Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 21(4): 507-517.e5, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28407486

RESUMO

The cellular transcriptional coactivator HCF-1 is required for initiation of herpes simplex virus (HSV) lytic infection and for reactivation from latency in sensory neurons. HCF-1 stabilizes the viral Immediate Early (IE) gene enhancer complex and mediates chromatin transitions to promote IE transcription initiation. In infected cells, HCF-1 was also found to be associated with a network of transcription elongation components including the super elongation complex (SEC). IE genes exhibit characteristics of genes controlled by transcriptional elongation, and the SEC-P-TEFb complex is specifically required to drive the levels of productive IE mRNAs. Significantly, compounds that enhance the levels of SEC-P-TEFb also potently stimulated HSV reactivation from latency both in a sensory ganglia model system and in vivo. Thus, transcriptional elongation of HSV IE genes is a key limiting parameter governing both the initiation of HSV infection and reactivation of latent genomes.


Assuntos
Regulação Viral da Expressão Gênica , Genes Precoces , Simplexvirus/fisiologia , Elongação da Transcrição Genética , Ativação Viral , Animais , Linhagem Celular , Células Epiteliais/virologia , Gânglios Sensitivos/virologia , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Camundongos , Simplexvirus/genética , Fatores de Transcrição/metabolismo
2.
J Neurovirol ; 22(3): 376-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26676825

RESUMO

Primary simian varicella virus (SVV) infection in non-human primates causes varicella, after which the virus becomes latent in ganglionic neurons and reactivates to cause zoster. The host response in ganglia during establishment of latency is ill-defined. Ganglia from five African green monkeys (AGMs) obtained at 9, 13, and 20 days post-intratracheal SVV inoculation (dpi) were analyzed by ex vivo flow cytometry, immunohistochemistry, and in situ hybridization. Ganglia at 13 and 20 dpi exhibited mild inflammation. Immune infiltrates consisted mostly of CD8(dim) and CD8(bright) memory T cells, some of which expressed granzyme B, and fewer CD11c(+) and CD68(+) cells. Chemoattractant CXCL10 transcripts were expressed in neurons and infiltrating inflammatory cells but did not co-localize with SVV open reading frame 63 (ORF63) RNA expression. Satellite glial cells expressed increased levels of activation markers CD68 and MHC class II at 13 and 20 dpi compared to those at 9 dpi. Overall, local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.


Assuntos
Gânglios Sensitivos/imunologia , Herpesvirus Humano 3/imunologia , Doenças dos Primatas/imunologia , Células Receptoras Sensoriais/imunologia , Infecção pelo Vírus da Varicela-Zoster/veterinária , Ativação Viral , Latência Viral , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Chlorocebus aethiops , DNA Viral/genética , DNA Viral/imunologia , Gânglios Sensitivos/virologia , Regulação da Expressão Gênica/imunologia , Granzimas/genética , Granzimas/imunologia , Herpesvirus Humano 3/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Memória Imunológica , Doenças dos Primatas/genética , Doenças dos Primatas/patologia , Células Receptoras Sensoriais/virologia , Infecção pelo Vírus da Varicela-Zoster/genética , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/patologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Carga Viral/genética , Carga Viral/imunologia
3.
J Neurovirol ; 18(3): 172-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544677

RESUMO

Varicella-zoster virus (VZV) causes chickenpox, establishes latency in trigeminal (TG) and dorsal root ganglia (DRG), and can lead to herpes zoster upon reactivation. The VZV proteome expressed during latency remains ill-defined, and previous studies have shown discordant data on the spectrum and expression pattern of VZV proteins and transcripts in latently infected human ganglia. Recently, Zerboni and colleagues have provided new insight into this discrepancy (Zerboni et al. in J Virol 86:578-583, 2012). They showed that VZV-specific ascites-derived monoclonal antibody (mAb) preparations contain endogenous antibodies directed against blood group A1 proteins, resulting in false-positive intra-neuronal VZV staining in formalin-fixed human DRG. The aim of the present study was to confirm and extend this phenomenon to snap-frozen TG (n=30) and DRG (n=9) specimens of blood group genotyped donors (n=30). The number of immunohistochemically stained neurons was higher with mAb directed to immediate early protein 62 (IE62) compared with IE63. The IE63 mAb-positive neurons always co-stained for IE62 but not vice versa. The mAb staining was confined to distinct large intra-neuronal vacuoles and restricted to A1(POS) donors. Anti-VZV mAb staining in neurons, but not in VZV-infected cell monolayers, was obliterated after mAb adsorption against blood group A1 erythrocytes. The data presented demonstrate that neuronal VZV protein expression detected by ascites-derived mAb in snap-frozen TG and DRG of blood group A1(POS) donors can be misinterpreted due to the presence of endogenous antibodies directed against blood group A1-associated antigens present in ascites-derived VZV-specific mAb preparations.


Assuntos
Gânglios Sensitivos/química , Herpes Zoster/diagnóstico , Herpesvirus Humano 3/metabolismo , Proteínas Imediatamente Precoces/análise , Neurônios/química , Transativadores/análise , Proteínas do Envelope Viral/análise , Sistema ABO de Grupos Sanguíneos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/imunologia , Eritrócitos/imunologia , Reações Falso-Positivas , Feminino , Congelamento , Gânglios Sensitivos/imunologia , Gânglios Sensitivos/virologia , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Imuno-Histoquímica , Masculino , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Neurônios/imunologia , Neurônios/virologia , Transativadores/genética , Transativadores/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Latência Viral
4.
J Virol ; 85(16): 8172-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21632752

RESUMO

The anti-glycoprotein H (gH) monoclonal antibody (anti-gH-MAb) that neutralizes varicella-zoster virus (VZV) inhibited cell-to-cell infection, resulting in a single infected cell without apoptosis or necrosis, and the number of infectious cells in cultures treated with anti-gH-MAb declined to undetectable levels in 7 to 10 days. Anti-gH-MAb modulated the wide cytoplasmic distribution of gH colocalized with glycoprotein E (gE) to the cytoplasmic compartment with endoplasmic reticulum (ER) and Golgi markers near the nucleus, while gE retained its cytoplasmic distribution. Thus, the disintegrated distribution of gH and gE caused the loss of cellular infectivity. After 4 weeks of treatment with anti-gH-MAb, no infectious virus was recovered, even after cultivation without anti-gH-MAb for another 8 weeks or various other treatments. Cells were infected with Oka varicella vaccine expressing hepatitis B surface antigen (ROka) and treated with anti-gH-MAb for 4 weeks, and ROka was recovered from the quiescently infected cells by superinfection with the parent Oka vaccine. Among the genes 21, 29, 62, 63, and 66, transcripts of gene 63 were the most frequently detected, and products from the genes 63 and 62, but not gE, were detected mainly in the cytoplasm of quiescently infected cells, in contrast to their nuclear localization in lytically infected cells. The patterns of transcripts and products from the quiescently infected cells were similar to those of latent VZV in human ganglia. Thus, anti-gH-MAb treatment resulted in the antigenic modulation and dormancy of infectivity of VZV. Antigenic modulation by anti-gH-MAb illuminates a new aspect in pathogenesis in VZV infection and the gene regulation of VZV during latency in human ganglia.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 3 , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Latência Viral , Anticorpos Monoclonais/imunologia , Apoptose , Linhagem Celular , Retículo Endoplasmático/metabolismo , Imunofluorescência , Gânglios Sensitivos/virologia , Antígenos de Superfície da Hepatite B , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Humanos , Necrose , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Envelope Viral/metabolismo
5.
J Virol ; 85(16): 8436-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21632750

RESUMO

Varicella-zoster virus (VZV) is a highly species-specific herpesvirus that targets sensory ganglionic neurons. This species specificity has limited the study of many aspects of VZV pathogenesis, including neuronal infection. We report development of a highly efficient neuroblastoma cell model to study productive VZV infection of neuronal cells. We show that differentiation of SH-SY5Y neuroblastoma cells yields a homogenous population of neuron-like cells that are permissive to the full VZV replicative cycle. These cells supported productive infection by both laboratory and clinical VZV isolates, including the live varicella vaccine. This model may enable rapid identification of genetic determinants facilitating VZV neurotropism.


Assuntos
Herpesvirus Humano 3/fisiologia , Neuroblastoma/virologia , Neurônios/virologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Gânglios Sensitivos/virologia , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos
6.
Vet J ; 189(1): 100-2, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20696601

RESUMO

Although the involvement of herpesviruses in vestibular disease of humans has been recognised for many years, knowledge of such a link in companion animal species is restricted to cats. This study was conducted to assess the prevalence of canine herpesvirus-1 (CaHV-1) infection of the vestibular labyrinth (VL) and vestibular ganglion (VG) of dogs by PCR. 'Field' herpesvirus was detected in the VL of 17% and in the VG of 19% of 52 dogs, respectively. None of the 11 dogs with infected VG and/or VL exhibited signs of vestibular disease, whereas clinical signs in the remaining three animals were attributable to intra-cranial neoplasia. As reported for other species, the putative role of herpesvirus infection in canine vestibular disease requires further elucidation.


Assuntos
Doenças do Cão/virologia , Gânglios Sensitivos/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Canídeo 1/isolamento & purificação , Vestíbulo do Labirinto/virologia , Animais , DNA Viral/análise , Cães , Feminino , Infecções por Herpesviridae/epidemiologia , Masculino , Reação em Cadeia da Polimerase/veterinária , Prevalência
7.
J Virol ; 85(1): 98-111, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962081

RESUMO

Varicella-zoster virus (VZV) is a neurotropic alphaherpesvirus. VZV infection of human dorsal root ganglion (DRG) xenografts in immunodeficient mice models the infection of sensory ganglia. We examined DRG infection with recombinant VZV (recombinant Oka [rOka]) and the following gE mutants: gEΔ27-90, gEΔCys, gE-AYRV, and gE-SSTT. gEΔ27-90, which lacks the gE domain that interacts with a putative receptor insulin-degrading enzyme (IDE), replicated as extensively as rOka, producing infectious virions and significant cytopathic effects within 14 days of inoculation. Since neural cells express IDE, the gE/IDE interaction was dispensable for VZV neurotropism. In contrast, gEΔCys, which lacks gE/gI heterodimer formation, was significantly impaired at early times postinfection; viral genome copy numbers increased slowly, and infectious virus production was not detected until day 28. Delayed replication was associated with impaired cell-cell spread in ganglia, similar to the phenotype of a gI deletion mutant (rOkaΔgI). However, at later time points, infection of satellite cells and other supportive nonneuronal cells resulted in extensive DRG tissue damage and cell loss such that cytopathic changes observed at day 70 were more severe than those for rOka-infected DRG. The replication of gE-AYRV, which is impaired for trans-Golgi network (TGN) localization, and the replication of gE-SSTT, which contains mutations in an acidic cluster, were equivalent to that of rOka, causing significant cytopathic effects and infectious virus production by day 14; genome copy numbers were equivalent to those of rOka. These experiments suggest that the gE interaction with cellular IDE, gE targeting to TGN sites of virion envelopment, and phosphorylation at SSTT are dispensable for VZV DRG infection, whereas the gE/gI interaction is critical for VZV neurovirulence.


Assuntos
Gânglios Sensitivos/patologia , Herpes Zoster/patologia , Herpesvirus Humano 3/patogenicidade , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/virologia , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Masculino , Camundongos , Camundongos SCID , Pele/metabolismo , Pele/patologia , Pele/virologia , Proteínas do Envelope Viral/genética , Virulência , Internalização do Vírus , Replicação Viral
8.
J Virol ; 84(7): 3421-30, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106930

RESUMO

Varicella-zoster virus (VZV) causes varicella and establishes latency in sensory nerve ganglia, but the characteristics of VZV latency are not well defined. Immunohistochemical detection of the VZV immediate-early 63 (IE63) protein in ganglion neurons has been described, but there are significant discrepancies in estimates of the frequency of IE63-positive neurons, varying from a rare event to abundant expression. We examined IE63 expression in cadaver ganglia using a high-potency rabbit anti-IE63 antibody and corresponding preimmune serum. Using standard immunohistochemical techniques, we evaluated 10 ganglia that contained VZV DNA from seven individuals. These experiments showed that neuronal pigments were a confounding variable; however, by examining sections coded to prevent investigator bias and applying statistical analysis, we determined that IE63 protein, if present, is in a very small proportion of neurons (<2.8%). To refine estimates of IE63 protein abundance, we modified our protocol by incorporating a biological stain to exclude the pigment signal and evaluated 27 ganglia from 18 individuals. We identified IE63 protein in neurons within only one ganglion, in which VZV glycoprotein E and an immune cell infiltrate were also demonstrated. Antigen preservation was shown by detection of neuronal synaptophysin. These data provide evidence that the expression of IE63 protein, which has been referred to as a latency-associated protein, is rare. Refining estimates of VZV protein expression in neurons is important for developing a hypothesis about the mechanisms by which VZV latency may be maintained.


Assuntos
Gânglios Sensitivos/virologia , Proteínas Imediatamente Precoces/análise , Neurônios/virologia , Proteínas do Envelope Viral/análise , Latência Viral , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Viral/análise , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Melaninas/análise , Pessoa de Meia-Idade , Sinaptofisina/análise
9.
J Virol ; 82(19): 9678-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667492

RESUMO

In primary infection, CD8(+) T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4(+) T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4(+) T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4(+) T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8(+) T-cell-deficient and CD8(+) T-cell-depleted mice, suggesting that CD4(+) T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4(+) T cells resolved neural infection, CD8(+) T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4(+) T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Gânglios Sensitivos/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Medula Espinal/virologia , Animais , Encéfalo/metabolismo , Proteína Ligante Fas/metabolismo , Gânglios Sensitivos/metabolismo , Granzimas/química , Infecções por Herpesviridae/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Perforina/metabolismo , Medula Espinal/metabolismo , Receptor fas/metabolismo
10.
Prog Neurobiol ; 60(2): 167-79, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10639053

RESUMO

Central to infection by a majority of DNA viruses is the expression of encoded proteins that modify cell cycle. Viruses such as SV40 and Adenovirus viruses encode proteins that interact directly, or indirectly, with key cell cycle proteins such as CBP300 and the retinoblastoma gene product. However, neurons do not have a cell cycle as we generally describe it and this is also reflected in the difficulty in obtaining immortalised neuronal cultures. The replication strategies of viruses that infect post-mitotic cells such as neurons may be different from infection of other somatic cells. The life cycle for viral latency or slow infection of neurons appears to involve silencing or restricting expression of the viral genome until such times as dictated by the environment. These signals from the environment usually reflect cell stress, otherwise the cell appears to tolerate the existence of the virus genome. We will review the genomic structure of alphaherpesviruses in neurons and transcriptional control mechanisms that may regulate expression. Where appropriate we will contrast and compare virus and endogenous neuronal gene expression.


Assuntos
Gânglios Sensitivos/virologia , Regulação Viral da Expressão Gênica , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Neurônios/virologia , Latência Viral , Animais , Gânglios Sensitivos/metabolismo , Herpesvirus Humano 1/metabolismo , Humanos , Neurônios/metabolismo
11.
J Virol ; 72(8): 6710-5, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9658118

RESUMO

Herpes simplex virus type 1 thymidine kinase exhibits a strikingly broad substrate specificity. It is capable of phosphorylating deoxythymidine and deoxyuridine as does human thymidine kinase, deoxycytidine as does human deoxycytidine kinase, the cytosolic kinase whose amino acid sequence it most closely resembles, and thymidylate as does human thymidylate kinase. Following peripheral inoculation of mice, viral thymidine kinase is ordinarily required for viral replication in ganglia and for reactivation from latency following ganglionic explant. To determine which activity of the viral kinase is important for replication and reactivation in mouse ganglia, recombinant viruses lacking viral thymidine kinase but expressing individual human kinases were constructed. Each recombinant virus expressed the appropriate kinase activity with early kinetics following infection of cultured cells. The virus expressing human thymidine kinase exhibited thymidine phosphorylation activity equivalent to approximately 5% of that of wild-type virus in a quantitative plaque autoradiography assay. Nevertheless, it was competent for ganglionic replication and reactivation following corneal inoculation of mice. The virus expressing human thymidylate kinase was partially competent for these activities despite failing to express detectable thymidine kinase activity. The virus expressing human deoxycytidine kinase failed to replicate acutely in neurons or to reactivate from latency. Therefore, it appears that low levels of thymidine phosphorylation suffice to fulfill the role of the viral enzyme in ganglia and that this role can be partially fulfilled by thymidylate kinase activity alone.


Assuntos
Gânglios Sensitivos/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Timidina Quinase/metabolismo , Ativação Viral , Replicação Viral , Animais , Chlorocebus aethiops , Desoxicitidina Quinase/genética , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Monoéster Fosfórico Hidrolases/genética , Recombinação Genética , Timidina Quinase/genética , Trítio , Células Tumorais Cultivadas , Células Vero , Latência Viral
13.
J Virol ; 69(12): 7899-908, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7494302

RESUMO

Herpes simplex virus type 1 (HSV-1) establishes latency in human sensory ganglia, during which time the viral genome is transcriptionally silent with the exception of the latency-associated transcripts (LATs). The most abundant LAT is a 2-kb RNA whose biosynthesis is poorly characterized. The 2-kb LAT may be a primary transcript, or its synthesis may involve splicing and/or other forms of processing. Two potential RNA polymerase II promoters (LAP1 and LAP2) upstream of the 2-kb LAT 5' end have been identified. To investigate the role played by LAP1 and LAP2 in the synthesis of the 2-kb LAT under lytic and latent conditions, we analyzed HSV-1 mutants which contain deletions of one or both of these promoters. During lytic infection in cell culture, the cis elements critical for the normal accumulation of the 2-kb LAT were mapped to LAP2, while LAP1 sequences were largely dispensable. The 5' ends of the major 2-kb LATs produced by the wild-type and LAP deletion viruses were examined by primer extension analysis and were all found to be identical (+/- 2 bp). The accumulation of the 2-kb LAT during latent infections of murine trigeminal ganglia was examined by Northern (RNA) blot and by reverse transcription-PCR. In contrast to the results found in lytic infections, the critical cis elements needed for 2-kb LAT accumulation during latency were mapped to LAP1. Deletion of LAP1 resulted in a 500-fold reduction in 2-kb LAT accumulation, whereas deletion of LAP2 resulted in only a 2- to 3-fold reduction. Deletion of both LAP1 and LAP2 resulted in undetectable levels of the 2-kb LAT. Our results indicate that both LAP1 and LAP2 are critical for 2-kb LAT expression but under different conditions. LAP1 is essential for LAT expression during latency, while LAP2 is primarily responsible for LAT expression in lytic infections in cell culture. LAP1 and LAP2 may prove to be functionally independent promoter elements that control 2-kb LAT expression during different stages of HSV-1 infections.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Transcrição Gênica , Latência Viral , Animais , Sequência de Bases , Northern Blotting , Linhagem Celular , Chlorocebus aethiops , Primers do DNA , Gânglios Sensitivos/virologia , Herpesvirus Humano 1/genética , Humanos , Dados de Sequência Molecular , Mutagênese , Neuroblastoma , Reação em Cadeia da Polimerase , RNA Polimerase II/biossíntese , RNA Viral/análise , RNA Viral/biossíntese , Ratos , Sequências Reguladoras de Ácido Nucleico , Deleção de Sequência , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA