Trifosfato/imunologia , Interleucina-6/imunologia , Prurido/imunologia , Fator de Transcrição STAT3/imunologia , Canais de Cátion TRPC/imunologia , Animais , Sinalização do Cálcio , Células Cultivadas , Doença Crônica , Gânglios Espinais/imunologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Acta Biochim Pol ; 67(4): 587-593, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33332780

RESUMO

BACKGROUND: MicroRNAs play a crucial role in diabetic peripheral neuropathic pain (DPNP). miR-590-3p is a novel miRNA and involved in multiple diseases. However, the pathological mechanism of miR-590-3p in DPNP needs to be elucidated. MATERIALS AND METHODS: The db/db mice and db/m mice were selected to mimic diabetes and control, respectively, for in vivo studies. The miR-590-3p agomir was injected into db/db mice and pain-related behavioral tests were performed. The interaction of miR-590-3p with target gene was confirmed by dual-luciferase reporter assay. The expression of target gene was determined by qRT-PCR and western blot assay. The levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: miR-590-3p was down-regulated in diabetic peripheral neuropathy mice. More importantly, miR-590-3p agomir alleviated pain-related behavior, reduced TNF-α, IL-1ß and IL-6 concentrations, and inhibited neural infiltration by immune cells in db/db mice. Interestingly, RAP1A was predicted to be the target of miR-590-3p by Targetscan, and was actually regulated by miR-590-3p. Finally, the rescue experiments proved that overexpression of RAP1A partially abrogated the suppressive impact of miR-590-3p on T cells proliferation and migration. CONCLUSION: miR-590-3p ameliorates DPNP via targeting RAP1A and inhibiting T cells infiltration, indicating that exogenous miR-590-3p may be a potential candidate for clinical treatment of DPNP.


Assuntos
Diabetes Mellitus Tipo 2/genética , Neuropatias Diabéticas/genética , MicroRNAs/genética , Neuralgia/genética , Linfócitos T/imunologia , Proteínas rap1 de Ligação ao GTP/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Pareamento de Bases , Sequência de Bases , Movimento Celular , Proliferação de Células , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/imunologia , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Genes Reporter , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/imunologia , Neuralgia/imunologia , Neuralgia/patologia , Neuralgia/prevenção & controle , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Transdução de Sinais , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas rap1 de Ligação ao GTP/imunologia
15.
Elife ; 92020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263277

RESUMO

Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages 'eat' apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.


Assuntos
Gânglios Espinais/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/imunologia , Fagocitose , Nervo Isquiático/imunologia , Animais , Apoptose , Células Cultivadas , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Crescimento Neuronal , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Transdução de Sinais
16.
Theranostics ; 10(26): 12111-12126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204332

RESUMO

Rationale: Psoriasis is a chronic inflammatory disease caused by a complex interplay between the immune and nervous systems with recurrent scaly skin plaques, thickened stratum corneum, infiltration and activation of inflammatory cells, and itch. Despite an increasing availability of immune therapies, they often have adverse effects, high costs, and dissociated effects on inflammation and itch. Activation of sensory neurons innervating the skin and TRPV1 (transient receptor potential vanilloid 1) are emerging as critical components in the pathogenesis of psoriasis, but little is known about their endogenous inhibitors. Recent studies have demonstrated that resolvins, endogenous lipid mediators derived from omega-3 fatty acids, are potent inhibitors of TRP channels and may offer new therapies for psoriasis without known adverse effects. Methods: We used behavioral, electrophysiological and biochemical approaches to investigate the therapeutic effects of resolvin D3 (RvD3), a novel family member of resolvins, in a preclinical model of psoriasis consisting of repeated topical applications of imiquimod (IMQ) to murine skin, which provokes inflammatory lesions that resemble human psoriasis. Results: We report that RvD3 specifically reduced TRPV1-dependent acute pain and itch in mice. Mechanistically, RvD3 inhibited capsaicin-induced TRPV1 currents in dissociated dorsal root ganglion (DRG) neurons via the N-formyl peptide receptor 2 (i.e. ALX/FPR2), a G-protein coupled receptor. Single systemic administration of RvD3 (2.8 mg/kg) reversed itch after IMQ, and repeated administration largely prevented the development of both psoriasiform itch and skin inflammation with concomitant decreased in calcitonin gene-related peptide (CGRP) expression in DRG neurons. Accordingly, specific knockdown of CGRP in DRG was sufficient to prevent both psoriasiform itch and skin inflammation similar to the effects following RvD3 administration. Finally, we elevated the translational potential of this study by showing that RvD3 significantly inhibited capsaicin-induced TRPV1 activity and CGRP release in human DRG neurons. Conclusions: Our findings demonstrate a novel role for RvD3 in regulating TRPV1/CGRP in mouse and human DRG neurons and identify RvD3 and its neuronal pathways as novel therapeutic targets to treat psoriasis.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Dor/tratamento farmacológico , Prurido/tratamento farmacológico , Psoríase/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Biópsia , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos Insaturados/uso terapêutico , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/imunologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/induzido quimicamente , Dor/imunologia , Dor/patologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Prurido/induzido quimicamente , Prurido/imunologia , Prurido/patologia , Psoríase/complicações , Psoríase/imunologia , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Canais de Cátion TRPV/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L953-L964, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159971

RESUMO

The lungs and the immune and nervous systems functionally interact to respond to respiratory environmental exposures and infections. The lungs are innervated by vagal sensory neurons of the jugular and nodose ganglia, fused together in smaller mammals as the jugular-nodose complex (JNC). Whereas the JNC shares properties with the other sensory ganglia, the trigeminal (TG) and dorsal root ganglia (DRG), these sensory structures express differential sets of genes that reflect their unique functionalities. Here, we used RNA sequencing (RNA-seq) in mice to identify the differential transcriptomes of the three sensory ganglia types. Using a fluorescent retrograde tracer and fluorescence-activated cell sorting, we isolated a defined population of airway-innervating JNC neurons and determined their differential transcriptional map after pulmonary exposure to lipopolysaccharide (LPS), a major mediator of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) after infection with gram-negative bacteria or inhalation of organic dust. JNC neurons activated an injury response program, leading to increased expression of gene products such as the G protein-coupled receptor Cckbr, inducing functional changes in neuronal sensitivity to peptides, and Gpr151, also rapidly induced upon neuropathic nerve injury in pain models. Unique JNC-specific transcripts, present at only minimal levels in TG, DRG, and other organs, were identified. These included TMC3, encoding for a putative mechanosensor, and urotensin 2B, a hypertensive peptide. These findings highlight the unique properties of the JNC and reveal that ALI/ARDS rapidly induces a nerve injury-related state, changing vagal excitability.


Assuntos
Gânglio Nodoso/efeitos dos fármacos , Pneumonia/genética , Receptor de Colecistocinina B/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Transcriptoma , Traumatismos do Nervo Vago/genética , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/imunologia , Gânglio Nodoso/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia , Receptor de Colecistocinina B/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia , Análise de Sequência de RNA , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Traumatismos do Nervo Vago/induzido quimicamente , Traumatismos do Nervo Vago/imunologia , Traumatismos do Nervo Vago/patologia
18.
FASEB J ; 34(4): 5951-5966, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157739

RESUMO

Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype.


Assuntos
Gânglios Espinais/patologia , Hiperalgesia/patologia , Macrófagos/patologia , Neuralgia/patologia , Neurônios/patologia , Traumatismos dos Nervos Periféricos/complicações , Receptores sigma/fisiologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neuralgia/etiologia , Neuralgia/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Receptor Sigma-1
19.
Artigo em Inglês | MEDLINE | ID: mdl-32078575

RESUMO

Background Gabapentinoids are known to reduce neuropathic pain. The aim of this experimental study was to investigate whether gabapentinoids exert anti-inflammatory and/or anti-nociceptive effects at the cellular level using primary cultures of rat dorsal root ganglia (DRG). Methods Cells from rat DRG were cultured in the presence of gabapentin or pregabalin, and we tested the effects of subsequent stimulation with lipopolysaccharide (LPS) on the expression of genes (real-time polymerase chain reaction) and production of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) by specific bioassays. Using Ca2+ imaging, we further investigated in neurons the effects of gabapentinoids upon stimulation with the TRPV-1 agonist capsaicin. Results There is a small influence of gabapentinoids on the inflammatory response to LPS stimulation, namely, a significantly reduced expression of IL-6. Pregabalin and gabapentin further seem to exert a moderate inhibitory influence on capsaicin-induced Ca2+ signals in DRG neurons. Conclusions Although the single inhibitory effects of gabapentinoids on inflammatory and nociceptive responses are moderate, a combination of both effects might provide an explanation for the proposed function of these substances as an adjuvant for the reduction of neuropathic pain.


Assuntos
Gabapentina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Inflamação/fisiopatologia , Lipopolissacarídeos/toxicidade , Neuralgia/tratamento farmacológico , Córtex Somatossensorial/fisiopatologia , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Feminino , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Inflamação/induzido quimicamente , Masculino , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Pregabalina/farmacologia , Cultura Primária de Células , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/farmacologia , Córtex Somatossensorial/efeitos dos fármacos
20.
Immunology ; 159(4): 413-428, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919846

RESUMO

A growing body of evidence has indicated that the release of nociceptive factors, such as interleukins and chemokines, by activated immune and glial cells has crucial significance for neuropathic pain generation and maintenance. Moreover, changes in the production of nociceptive immune factors are associated with low opioid efficacy in the treatment of neuropathy. Recently, it has been suggested that CC chemokine receptor type 1 (CCR1) signaling is important for nociception. Our study provides evidence that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with significant up-regulation of endogenous CCR1 ligands, namely, CCL2, CCL3, CCL4, CCL6, CCL7 and CCL9 in the spinal cord and CCL2, CCL6, CCL7 and CCL9 in dorsal root ganglia (DRG). We showed that single and repeated intrathecal administration of J113863 (an antagonist of CCR1) attenuated mechanical and thermal hypersensitivity. Moreover, repeated administration of a CCR1 antagonist enhanced the analgesic properties of morphine and buprenorphine after CCI. Simultaneously, repeated administration of J113863 reduced the protein levels of IBA-1 in the spinal cord and MPO and CD4 in the DRG and, as a consequence, the level of pronociceptive factors, such as interleukin-1ß (IL-1ß), IL-6 and IL-18. The data obtained provide evidence that CCR1 blockade reduces hypersensitivity and increases opioid-induced analgesia through the modulation of neuroimmune interactions.


Assuntos
Analgésicos/farmacologia , Buprenorfina/farmacologia , Hiperalgesia/tratamento farmacológico , Morfina/farmacologia , Neuralgia/tratamento farmacológico , Receptores CCR1/imunologia , Xantenos/farmacologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Gânglios Espinais/fisiopatologia , Regulação da Expressão Gênica , Hiperalgesia/genética , Hiperalgesia/imunologia , Hiperalgesia/fisiopatologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Neuralgia/genética , Neuralgia/imunologia , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Peroxidase/genética , Peroxidase/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Ratos , Ratos Wistar , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/genética , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA