Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834302

RESUMO

Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, ∼0.1 Hz]; pyloric [filtering food, ∼1 Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Neurônios , Neuropeptídeos , Animais , Braquiúros/fisiologia , Neuropeptídeos/farmacologia , Neuropeptídeos/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Gânglios dos Invertebrados/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos dos fármacos , Masculino , Comportamento Alimentar/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Piloro/fisiologia , Piloro/efeitos dos fármacos , Periodicidade
2.
J Neurophysiol ; 132(1): 184-205, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776457

RESUMO

Oscillatory networks underlying rhythmic motor behaviors, and sensory and complex neural processing, are flexible, even in their neuronal composition. Neuromodulatory inputs enable neurons to switch participation between networks or participate in multiple networks simultaneously. Neuromodulation of internetwork synapses can both recruit and coordinate a switching neuron in a second network. We previously identified an example in which a neuron is recruited into dual-network activity via peptidergic modulation of intrinsic properties. We now ask whether the same neuropeptide also modulates internetwork synapses for internetwork coordination. The crab (Cancer borealis) stomatogastric nervous system contains two well-defined feeding-related networks (pyloric, food filtering, ∼1 Hz; gastric mill, food chewing, ∼0.1 Hz). The projection neuron MCN5 uses the neuropeptide Gly1-SIFamide to recruit the pyloric-only lateral posterior gastric (LPG) neuron into dual pyloric- plus gastric mill-timed bursting via modulation of LPG's intrinsic properties. Descending input is not required for a coordinated rhythm, thus intranetwork synapses between LPG and its second network must underlie coordination among these neurons. However, synapses between LPG and gastric mill neurons have not been documented. Using two-electrode voltage-clamp recordings, we found that graded synaptic currents between LPG and gastric mill neurons (lateral gastric, inferior cardiac, and dorsal gastric) were primarily negligible in saline, but were enhanced by Gly1-SIFamide. Furthermore, LPG and gastric mill neurons entrain each other during Gly1-SIFamide application, indicating bidirectional, functional connectivity. Thus, a neuropeptide mediates neuronal switching through parallel actions, modulating intrinsic properties for recruitment into a second network and as shown here, also modulating bidirectional internetwork synapses for coordination.NEW & NOTEWORTHY Neuromodulation can enable neurons to simultaneously coordinate with separate networks. Both recruitment into, and coordination with, a second network can occur via modulation of internetwork synapses. Alternatively, recruitment can occur via modulation of intrinsic ionic currents. We find that the same neuropeptide previously determined to modulate intrinsic currents also modulates bidirectional internetwork synapses that are typically ineffective. Thus, complementary modulatory peptide actions enable recruitment and coordination of a neuron into a second network.


Assuntos
Braquiúros , Neuropeptídeos , Sinapses , Animais , Braquiúros/fisiologia , Sinapses/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Neurônios/fisiologia , Gânglios dos Invertebrados/fisiologia , Oligopeptídeos/farmacologia , Rede Nervosa/fisiologia , Piloro/fisiologia , Masculino , Potenciais de Ação/fisiologia
3.
J Neurophysiol ; 131(3): 509-515, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264774

RESUMO

Nervous systems have evolved to function consistently in the face of the normal environmental fluctuations experienced by animals. The stomatogastric nervous system (STNS) of the crab, Cancer borealis, produces a motor output that has been studied for its remarkable robustness in response to single global perturbations. Changes in environments, however, are often complex and multifactorial. Therefore, we studied the robustness of the pyloric network in the stomatogastric ganglion (STG) in response to simultaneous perturbations of temperature and pH. We compared the effects of elevated temperatures on the pyloric rhythm at control, acid, or base pHs. In each pH recordings were made at 11°C, and then the temperature was increased until the rhythms became disorganized ("crashed"). Pyloric burst frequencies and phase relationships showed minor differences between pH groups until reaching close to the crash temperatures. However, the temperatures at which the rhythms were disrupted were lower in the two extreme pH conditions. This indicates that one environmental stress can make an animal less resilient to a second stressor.NEW & NOTEWORTHY Resilience to environmental fluctuations is important for all animals. It is common that animals encounter multiple stressful events at the same time, the cumulative impacts of which are largely unknown. This study examines the effects of temperature and pH on the nervous system of crabs that live in the fluctuating environments of the Northern Atlantic Ocean. The ranges of tolerance to one perturbation, temperature, are reduced under the influence of a second, pH.


Assuntos
Braquiúros , Piloro , Animais , Temperatura , Piloro/fisiologia , Gânglios dos Invertebrados/fisiologia , Braquiúros/fisiologia
4.
J Neurophysiol ; 131(2): 417-434, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197163

RESUMO

Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.


Assuntos
Braquiúros , Neurônios , Animais , Neurônios/fisiologia , Piloro/fisiologia , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Periodicidade , Rede Nervosa/fisiologia
5.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37968117

RESUMO

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.


Assuntos
Braquiúros , Neuropeptídeos , Masculino , Humanos , Animais , Neuropeptídeos/metabolismo , Peptídeos/farmacologia , Neurônios/fisiologia , Neurotransmissores/farmacologia , Transdução de Sinais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia
6.
J Neurophysiol ; 130(3): 569-584, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529838

RESUMO

Recently, activity has been proposed as a primary feedback mechanism used by continuously bursting neurons to coordinate ion channel mRNA relationships that underlie stable output. However, some neuron types only have intermittent periods of activity and so may require alternative mechanisms that induce and constrain the appropriate ion channel profile in different states of activity. To address this, we used the pyloric dilator (PD; constitutively active) and the lateral gastric (LG; periodically active) neurons of the stomatogastric ganglion (STG) of the crustacean Cancer borealis. We experimentally stimulated descending inputs to the STG to cause release of neuromodulators known to elicit the active state of LG neurons and quantified the mRNA abundances and pairwise relationships of 11 voltage-gated ion channels in active and silent LG neurons. The same stimulus does not significantly alter PD activity. Activation of LG upregulated ion channel mRNAs and lead to a greater number of positively correlated pairwise channel mRNA relationships. Conversely, this stimulus did not induce major changes in ion channel mRNA abundances and relationships of PD cells, suggesting their ongoing activity is sufficient to maintain channel mRNA relationships even under changing modulatory conditions. In addition, we found that ion channel mRNA correlations induced by the active state of LG are influenced by a combination of activity- and neuromodulator-dependent feedback mechanisms. Interestingly, some of these same correlations are maintained by distinct mechanisms in PD, suggesting that these motor networks use distinct feedback mechanisms to coordinate the same mRNA relationships across neuron types.NEW & NOTEWORTHY Neurons use various feedback mechanisms to adjust and maintain their output. Here, we demonstrate that different neurons within the same network can use distinct signaling mechanisms to regulate the same ion channel mRNA relationships.


Assuntos
Braquiúros , Neurônios Motores , Animais , Retroalimentação , RNA Mensageiro , Neurônios Motores/fisiologia , Canais Iônicos/genética , Piloro , Gânglios dos Invertebrados/fisiologia , Braquiúros/fisiologia , Rede Nervosa/fisiologia
7.
J Comp Neurol ; 530(17): 2954-2965, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882035

RESUMO

The crustacean cardiac ganglion (CG) comprises nine neurons that provide rhythmic drive to the heart. The CG is the direct target of multiple modulators. Synapsin-like immunoreactivity was found clustered around the somata of the large cells (LC) and in a neuropil at the anterior branch of the CG trunk of Cancer borealis. This implicates the soma as a key site of synaptic integration, an unusual configuration in invertebrates. Proctolin is an excitatory neuromodulator of the CG, and proctolin-like immunoreactivity exhibited partial overlap with putative chemical synapses near the LCs and at the neuropil. A proctolin-like projection was also found in a pair of excitatory nerves entering the CG. GABA-like immunoreactivity was nearly completely colocalized with chemical synapses near the LCs but absent at the anterior branch neuropil. GABA-like projections were found in a pair of inhibitory nerves entering the CG. C. borealis Allatostatin B1 (CbASTB), red pigment concentrating hormone, and FLRFamide-like immunoreactivity each had a unique pattern of staining and co-localization with putative chemical synapses. These results provide morphological evidence that synaptic input is integrated at LC somata in the CG. Our findings provide a topographical organization for some of the multiple inhibitory and excitatory modulators that alter the rhythmic output of this semi-autonomous motor circuit.


Assuntos
Braquiúros , Neoplasias , Animais , Braquiúros/anatomia & histologia , Gânglios dos Invertebrados/fisiologia , Neurotransmissores , Sinapses , Sinapsinas , Ácido gama-Aminobutírico
8.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817566

RESUMO

The levels of voltage-gated and synaptic currents in the same neuron type can vary substantially across individuals. Yet, the phase relationships between neurons in oscillatory circuits are often maintained, even in the face of varying oscillation frequencies. We examined whether synaptic and intrinsic currents are matched to maintain constant activity phases across preparations, using the lateral pyloric (LP) neuron of the stomatogastric ganglion (STG) of the crab, Cancer borealis LP produces stable oscillatory bursts on release from inhibition, with an onset phase that is independent of oscillation frequency. We quantified the parameters that define the shape of the synaptic current inputs across preparations and found no linear correlations with voltage-gated currents. However, several synaptic parameters were correlated with oscillation period and burst onset phase, suggesting they may play a role in phase maintenance. We used dynamic clamp to apply artificial synaptic inputs and found that those synaptic parameters correlated with phase and period were ineffective in influencing burst onset. Instead, parameters that showed the least variability across preparations had the greatest influence. Thus, parameters that influence circuit phasing are constrained across individuals, while those that have little effect simply co-vary with phase and frequency.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Animais , Gânglios , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Piloro/fisiologia
9.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302489

RESUMO

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Animais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Piloro/fisiologia
10.
Elife ; 112022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103594

RESUMO

Reciprocal inhibition is a building block in many sensory and motor circuits. We studied the features that underly robustness in reciprocally inhibitory two neuron circuits. We used the dynamic clamp to create reciprocally inhibitory circuits from pharmacologically isolated neurons of the crab stomatogastric ganglion by injecting artificial graded synaptic (ISyn) and hyperpolarization-activated inward (IH) currents. There is a continuum of mechanisms in circuits that generate antiphase oscillations, with 'release' and 'escape' mechanisms at the extremes, and mixed mode oscillations between these extremes. In release, the active neuron primarily controls the off/on transitions. In escape, the inhibited neuron controls the transitions. We characterized the robustness of escape and release circuits to alterations in circuit parameters, temperature, and neuromodulation. We found that escape circuits rely on tight correlations between synaptic and H conductances to generate bursting but are resilient to temperature increase. Release circuits are robust to variations in synaptic and H conductances but fragile to temperature increase. The modulatory current (IMI) restores oscillations in release circuits but has little effect in escape circuits. Perturbations can alter the balance of escape and release mechanisms and can create mixed mode oscillations. We conclude that the same perturbation can have dramatically different effects depending on the circuits' mechanism of operation that may not be observable from basal circuit activity.


Assuntos
Braquiúros , Neurônios , Animais , Braquiúros/fisiologia , Gânglios , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia
11.
Curr Biol ; 31(21): 4831-4838.e4, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34506730

RESUMO

A fundamental question in neuroscience is whether neuronal circuits with variable circuit parameters that produce similar outputs respond comparably to equivalent perturbations.1-4 Work on the pyloric rhythm of the crustacean stomatogastric ganglion (STG) showed that highly variable sets of intrinsic and synaptic conductances can generate similar circuit activity patterns.5-9 Importantly, in response to physiologically relevant perturbations, these disparate circuit solutions can respond robustly and reliably,10-12 but when exposed to extreme perturbations the underlying circuit parameter differences produce diverse patterns of disrupted activity.7,12,13 In this example, the pyloric circuit is unchanged; only the conductance values vary. In contrast, the gastric mill rhythm in the STG can be generated by distinct circuits when activated by different modulatory neurons and/or neuropeptides.14-21 Generally, these distinct circuits produce different gastric mill rhythms. However, the rhythms driven by stimulating modulatory commissural neuron 1 (MCN1) and bath-applying CabPK (Cancer borealis pyrokinin) peptide generate comparable output patterns, despite having distinct circuits that use separate cellular and synaptic mechanisms.22-25 Here, we use these two gastric mill circuits to determine whether such circuits respond comparably when challenged with persisting (hormonal: CCAP) or acute (sensory: GPR neuron) metabotropic influences. Surprisingly, the hormone-mediated action separates these two rhythms despite activating the same ionic current in the same circuit neuron during both rhythms, whereas the sensory neuron evokes comparable responses despite acting via different synapses during each rhythm. These results highlight the need for caution when inferring the circuit response to a perturbation when that circuit is not well defined physiologically.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Potenciais de Ação/fisiologia , Animais , Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Periodicidade , Sinapses/fisiologia
12.
J Neurosci ; 41(37): 7848-7863, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34349000

RESUMO

Oscillatory networks underlie rhythmic behaviors (e.g., walking, chewing) and complex behaviors (e.g., memory formation, decision-making). Flexibility of oscillatory networks includes neurons switching between single- and dual-network participation, even generating oscillations at two distinct frequencies. Modulation of synaptic strength can underlie this neuronal switching. Here we ask whether switching into dual-frequency oscillations can also result from modulation of intrinsic neuronal properties. The isolated stomatogastric nervous system of male Cancer borealis crabs contains two well-characterized rhythmic feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz). The identified modulatory projection neuron MCN5 causes the pyloric-only lateral posterior gastric (LPG) neuron to switch to dual pyloric/gastric mill bursting. Bath applying the MCN5 neuropeptide transmitter Gly1-SIFamide only partly mimics the LPG switch to dual activity because of continued LP neuron inhibition of LPG. Here, we find that MCN5 uses a cotransmitter, glutamate, to inhibit LP, unlike Gly1-SIFamide excitation of LP. Thus, we modeled the MCN5-elicited LPG switching with Gly1-SIFamide application and LP photoinactivation. Using hyperpolarization of pyloric pacemaker neurons and gastric mill network neurons, we found that LPG pyloric-timed oscillations require rhythmic electrical synaptic input. However, LPG gastric mill-timed oscillations do not require any pyloric/gastric mill synaptic input and are voltage-dependent. Thus, we identify modulation of intrinsic properties as an additional mechanism for switching a neuron into dual-frequency activity. Instead of synaptic modulation switching a neuron into a second network as a passive follower, modulation of intrinsic properties could enable a switching neuron to become an active contributor to rhythm generation in the second network.SIGNIFICANCE STATEMENT Neuromodulation of oscillatory networks can enable network neurons to switch from single- to dual-network participation, even when two networks oscillate at distinct frequencies. We used small, well-characterized networks to determine whether modulation of synaptic strength, an identified mechanism for switching, is necessary for dual-network recruitment. We demonstrate that rhythmic electrical synaptic input is required for continued linkage with a "home" network, whereas modulation of intrinsic properties enables a neuron to generate oscillations at a second frequency. Neuromodulator-induced switches in neuronal participation between networks occur in motor, cognitive, and sensory networks. Our study highlights the importance of considering intrinsic properties as a pivotal target for enabling parallel participation of a neuron in two oscillatory networks.


Assuntos
Potenciais de Ação/fisiologia , Geradores de Padrão Central/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Braquiúros , Gânglios dos Invertebrados/fisiologia
13.
J Neurophysiol ; 123(5): 2075-2089, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319837

RESUMO

Elevated potassium concentration ([K+]) is often used to alter excitability in neurons and networks by shifting the potassium equilibrium potential (EK) and, consequently, the resting membrane potential. We studied the effects of increased extracellular [K+] on the well-described pyloric circuit of the crab Cancer borealis. A 2.5-fold increase in extracellular [K+] (2.5×[K+]) depolarized pyloric dilator (PD) neurons and resulted in short-term loss of their normal bursting activity. This period of silence was followed within 5-10 min by the recovery of spiking and/or bursting activity during continued superfusion of 2.5×[K+] saline. In contrast, when PD neurons were pharmacologically isolated from pyloric presynaptic inputs, they exhibited no transient loss of spiking activity in 2.5×[K+], suggesting the presence of an acute inhibitory effect mediated by circuit interactions. Action potential threshold in PD neurons hyperpolarized during an hour-long exposure to 2.5×[K+] concurrent with the recovery of spiking and/or bursting activity. Thus the initial loss of activity appears to be mediated by synaptic interactions within the network, but the secondary adaptation depends on changes in the intrinsic excitability of the pacemaker neurons. The complex sequence of events in the responses of pyloric neurons to elevated [K+] demonstrates that electrophysiological recordings are necessary to determine both the transient and longer term effects of even modest alterations of K+ concentrations on neuronal activity.NEW & NOTEWORTHY Solutions with elevated extracellular potassium are commonly used as a depolarizing stimulus. We studied the effects of high potassium concentration ([K+]) on the pyloric circuit of the crab stomatogastric ganglion. A 2.5-fold increase in extracellular [K+] caused a transient loss of activity that was not due to depolarization block, followed by a rapid increase in excitability and recovery of spiking within minutes. This suggests that changing extracellular potassium can have complex and nonstationary effects on neuronal circuits.


Assuntos
Braquiúros/fisiologia , Geradores de Padrão Central/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Gânglios dos Invertebrados/fisiologia , Potássio/metabolismo , Piloro/fisiologia , Animais , Geradores de Padrão Central/metabolismo , Gânglios dos Invertebrados/metabolismo , Masculino , Piloro/metabolismo
14.
J Neurophysiol ; 122(4): 1623-1633, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411938

RESUMO

Many neurons receive synchronous input from heterogeneous presynaptic neurons with distinct properties. An instructive example is the crustacean stomatogastric pyloric circuit pacemaker group, consisting of the anterior burster (AB) and pyloric dilator (PD) neurons, which are active synchronously and exert a combined synaptic action on most pyloric follower neurons. Previous studies in lobster have indicated that AB is glutamatergic, whereas PD is cholinergic. However, although the stomatogastric system of the crab Cancer borealis has become a preferred system for exploration of cellular and synaptic basis of circuit dynamics, the pacemaker synaptic output has not been carefully analyzed in this species. We examined the synaptic properties of these neurons using a combination of single-cell mRNA analysis, electrophysiology, and pharmacology. The crab PD neuron expresses high levels of choline acetyltransferase and the vesicular acetylcholine transporter mRNAs, hallmarks of cholinergic neurons. In contrast, the AB neuron expresses neither cholinergic marker but expresses high levels of vesicular glutamate transporter mRNA, consistent with a glutamatergic phenotype. Notably, in the combined synapses to follower neurons, 70-75% of the total current was blocked by putative glutamatergic blockers, but short-term synaptic plasticity remained unchanged, and although the total pacemaker current in two follower neuron types was different, this difference did not contribute to the phasing of the follower neurons. These findings provide a guide for similar explorations of heterogeneous synaptic connections in other systems and a baseline in this system for the exploration of the differential influence of neuromodulators.NEW & NOTEWORTHY The pacemaker-driven pyloric circuit of the Jonah crab stomatogastric nervous system is a well-studied model system for exploring circuit dynamics and neuromodulation, yet the understanding of the synaptic properties of the two pacemaker neuron types is based on older analyses in other species. We use single-cell PCR and electrophysiology to explore the neurotransmitters used by the pacemaker neurons and their distinct contribution to the combined synaptic potentials.


Assuntos
Relógios Biológicos , Gânglios dos Invertebrados/fisiologia , Neurônios/classificação , Piloro/inervação , Transmissão Sináptica , Acetilcolina/metabolismo , Animais , Braquiúros , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Gânglios dos Invertebrados/citologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Piloro/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
15.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180323

RESUMO

In oscillatory systems, neuronal activity phase is often independent of network frequency. Such phase maintenance requires adjustment of synaptic input with network frequency, a relationship that we explored using the crab, Cancer borealis, pyloric network. The burst phase of pyloric neurons is relatively constant despite a > two fold variation in network frequency. We used noise input to characterize how input shape influences burst delay of a pyloric neuron, and then used dynamic clamp to examine how burst phase depends on the period, amplitude, duration, and shape of rhythmic synaptic input. Phase constancy across a range of periods required a proportional increase of synaptic duration with period. However, phase maintenance was also promoted by an increase of amplitude and peak phase of synaptic input with period. Mathematical analysis shows how short-term synaptic plasticity can coordinately change amplitude and peak phase to maximize the range of periods over which phase constancy is achieved.


Assuntos
Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Braquiúros , Gânglios dos Invertebrados/citologia , Modelos Neurológicos , Periodicidade , Piloro/inervação , Transmissão Sináptica/fisiologia
16.
J Neurophysiol ; 121(3): 950-972, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649961

RESUMO

Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


Assuntos
Axônios/fisiologia , Gânglios dos Invertebrados/fisiologia , Contração Muscular , Neuropeptídeos/farmacologia , Piloro/inervação , Potenciais de Ação , Animais , Axônios/efeitos dos fármacos , Braquiúros , Retroalimentação Fisiológica , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Periodicidade , Piloro/fisiologia
17.
Elife ; 82019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30657452

RESUMO

It is often assumed that highly-branched neuronal structures perform compartmentalized computations. However, previously we showed that the Gastric Mill (GM) neuron in the crustacean stomatogastric ganglion (STG) operates like a single electrotonic compartment, despite having thousands of branch points and total cable length >10 mm (Otopalik et al., 2017a; 2017b). Here we show that compact electrotonic architecture is generalizable to other STG neuron types, and that these neurons present direction-insensitive, linear voltage integration, suggesting they pool synaptic inputs across their neuronal structures. We also show, using simulations of 720 cable models spanning a broad range of geometries and passive properties, that compact electrotonus, linear integration, and directional insensitivity in STG neurons arise from their neurite geometries (diameters tapering from 10-20 µm to < 2 µm at their terminal tips). A broad parameter search reveals multiple morphological and biophysical solutions for achieving different degrees of passive electrotonic decrement and computational strategies in the absence of active properties.


Assuntos
Potenciais de Ação/fisiologia , Braquiúros/fisiologia , Moela não Aviária/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Braquiúros/citologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Moela não Aviária/citologia , Modelos Neurológicos , Neuritos/fisiologia , Potenciais Sinápticos/fisiologia
18.
Neuron ; 100(3): 609-623.e3, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30244886

RESUMO

In the ocean, the crab Cancer borealis is subject to daily and seasonal temperature changes. Previous work, done in the presence of descending modulatory inputs, had shown that the pyloric rhythm of the crab increases in frequency as temperature increases but maintains its characteristic phase relationships until it "crashes" at extremely high temperatures. To study the interaction between neuromodulators and temperature perturbations, we studied the effects of temperature on preparations from which the descending modulatory inputs were removed. Under these conditions, the pyloric rhythm was destabilized. We then studied the effects of temperature on preparations in the presence of oxotremorine, proctolin, and serotonin. Oxotremorine and proctolin enhanced the robustness of the pyloric rhythm, whereas serotonin made the rhythm less robust. These experiments reveal considerable animal-to-animal diversity in their crash stability, consistent with the interpretation that cryptic differences in many cell and network parameters are revealed by extreme perturbations.


Assuntos
Potenciais de Ação/fisiologia , Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurotransmissores/fisiologia , Temperatura , Animais , Braquiúros , Masculino , Neuropeptídeos/fisiologia , Oligopeptídeos/fisiologia , Oxotremorina/metabolismo , Serotonina/fisiologia
19.
J Neurosci ; 38(42): 8976-8988, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30185461

RESUMO

Neurons in the central pattern-generating circuits in the crustacean stomatogastric ganglion (STG) release neurotransmitter both as a graded function of presynaptic membrane potential that persists in TTX and in response to action potentials. In the STG of the male crab Cancer borealis, the modulators oxotremorine, C. borealis tachykinin-related peptide Ia (CabTRP1a), red pigment concentrating hormone (RPCH), proctolin, TNRNFLRFamide, and crustacean cardioactive peptide (CCAP) produce and sustain robust pyloric rhythms by activating the same modulatory current (IMI), albeit on different subsets of pyloric network targets. The muscarinic agonist oxotremorine, and the peptides CabTRP1a and RPCH elicited rhythmic triphasic intracellular alternating fluctuations of activity in the presence of TTX. Intracellular waveforms of pyloric neurons in oxotremorine and CabTRP1a in TTX were similar to those in the intact rhythm, and phase relationships among neurons were conserved. Although cycle frequency was conserved in oxotremorine and TTX, it was altered in CabTRP1a in the presence of TTX. Both rhythms were primarily driven by the pacemaker kernel consisting of the Anterior Burster and Pyloric Dilator neurons. In contrast, in TTX the circuit remained silent in proctolin, TNRNFLRFamide, and CCAP. These experiments show that graded synaptic transmission in the absence of voltage-gated Na+ current is sufficient to sustain rhythmic motor activity in some, but not other, modulatory conditions, even when each modulator activates the same ionic current. This further demonstrates that similar rhythmic motor patterns can be produced by qualitatively different mechanisms, one that depends on the activity of voltage-gated Na+ channels, and one that can persist in their absence.SIGNIFICANCE STATEMENT The pyloric rhythm of the crab stomatogastric ganglion depends both on spike-mediated and graded synaptic transmission. We activate the pyloric rhythm with a wide variety of different neuromodulators, all of which converge on the same voltage-dependent inward current. Interestingly, when action potentials and spike-mediated transmission are blocked using TTX, we find that the muscarinic agonist oxotremorine and the neuropeptide CabTRP1a sustain rhythmic alternations and appropriate phases of activity in the absence of action potentials. In contrast, TTX blocks rhythmic activity in the presence of other modulators. This demonstrates fundamental differences in the burst-generation mechanisms in different modulators that would not be suspected on the basis of their cellular actions at the level of the targeted current.


Assuntos
Potenciais de Ação/fisiologia , Geradores de Padrão Central/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurotransmissores/fisiologia , Transmissão Sináptica , Animais , Braquiúros , Geradores de Padrão Central/efeitos dos fármacos , Gânglios dos Invertebrados/diagnóstico por imagem , Masculino , Agonistas Muscarínicos/administração & dosagem , Neuropeptídeos/administração & dosagem , Neuropeptídeos/fisiologia , Neurotransmissores/administração & dosagem , Oligopeptídeos/administração & dosagem , Oligopeptídeos/fisiologia , Oxotremorina/administração & dosagem , Piloro/fisiologia , Ácido Pirrolidonocarboxílico/administração & dosagem , Ácido Pirrolidonocarboxílico/análogos & derivados , Bloqueadores dos Canais de Sódio/administração & dosagem , Tetrodotoxina/administração & dosagem
20.
J Neurosci ; 38(40): 8549-8562, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30126969

RESUMO

Multiple neuromodulators act in concert to shape the properties of neural circuits. Different neuromodulators usually activate distinct receptors but can have overlapping targets. Therefore, circuit output depends on neuromodulator interactions at shared targets, a poorly understood process. We explored quantitative rules of co-modulation of two principal targets of neuromodulation: synapses and voltage-gated ionic currents. In the stomatogastric ganglion of the male crab Cancer borealis, the neuropeptides proctolin (Proc) and the crustacean cardioactive peptide (CCAP) modulate synapses of the pyloric circuit and activate a voltage-gated current (IMI) in multiple neurons. We examined the validity of a simple dose-dependent quantitative rule, that co-modulation by Proc and CCAP is predicted by the linear sum of the individual effects of each modulator up to saturation. We found that this rule is valid for co-modulation of synapses, but not for the activation of IMI, in which co-modulation was sublinear. The predictions for the co-modulation of IMI activation were greatly improved if we assumed that the intracellular pathways activated by two peptide receptors inhibit one another. These findings suggest that the pathways activated by two neuromodulators could have distinct interactions, leading to distinct co-modulation rules for different targets even in the same neuron. Given the evolutionary conservation of neuromodulator receptors and signaling pathways, such distinct rules for co-modulation of different targets are likely to be common across neuronal circuits.SIGNIFICANCE STATEMENT We examine the quantitative rules of co-modulation at multiple shared targets, the first such characterization to our knowledge. Our results show that dose-dependent co-modulation of distinct targets in the same cells by the same two neuromodulators follows different rules: co-modulation of synaptic currents is linearly additive up to saturation, whereas co-modulation of the voltage-gated ionic current targeted in a single neuron is nonlinear, a mechanism that is likely generalizable. Given that all neural systems are multiply modulated and neuromodulators often act on shared targets, these findings and the methodology could guide studies to examine dynamic actions of neuromodulators at the biophysical and systems level in sensory and motor functions, sleep/wake regulation, and cognition.


Assuntos
Braquiúros/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Oligopeptídeos/fisiologia , Potenciais Sinápticos , Animais , Geradores de Padrão Central , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Masculino , Modelos Neurológicos , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Oligopeptídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA