Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
J Neural Eng ; 20(6)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37988747

RESUMO

Objective. Constructing a theoretical framework to improve deep brain stimulation (DBS) based on the neuronal spatiotemporal patterns of the stimulation-affected areas constitutes a primary target.Approach. We develop a large-scale biophysical network, paired with a realistic volume conductor model, to estimate theoretically efficacious stimulation protocols. Based on previously published anatomically defined structural connectivity, a biophysical basal ganglia-thalamo-cortical neuronal network is constructed using Hodgkin-Huxley dynamics. We define a new biomarker describing the thalamic spatiotemporal activity as a ratio of spiking vs. burst firing. The per cent activation of the different pathways is adapted in the simulation to minimise the differences of the biomarker with respect to its value under healthy conditions.Main results.This neuronal network reproduces spatiotemporal patterns that emerge in Parkinson's disease. Simulations of the fibre per cent activation for the defined biomarker propose desensitisation of pallido-thalamic synaptic efficacy, induced by high-frequency signals, as one possible crucial mechanism for DBS action. Based on this activation, we define both an optimal electrode position and stimulation protocol using pathway activation modelling.Significance. A key advantage of this research is that it combines different approaches, i.e. the spatiotemporal pattern with the electric field and axonal response modelling, to compute the optimal DBS protocol. By correlating the inherent network dynamics with the activation of white matter fibres, we obtain new insights into the DBS therapeutic action.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Gânglios da Base/fisiologia , Doença de Parkinson/terapia , Tálamo/fisiologia , Biomarcadores
2.
Exp Neurol ; 354: 114111, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569510

RESUMO

Deep brain stimulation (DBS) has been successfully applied in various neurodegenerative diseases as an effective symptomatic treatment. However, its mechanisms of action within the brain network are still poorly understood. Many virtual DBS models analyze a subnetwork around the basal ganglia and its dynamics as a spiking network with their details validated by experimental data. However, connectomic evidence shows widespread effects of DBS affecting many different cortical and subcortical areas. From a clinical perspective, various effects of DBS besides the motoric impact have been demonstrated. The neuroinformatics platform The Virtual Brain (TVB) offers a modeling framework allowing us to virtually perform stimulation, including DBS, and forecast the outcome from a dynamic systems perspective prior to invasive surgery with DBS lead placement. For an accurate prediction of the effects of DBS, we implement a detailed spiking model of the basal ganglia, which we combine with TVB via our previously developed co-simulation environment. This multiscale co-simulation approach builds on the extensive previous literature of spiking models of the basal ganglia while simultaneously offering a whole-brain perspective on widespread effects of the stimulation going beyond the motor circuit. In the first demonstration of our model, we show that virtual DBS can move the firing rates of a Parkinson's disease patient's thalamus - basal ganglia network towards the healthy regime while, at the same time, altering the activity in distributed cortical regions with a pronounced effect in frontal regions. Thus, we provide proof of concept for virtual DBS in a co-simulation environment with TVB. The developed modeling approach has the potential to optimize DBS lead placement and configuration and forecast the success of DBS treatment for individual patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Gânglios da Base/fisiologia , Encéfalo , Humanos , Doença de Parkinson/terapia , Tálamo/fisiologia
3.
Elife ; 102021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128468

RESUMO

Human reproduction is controlled by ~2000 hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Here, we report the discovery and characterization of additional ~150,000-200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic and adult human brains. Whole-transcriptome analysis of cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human putamen showed selective expression of GNRH1 and GNRHR1 autoreceptors in the cholinergic cell population and uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-order non-reproductive functions regulated by GnRH under physiological conditions in the human basal ganglia and basal forebrain require clarification. The role and changes of GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic neurocircuitries, including Parkinson's and Alzheimer's diseases, need to be explored.


Assuntos
Gânglios da Base , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios , Adulto , Prosencéfalo Basal/citologia , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Gânglios da Base/fisiologia , Células Cultivadas , Colina O-Acetiltransferase , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Putamen/citologia , Transcriptoma
4.
Neural Plast ; 2021: 6640105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790961

RESUMO

Low-frequency oscillatory activity (3-9 Hz) and increased synchrony in the basal ganglia (BG) are recognized to be crucial for Parkinsonian tremor. However, the dynamical mechanism underlying the tremor-related oscillations still remains unknown. In this paper, the roles of the indirect and hyperdirect pathways on synchronization and tremor-related oscillations are considered based on a modified Hodgkin-Huxley model. Firstly, the effects of indirect and hyperdirect pathways are analysed individually, which show that increased striatal activity to the globus pallidus external (GPe) or strong cortical gamma input to the subthalamic nucleus (STN) is sufficient to promote synchrony and tremor-related oscillations in the BG network. Then, the mutual effects of both pathways are analysed by adjusting the related currents simultaneously. Our results suggest that synchrony and tremor-related oscillations would be strengthened if the current of these two paths are in relative imbalance. And the network tends to be less synchronized and less tremulous when the frequency of cortical input is in the theta band. These findings may provide novel treatments in the cortex and striatum to alleviate symptoms of tremor in Parkinson's disease.


Assuntos
Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Globo Pálido/fisiologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Tremor/fisiopatologia , Ondas Encefálicas/fisiologia , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Tremor/diagnóstico
5.
J Cereb Blood Flow Metab ; 41(7): 1608-1622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33103935

RESUMO

A network of cholinergic neurons in the basal forebrain innerve the forebrain and are proposed to contribute to a variety of functions including cortical plasticity, attention, and sensorimotor behavior. This study examined the contribution of the nucleus basalis cholinergic projection to the sensorimotor cortex on recovery on a skilled reach-to-eat task following photothrombotic stroke in the forelimb region of the somatosensory cortex. Mice were trained to perform a single pellet skilled reaching task and their pre and poststroke performance, from Day 4 to Day 28 poststroke, was assessed frame-by-frame by video analysis with endpoint, movement and sensorimotor integration measures. Somatosensory forelimb lesions produced impairments in endpoint and movement component measures of reaching and increased the incidence of fictive eating, a sensory impairment in mistaking a missed reach for a successful reach. Upregulated acetylcholine (ACh) release, as measured by local field potential recording, elicited via optogenetic stimulation of the nucleus basalis improved recovery of reaching and improved movement scores but did not affect sensorimotor integration impairment poststroke. The results show that the mouse cortical forelimb somatosensory region contributes to forelimb motor behavior and suggest that ACh upregulation could serve as an adjunct to behavioral therapy for acute treatment of stroke.


Assuntos
Neurônios Colinérgicos/fisiologia , Córtex Motor/fisiopatologia , Destreza Motora/fisiologia , Optogenética , Recuperação de Função Fisiológica , Córtex Somatossensorial/fisiopatologia , AVC Trombótico/fisiopatologia , Animais , Gânglios da Base/fisiologia , Comportamento Animal/fisiologia , Fenômenos Biomecânicos , Feminino , Alimentos , Membro Anterior/fisiopatologia , Luz/efeitos adversos , Masculino , Camundongos
6.
Behav Brain Res ; 391: 112708, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461129

RESUMO

Repetitive behaviors (e.g., stereotypic movements, compulsions, rituals) are common features of a number of neurodevelopmental disorders. Clinical and animal model studies point to the importance of cortical-basal ganglia circuitry in the mediation of repetitive behaviors. In the current study, we tested whether a drug cocktail (dopamine D2 receptor antagonist + adenosine A2A receptor agonist + glutamate mGlu5 positive allosteric modulator) designed to activate the indirect basal ganglia pathway would reduce repetitive behavior in C58 mice after both acute and sub-chronic administration. In addition, we hypothesized that sub-chronic administration (i.e. 7 days of twice-daily injections) would increase the functional activation of the subthalamic nucleus (STN), a key node of the indirect pathway. Functional activation of STN was indexed by dendritic spine density, analysis of GABA, glutamate, and synaptic plasticity genes, and cytochrome oxidase activity. The drug cocktail used significantly reduced repetitive motor behavior in C58 mice after one night as well as seven nights of twice-nightly injections. These effects did not reflect generalized motor behavior suppression as non-repetitive motor behaviors such as grooming, digging and eating were not reduced relative to vehicle. Sub-chronic drug treatment targeting striatopallidal neurons resulted in significant changes in the STN, including a four-fold increase in brain-derived neurotrophic factor (BDNF) mRNA expression as well as a significant increase in dendritic spine density. The present findings are consistent with, and extend, our prior work linking decreased functioning of the indirect basal ganglia pathway to expression of repetitive motor behavior in C58 mice and suggest novel therapeutic targets.


Assuntos
Comportamento Estereotipado/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Gânglios da Base/fisiologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Comportamento Compulsivo/tratamento farmacológico , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Vias Neurais/fisiologia , Neurônios/metabolismo , Fenetilaminas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Comportamento Estereotipado/fisiologia , Núcleo Subtalâmico/metabolismo
7.
Brain Struct Funct ; 225(2): 735-749, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32055981

RESUMO

Iron homeostasis is important for maintaining normal physiological brain functioning. In two independent samples, we investigate the link between iron concentration in the basal ganglia (BG) and implicit sequence learning (ISL). In Study 1, we used quantitative susceptibility mapping and task-related fMRI to examine associations among regional iron concentration measurements, brain activation, and ISL in younger and older adults. In Study 2, we examined the link between brain iron and ISL using a metric derived from fMRI in an age-homogenous sample of older adults. Three main findings were obtained. First, BG iron concentration was positively related to ISL in both studies. Second, ISL was robust for both younger and older adults, and performance-related activation was found in fronto-striatal regions across both age groups. Third, BG iron was positively linked to task-related BOLD signal in fronto-striatal regions. This is the first study investigating the relationship among brain iron accumulation, functional brain activation, and ISL, and the results suggest that higher brain iron concentration may be linked to better neurocognitive functioning in this particular task.


Assuntos
Gânglios da Base/química , Gânglios da Base/fisiologia , Ferro/análise , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
8.
Neuroscience ; 423: 55-65, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705892

RESUMO

Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. To conduct such a direct test, we utilized rapid optogenetic activation and inactivation of the GABAergic output of the substantia nigra pars reticulata (SNr) to MT in male and female mice that were trained in a sensory cued left/right licking task. Directional licking tasks have previously been shown to depend on a thalamocortical feedback loop between ventromedial MT and antero-lateral premotor cortex. In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.


Assuntos
Gânglios da Base/fisiologia , Tomada de Decisões/fisiologia , Movimento/fisiologia , Inibição Neural/fisiologia , Substância Negra/fisiologia , Animais , Antecipação Psicológica/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Dependovirus/genética , Feminino , Lateralidade Funcional/fisiologia , Masculino , Camundongos , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Optogenética , Substância Negra/efeitos dos fármacos , Tálamo/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
9.
Neuron ; 103(3): 445-458.e10, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31202541

RESUMO

To make adaptive decisions, organisms must appropriately filter sensory inputs, augmenting relevant signals and suppressing noise. The prefrontal cortex (PFC) partly implements this process by regulating thalamic activity through modality-specific thalamic reticular nucleus (TRN) subnetworks. However, because the PFC does not directly project to sensory TRN subnetworks, the circuitry underlying this process had been unknown. Here, using anatomical tracing, functional manipulations, and optical identification of PFC projection neurons, we find that the PFC regulates sensory thalamic activity through a basal ganglia (BG) pathway. Engagement of this PFC-BG-thalamus pathway enables selection between vision and audition by primarily suppressing the distracting modality. This pathway also enhances sensory discrimination and is used for goal-directed background noise suppression. Overall, our results identify a new pathway for attentional filtering and reveal its multiple roles in sensory processing on the basis of internal goals.


Assuntos
Gânglios da Base/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Filtro Sensorial/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Animais , Condicionamento Operante , Sinais (Psicologia) , Dependovirus/genética , Aprendizagem por Discriminação/fisiologia , Eletrodos Implantados , Vetores Genéticos , Camundongos , Ruído , Optogenética , Estimulação Luminosa , Recompensa , Detecção de Sinal Psicológico/fisiologia
10.
Mol Metab ; 20: 178-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528281

RESUMO

OBJECTIVE: The supramammillary nucleus (SuM) is nestled between the lateral hypothalamus (LH) and the ventral tegmental area (VTA). This neuroanatomical position is consistent with a potential role of this nucleus to regulate ingestive and motivated behavior. Here neuroanatomical, molecular, and behavior approaches are utilized to determine whether SuM contributes to ingestive and food-motivated behavior control. METHODS: Through the application of anterograde and retrograde neural tract tracing with novel designer viral vectors, the current findings show that SuM neurons densely innervate the LH in a sex dimorphic fashion. Glucagon-like peptide-1 (GLP-1) is a clinically targeted neuro-intestinal hormone with a well-established role in regulating energy balance and reward behaviors. Here we determine that GLP-1 receptors (GLP-1R) are expressed throughout the SuM of both sexes, and also directly on SuM LH-projecting neurons and investigate the role of SuM GLP-1R in the regulation of ingestive and motivated behavior in male and female rats. RESULTS: SuM microinjections of the GLP-1 analogue, exendin-4, reduced ad libitum intake of chow, fat, or sugar solution in both male and female rats, while food-motivated behaviors, measured using the sucrose motivated operant conditioning test, was only reduced in male rats. These data contrasted with the results obtained from a neighboring structure well known for its role in motivation and reward, the VTA, where females displayed a more potent response to GLP-1R activation by exendin-4. In order to determine the physiological role of SuM GLP-1R signaling regulation of energy balance, we utilized an adeno-associated viral vector to site-specifically deliver shRNA for the GLP-1R to the SuM. Surprisingly, and in contrast to previous results for the two SuM neighboring sites, LH and VTA, SuM GLP-1R knockdown increased food seeking and adiposity in obese male rats without altering food intake, body weight or food motivation in lean or obese, female or male rats. CONCLUSION: Taken together, these results indicate that SuM potently contributes to ingestive and motivated behavior control; an effect contingent on sex, diet/homeostatic energy balance state and behavior of interest. These data also extend the map of brain sites directly responsive to GLP-1 agonists, and highlight key differences in the role that GLP-1R play in interconnected and neighboring nuclei.


Assuntos
Gânglios da Base/metabolismo , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipotálamo/metabolismo , Motivação , Animais , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Condicionamento Operante , Metabolismo Energético , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
11.
Proc Jpn Acad Ser B Phys Biol Sci ; 94(7): 275-304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30078828

RESUMO

Involuntary movements and parkinsonism have been interesting and important topics in neurology since the last century. The development of anatomical and physiological studies of the neural circuitry of motor systems has encouraged the study of movement disorders by means of pathophysiology and brain imaging.Multichannel electromyography from affected muscles has generated objective and analytical data on chorea, ballism, athetosis, and dystonia. Studies using floor reaction forces revealed the pathophysiology of freezing of gait in parkinsonism. Akinesia and bradykinesia are attributable to dysfunctions in the basal ganglia, frontal lobe, and parieto-occipital visual association cortex.Reciprocal innervation is an essential mechanism of smooth voluntary movement. Spinal reflexes on reciprocal innervation has been investigated in awake humans, and the pathophysiology of spasticity and Parkinson's disease were revealed as a result. Clinical applications for the treatment and evaluation of status have been developed.For future studies, detailed neural mechanisms underlying the development of motor disorders in basal ganglia diseases and recovery by interventions including surgery and neurorehabilitation are important.


Assuntos
Gânglios da Base/fisiologia , Gânglios da Base/fisiopatologia , Humanos , Transtornos dos Movimentos/fisiopatologia , Postura
12.
J Neurosci ; 38(11): 2877-2886, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29487127

RESUMO

Prenatal maternal immune activation (MIA) is associated with altered brain development and risk of psychiatric disorders in offspring. Translational human studies of MIA are few in number. Alterations of the salience network have been implicated in the pathogenesis of the same psychiatric disorders associated with MIA. If MIA is pathogenic, then associated abnormalities in the salience network should be detectable in neonates immediately after birth. We tested the hypothesis that third trimester MIA of adolescent women who are at risk for high stress and inflammation is associated with the strength of functional connectivity in the salience network of their neonate. Thirty-six women underwent blood draws to measure interleukin-6 (IL-6) and C-reactive protein (CRP) and electrocardiograms to measure fetal heart rate variability (FHRV) at 34-37 weeks gestation. Resting-state imaging data were acquired in the infants at 40-44 weeks postmenstrual age (PMA). Functional connectivity was measured from seeds placed in the anterior cingulate cortex and insula. Measures of cognitive development were obtained at 14 months PMA using the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Both sexes were studied. Regions in which the strength of the salience network correlated with maternal IL-6 or CRP levels included the medial prefrontal cortex, temporoparietal junction, and basal ganglia. Maternal CRP level correlated inversely with FHRV acquired at the same gestational age. Maternal CRP and IL-6 levels correlated positively with measures of cognitive development on the BSID-III. These results suggest that MIA is associated with short- and long-term influences on offspring brain and behavior.SIGNIFICANCE STATEMENT Preclinical studies in rodents and nonhuman primates and epidemiological studies in humans suggest that maternal immune activation (MIA) alters the development of brain circuitry and associated behaviors, placing offspring at risk for psychiatric illness. Consistent with preclinical findings, we show that maternal third trimester interleukin-6 and C-reactive protein levels are associated with neonatal functional connectivity and with both fetal and toddler behavior. MIA-related functional connectivity was localized to the salience, default mode, and frontoparietal networks, which have been implicated in the pathogenesis of psychiatric disorders. Our results suggest that MIA alters functional connectivity in the neonatal brain, that those alterations have consequences for cognition, and that these findings may provide pathogenetic links between preclinical and epidemiological studies associating MIA with psychiatric risk in offspring.


Assuntos
Desenvolvimento Infantil/fisiologia , Comportamento do Lactente/fisiologia , Rede Nervosa/imunologia , Rede Nervosa/fisiologia , Terceiro Trimestre da Gravidez/imunologia , Adolescente , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/fisiologia , Proteína C-Reativa/análise , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Cognição/fisiologia , Eletrocardiografia , Feminino , Feto/fisiologia , Frequência Cardíaca Fetal , Humanos , Lactente , Recém-Nascido , Interleucina-6/sangue , Masculino , Rede Nervosa/crescimento & desenvolvimento , Testes Neuropsicológicos , Gravidez , Adulto Jovem
13.
Prog Neurol Surg ; 33: 50-61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332073

RESUMO

The neural connections of the basal ganglia provide important insights into their function. Here, we discuss the current perspective on basal ganglia connections with the cerebral cortex and with the cerebellum. We review the evidence that the basal ganglia participate in functionally segregated circuits with motor and non-motor areas of the cerebral cortex. We then discuss the data that the basal ganglia are interconnected with the cerebellum. These results provide the anatomical substrate for basal ganglia contributions not only to the control of movement, but also to a variety of cognitive and affective functions. Furthermore, these findings indicate that abnormal activity in basal ganglia circuits with the cerebral cortex and with the cerebellum may contribute to both motor and non-motor deficits associated with several neurologic and psychiatric conditions.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Transtornos dos Movimentos/fisiopatologia , Movimento/fisiologia , Vias Neurais/fisiologia , Gânglios da Base/fisiopatologia , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Humanos , Vias Neurais/fisiopatologia
14.
Acta Neurochir (Wien) ; 160(3): 611-624, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335882

RESUMO

INTRODUCTION: Essential tremor (ET) is the most common movement disorder. Drug-resistant ET can benefit from standard surgical stereotactic procedures (deep brain stimulation, thalamotomy) or minimally invasive high-intensity focused ultrasound (HIFU) or stereotactic radiosurgical thalamotomy (SRS-T). Resting-state fMRI (rs-fMRI) is a non-invasive imaging method acquired in absence of a task. We examined whether rs-fMRI correlates with tremor score on the treated hand (TSTH) improvement 1 year after SRS-T. METHODS: We included 17 consecutive patients treated with left unilateral SRS-T in Marseille, France. Tremor score evaluation and rs-fMRI were acquired at baseline and 1 year after SRS-T. Resting-state data (34 scans) were analyzed without a priori hypothesis, in Lausanne, Switzerland. Based on degree of improvement in TSTH, to consider SRS-T at least as effective as medication, we separated two groups: 1, ≤ 50% (n = 6, 35.3%); 2, > 50% (n = 11, 64.7%). They did not differ statistically by age (p = 0.86), duration of symptoms (p = 0.41), or lesion volume at 1 year (p = 0.06). RESULTS: We report TSTH improvement correlated with interconnectivity strength between salience network with the left claustrum and putamen, as well as between bilateral motor cortices, frontal eye fields and left cerebellum lobule VI with right visual association area (the former also with lesion volume). Longitudinal changes showed additional associations in interconnectivity strength between right dorsal attention network with ventro-lateral prefrontal cortex and a reminiscent salience network with fusiform gyrus. CONCLUSIONS: Brain connectivity measured by resting-state fMRI relates to clinical response after SRS-T. Relevant networks are visual, motor, and attention. Interconnectivity between visual and motor areas is a novel finding, revealing implication in movement sensory guidance.


Assuntos
Encéfalo/diagnóstico por imagem , Tremor Essencial/cirurgia , Radiocirurgia/métodos , Núcleos Ventrais do Tálamo/cirurgia , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Atenção , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Encéfalo/fisiologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Feminino , França , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Neuroimagem Funcional , Mãos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Estudos Prospectivos , Putamen/diagnóstico por imagem , Putamen/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Tálamo/cirurgia , Resultado do Tratamento
15.
Proc Natl Acad Sci U S A ; 114(22): 5719-5724, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507136

RESUMO

Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to SLC1A1, which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of Slc1a1 loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in (i) locomotor activity, (ii) stereotypy, and (iii) immediate early gene induction in the dorsal striatum following amphetamine administration. Further, Slc1a1-STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D1 receptor binding in the dorsal striatum of Slc1a1-STOP mice. Slc1a1-STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of Slc1a1/EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in Slc1a1-STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.


Assuntos
Gânglios da Base/fisiologia , Transportador 3 de Aminoácido Excitatório/genética , Atividade Motora/genética , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/fisiopatologia , Anfetaminas/farmacologia , Animais , Linhagem Celular , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Asseio Animal/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Receptores de Dopamina D1/metabolismo , Reflexo de Sobressalto/fisiologia
16.
PLoS One ; 11(6): e0157682, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314496

RESUMO

Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Acetilcolina/metabolismo , Animais , Gânglios da Base/fisiologia , Corpo Estriado/diagnóstico por imagem , Dopamina/metabolismo , Camundongos , Recompensa
17.
Arq. neuropsiquiatr ; 74(4): 351-353, Apr. 2016. graf
Artigo em Inglês | LILACS | ID: lil-779809

RESUMO

ABSTRACT The year 2016 marks the centenary of the birth of Francis Crick (1916–2004), who made outstanding contributions to genetics and neuroscience. In 1953, in a collaborative study, Francis Crick and James Watson discovered the DNA double helix, and in 1962 they and Maurice Wilkins were awarded the Noble Prize in Physiology or Medicine. Crick subsequently became very interested in neuroscience, particularly consciousness and its relationship to the claustrum, a small gray matter structure between the insula and putamen.


RESUMO O ano de 2016 é o centenário de nascimento de Francis Crick (1916–2004), físico, biólogo e neurocientista, cujas contribuições para a genética e a neurociência foram magníficas. Crick, em um estudo colaborativo com Watson, descobriu a estrutura molecular do DNA (dupla hélice) em 1953, e em 1962 ambos receberam o prêmio Nobel de Fisiologia ou Medicina, junto com Wilkins. Após Crick tornou-se muito interessado na área de neurociência, particularmente no estudo da consciência, e a sua relação com o claustrum, uma pequena estrutura de substância cinzenta localizada entre a ínsula e o putame.


Assuntos
História do Século XX , História do Século XXI , Genética/história , Neurociências/história , Gânglios da Base/fisiologia , DNA , Prêmio Nobel
18.
J Neurophysiol ; 115(4): 2124-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888111

RESUMO

Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients.


Assuntos
Gânglios da Base/fisiologia , Dependovirus/genética , Lentivirus/genética , Neuroimagem/métodos , Neurônios/fisiologia , Optogenética/métodos , Animais , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Dependovirus/metabolismo , Vetores Genéticos/genética , Humanos , Lentivirus/metabolismo , Neurônios/metabolismo
19.
Mol Psychiatry ; 21(10): 1351-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26754953

RESUMO

Inflammation and altered glutamate metabolism are two pathways implicated in the pathophysiology of depression. Interestingly, these pathways may be linked given that administration of inflammatory cytokines such as interferon-α to otherwise non-depressed controls increased glutamate in the basal ganglia and dorsal anterior cingulate cortex (dACC) as measured by magnetic resonance spectroscopy (MRS). Whether increased inflammation is associated with increased glutamate among patients with major depression is unknown. Accordingly, we conducted a cross-sectional study of 50 medication-free, depressed outpatients using single-voxel MRS, to measure absolute glutamate concentrations in basal ganglia and dACC. Multivoxel chemical shift imaging (CSI) was used to explore creatine-normalized measures of other metabolites in basal ganglia. Plasma and cerebrospinal fluid (CSF) inflammatory markers were assessed along with anhedonia and psychomotor speed. Increased log plasma C-reactive protein (CRP) was significantly associated with increased log left basal ganglia glutamate controlling for age, sex, race, body mass index, smoking status and depression severity. In turn, log left basal ganglia glutamate was associated with anhedonia and psychomotor slowing measured by the finger-tapping test, simple reaction time task and the Digit Symbol Substitution Task. Plasma CRP was not associated with dACC glutamate. Plasma and CSF CRP were also associated with CSI measures of basal ganglia glutamate and the glial marker myoinositol. These data indicate that increased inflammation in major depression may lead to increased glutamate in the basal ganglia in association with glial dysfunction and suggest that therapeutic strategies targeting glutamate may be preferentially effective in depressed patients with increased inflammation as measured by CRP.


Assuntos
Gânglios da Base/metabolismo , Transtorno Depressivo Maior/metabolismo , Adulto , Gânglios da Base/fisiologia , Encéfalo/metabolismo , Proteína C-Reativa/metabolismo , Estudos Transversais , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Feminino , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interferon-alfa , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
20.
Cell Rep ; 13(4): 657-666, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26489458

RESUMO

Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone.


Assuntos
Gânglios da Base/citologia , Gânglios da Base/fisiologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Interneurônios/citologia , Interneurônios/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Transtornos Parkinsonianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA