Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.399
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697415

RESUMO

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Assuntos
Carboximetilcelulose Sódica , Óleos de Peixe , Géis , Óleos de Peixe/química , Carboximetilcelulose Sódica/química , Géis/química , Proteínas de Soja/química , Reologia , Cápsulas , Cloreto de Sódio/química , Proteínas Musculares/química , Miofibrilas/química , Miofibrilas/metabolismo
2.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709874

RESUMO

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Assuntos
Exossomos , Glioblastoma , Imunoterapia , Linfonodos , Exossomos/química , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Linfonodos/imunologia , Linfonodos/patologia , Animais , Camundongos , Géis/química , Células Dendríticas/imunologia , Linfócitos T/imunologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Camundongos Endogâmicos C57BL
3.
Curr Pharm Des ; 30(7): 489-518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757691

RESUMO

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.


Assuntos
Sistemas de Liberação de Medicamentos , Géis , Géis/química , Humanos , Administração Tópica , Animais , Administração Cutânea , Absorção Cutânea/efeitos dos fármacos
4.
Biomacromolecules ; 25(5): 2659-2678, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38663862

RESUMO

Peptide-polymer conjugates (PPCs) are of particular interest in the development of responsive, adaptive, and interactive materials due to the benefits offered by combining both building blocks and components. This review presents pioneering work as well as recent advances in the design of peptide-polymer conjugates, with a specific focus on their thermoresponsive behavior. This unique class of materials has shown great promise in the development of supramolecular structures with physicochemical properties that are modulated using soft and biorthogonal external stimuli. The temperature-induced self-assembly of PPCs into various supramolecular architectures, gelation processes, and tuning of accessible processing parameters to biologically relevant temperature windows are described. The discussion covers the chemical design of the conjugates, the supramolecular driving forces involved, and the mutual influence of the polymer and peptide segments. Additionally, some selected examples for potential biomedical applications of thermoresponsive PPCs in tissue engineering, delivery systems, tumor therapy, and biosensing are highlighted, as well as perspectives on future challenges.


Assuntos
Peptídeos , Polímeros , Géis/química , Peptídeos/química , Polímeros/química , Temperatura , Engenharia Tecidual/métodos
5.
Int J Biol Macromol ; 268(Pt 2): 131786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657927

RESUMO

This study investigated impact of high-density lipoprotein (HDL) on thermal aggregation and gelling behavior of myosin in relation to varied pHs. Results revealed that HDL modified myosin structure before and after heating, with distinct effects observed at varied pH. Under pH 5.0, both myosin and HDL-MS exhibited larger aggregates and altered microstructure; at pH 7.0 and 9.0, HDL inhibited myosin aggregation, resulting in enhanced solubility, reduced turbidity and particle size. Comparative analysis of surface hydrophobicity, free sulfhydryl groups and secondary structure highlighted distinct thermal aggregation behavior between MS and HDL-MS, with the latter showing inhibitory effects under neutral or alkaline conditions. Gelation behavior was enhanced at pH 7.0 with maximum strength, hardness, water-holding capacity and rheological properties. Under acidic pH, excessive protein aggregation resulted in increased whiteness and rough microstructure with granular aggregates. Under alkaline pH, gel network structure was weaker, possibly due to higher thermal stability of protein molecules. Scanning electron microscopy revealed expanded HDL protein particles at pH 7.0, accounting for decreased gel strength and altered rheological properties compared with myosin gel. Overall, the results indicated a positive role of HDL at varied pH in regulating thermal aggregation of myosin and further impacting heat-induced gel characteristics.


Assuntos
Géis , Temperatura Alta , Lipoproteínas HDL , Miosinas , Agregados Proteicos , Reologia , Concentração de Íons de Hidrogênio , Miosinas/química , Miosinas/metabolismo , Lipoproteínas HDL/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Animais , Tamanho da Partícula
6.
Int J Biol Macromol ; 268(Pt 1): 131699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642689

RESUMO

Starch and peanut oil (PO) were widely used to improve the gel properties of surimi, however, the impact mechanism of addition forms on the denaturation and aggregation behavior of myofibrillar protein (MP) is not clear. Therefore, the effect of starch, PO, starch/PO mixture, and starch-based emulsion on the physicochemical and gel properties of MP was investigated. The results showed that amylose could accelerate the aggregation of MP, while amylopectin was conducive to the improvement of gel properties. The addition of PO, starch/PO mixture, or starch-based emulsion increased the turbidity, solubility, sulfhydryl content of MP, and improved the gel strength, whiteness, and texture of MP gel. However, compared with starch/PO mixture group, the gel strength of MP with waxy, normal and high amylose corn starch-based emulsion increased by 22.68 %, 10.27 %, and 32.89 %, respectively. The MP containing emulsion had higher storage modulus than MP with starch/PO mixture under the same amylose content. CLSM results indicated that the oil droplets aggregated in PO or starch/PO mixture group, while emulsified oil droplets filled the protein gel network more homogeneously. Therefore, the addition of starch and PO in the form of emulsion could effectively play the filling role to improve the gel properties of MP.


Assuntos
Amilose , Emulsões , Géis , Óleo de Amendoim , Amido , Amilose/química , Amilose/análise , Óleo de Amendoim/química , Amido/química , Géis/química , Emulsões/química , Proteínas Musculares/química , Fenômenos Químicos , Solubilidade , Miofibrilas/química
7.
Int J Biol Macromol ; 268(Pt 1): 131921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679265

RESUMO

In order to load fish oil for potential encapsulation of fat-soluble functional active substances, fish oil-loaded multicore submillimeter-sized capsules were prepared with a combination method of three strategies (monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending). The chitosan-tripolyphosphate/Tween (20, 40, 60, and 80) capsules had smaller and evener fish oil cores than the chitosan-tripolyphosphate capsules, which resulted from that Tween addition induced smaller and evener fish oil droplets in the emulsions. Tween addition decreased the water contents from 56.6 % to 35.0 %-43.4 %, increased the loading capacities from 10.4 % to 12.7 %-17.2 %, and increased encapsulation efficiencies from 97.4 % to 97.8 %-99.1 %. In addition, Tween addition also decreased the highest peroxide values from 417 meq/kg oil to 173-262 meq/kg oil. These properties' changes might result from the structural differences between the chitosan-tripolyphosphate and chitosan-tripolyphosphate/Tween capsules. All the results suggested that the obtained chitosan-tripolyphosphate/Tween capsules are promising carriers for fish oil encapsulation. This work also provided useful knowledge to understand the preparation, structural, and physicochemical properties of the chitosan-tripolyphosphate capsules.


Assuntos
Cápsulas , Quitosana , Óleos de Peixe , Polissorbatos , Quitosana/química , Quitosana/análogos & derivados , Óleos de Peixe/química , Polissorbatos/química , Emulsões/química , Géis/química , Tamanho da Partícula , Água/química
8.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647653

RESUMO

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Assuntos
Cálcio , Doxorrubicina , Liberação Controlada de Fármacos , Glutationa , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Animais , Camundongos , Lipossomos/química , Humanos , Cálcio/química , Cálcio/metabolismo , Glutationa/química , Feminino , Géis/química , Gelatina/química , Camundongos Nus , Nanopartículas/química , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos/métodos
9.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615856

RESUMO

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Assuntos
Aminas , Celulose , Compostos Heterocíclicos , Estruturas Metalorgânicas , Nanofibras , Ácidos Ftálicos , Celulose/química , Adsorção , Aminas/química , Nanofibras/química , Estruturas Metalorgânicas/química , Compostos Heterocíclicos/química , Géis/química , Porosidade
10.
Food Chem ; 449: 139225, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599107

RESUMO

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Assuntos
Aminas , Celulose , Nanocompostos , Adsorção , Aminas/química , Celulose/química , Animais , Nanocompostos/química , Compostos Heterocíclicos/química , Bovinos , Suínos , Salmão , Estruturas Metalorgânicas/química , Carne/análise , Contaminação de Alimentos/análise , Géis/química
11.
Nanoscale ; 16(17): 8607-8617, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602354

RESUMO

High-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO2) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve in situ separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples. By integrating all these unique advantages into the hierarchical aerogel, multifunctional properties were introduced in the SALDI substrate to enable its effective utilization in clinical metabolomics for the discovery of reliable metabolic biomarkers to achieve unambiguous differentiation of early and advanced-stage lung cancer patients from healthy individuals. This study provides insight into the design and application of superstructured nanomaterials for in situ separation, storage, and photoexcitation of multi-components in complex biofluid samples for sensitive analysis.


Assuntos
Géis , Ouro , Metabolômica , Dióxido de Silício , Humanos , Dióxido de Silício/química , Ouro/química , Géis/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanoestruturas/química
12.
J Environ Manage ; 358: 120909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642487

RESUMO

Achieving an equilibrium between exceptional oil absorption and remarkable elasticity has emerged as a formidable challenge for magnetic porous materials designed for oil absorption. Here, we propose an original, magnetic and superhydrophobic cellulose nanofibril (CNF) based aerogel system with a rope-ladder like skeleton by to greatly improve the issue. Within this system, CNF as the skeleton was combined with multiwalled carbon nanotubes (MWCNT)@Fe3O4 as the magnetic and enhanced component, both methyltrimethoxysilane (MTMS) and acetonitrile-extracted lignin (AEL) as the soft-hard associating constituents. The resultant CNF based aerogel shows a rope-ladder like pore structure to contribute to high elasticity and excellent oil absorption (28.34-61.09 g/g for various oils and organic solvents) under the synergistic effect of Fe3O4@MWCNT, AEL and MTMS, as well as good specific surface area (27.97 m2/g), low density (26.4 mg/cm3). Notably, despite the introduced considerable proportion (0.5 times of mass-CNF) of Fe3O4@MWCNT, the aerogel retained an impressive compression-decompression rate (88%) and the oil absorption efficiency of above 87% for various oils due to the soft-hard associating structure supported by both MTMS and AEL. This study provides a prospective strategy to balance between high elasticity and excellent oil absorption of CNF based aerogel doping inorganic particles.


Assuntos
Celulose , Interações Hidrofóbicas e Hidrofílicas , Nanofibras , Celulose/química , Nanofibras/química , Óleos/química , Géis/química , Nanotubos de Carbono/química , Elasticidade , Porosidade
13.
Macromol Rapid Commun ; 45(9): e2300687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430068

RESUMO

Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Géis , Neoplasias , Humanos , Biopolímeros/química , Géis/química , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Animais
14.
Colloids Surf B Biointerfaces ; 236: 113810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430828

RESUMO

Distearin (DS) can be used as an emulsifier, due to its surface activity derived from the amphiphilic nature of the molecule, moreover, it can also crystallize and form a 3D crystal network that can induce oil gelation. The current research aimed to examine the ability to combine both emulsifying and oil gelation properties to structure and stabilize water-in-oil emulsion gel system. Different water contents and DS concentrations produce emulsion gels with different textural attributes while incorporating up to 30% of water in a 15% wt. DS-based oleogel resulted in stable white gels. Microscopy imaging confirmed the formation of a water-in-oleogel type emulsion gel characterized by DS crystallization in the continuous phase and at the interface through Pickering mechanism. A positive relation was observed between the G' and hardness values and water content, suggesting gel strengthening resulted from interactions between the DS crystals at the interface and the continuous phase, as suggested by the active filler theory. Thermal analysis revealed two broad melting events at the temperature range of 42.2-44.9 °C and 55.9-58.6 °C for emulsion gels with 10-30% water content, suggesting initial melting of ß' polymorph and transition to ß during melting, which was confirmed by XRD. The results showed that homogenization significantly improved the oil retention of the gels due to increased crystal surface area, while water addition slightly reduced it. Compared with traditional emulsions or oleogels, this water-in-oil gel system demonstrated prolonged stability and enhanced mechanical properties due to the dual functionality of DS at the water/oil interface and bulk.


Assuntos
Diglicerídeos , Água , Emulsões/química , Água/química , Emulsificantes/química , Géis/química
15.
Food Res Int ; 182: 114156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519183

RESUMO

Food texture perception is dynamic, influenced by food properties and oral processing. Using the Repeatable Dual Extrusion Cell (RDEC), the oral processing dynamics of surimi gel with different corn starch concentrations (0-15%) in the presence of 1 ml artificial saliva or water were studied. The force-time curve showed increased peak forces with higher corn starch concentrations, peaking significantly at 10%, then decreasing at 15%. Salivary amylase played a crucial role in gel sample degradation, especially in samples with 5% starch, with a work value depletion ratio of 0.535 for sample with 1 ml water (SGW-5) and 0.406 for sample with 1 ml saliva (SGS-5). SEM analysis confirmed the formation of a continuous starch network with reduced intermolecular spaces in SGS-5. The starch-iodine complex showed decreasing order with increasing starch concentration, and SGS-5 exhibited the highest degradation rate (61.61 ± 0.92%). Mathematical modeling revealed that initial decay rates (k1) in gel sample decreased with increasing starch concentration, and samples with starch and artificial saliva had higher initial degradation rates. These findings highlight the intricate interplay between saliva and starch in the surimi gel matrix under continuous compressive motions by RDEC apparatus, providing insights for formulating food products with tailored textures properties.


Assuntos
Saliva , Amido , Amido/química , Saliva Artificial , Saliva/metabolismo , Géis/química , Água
16.
Food Chem ; 448: 138988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522295

RESUMO

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Assuntos
Emulsões , Géis , Óleo de Semente do Linho , Ovalbumina , Oxirredução , Transglutaminases , Ovalbumina/química , Transglutaminases/química , Transglutaminases/metabolismo , Emulsões/química , Óleo de Semente do Linho/química , Géis/química
17.
Food Chem ; 446: 138810, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402769

RESUMO

The effect of a high internal phase emulsion (HIPE) on three-dimensional-printed surimi gel inks was studied. Increasing the concentration of collagen peptide decreased the particle size of HIPE droplets and improved the viscoelasticity and stability. For example, when the collagen peptide concentration was 5 wt%, the viscoelasticity of the HIPE was high, as indicated by the presence of small and uniform particles, which formed a monolayer in the outer layer of the oil droplets to form stable a HIPE. A HIPE was used as the filling material to fill the surimi gel network, which reduced the porosity of the network. Surimi protein and peptides have dual emulsifying effects on the stabilization of oil. After adding the emulsion, the texture, gel properties and rheological properties of the surimi were reduced, and its printing adaptability was improved. This study provides new ideas for the production of surimi and its application in 3D printing.


Assuntos
Óleos de Peixe , Tinta , Emulsões/química , Géis/química , Peptídeos , Impressão Tridimensional , Colágeno
18.
Food Chem ; 444: 138508, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38340502

RESUMO

The effects of different l-Cysteine additions (0-2 %) on the gel properties, microstructure and physicochemical stability of sheep plasma protein gels were studied. The introduction of l-Cys significantly improved the water retention capacity and whiteness of the plasma protein gel (p < 0.05). The addition of 0.2 %-0.4 % l-Cys increased gel strength, but l-Cys had no significant effect on gel elasticity (p < 0.05). Scanning electron microscopy confirmed that the addition of l-Cys also promoted the formation of a porous three-dimensional network structure in the gel. Raman spectroscopy and SDS-PAGE revealed that the addition of l-Cys generally reduced α-helix structures in protein gels and promoted the formation of ß-folds. Addition of 0.2 % l-Cys treatment leading to the greatest increase in disulfide bonds, and its surface hydrophobicity and endogenous fluorescence intensity were the largest. At this time, the comprehensive performance of sheep plasma protein gel is the best performance.


Assuntos
Cisteína , Temperatura Alta , Animais , Ovinos , Cisteína/química , Géis/química , Proteínas Sanguíneas , Conformação Proteica em alfa-Hélice , Água/química
19.
Food Res Int ; 178: 113987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309923

RESUMO

This work aimed to understand the role of lupin protein or mixed lupin-whey protein stabilized oil droplets on the texture and microstructure of a heat-induced whey protein gel. Protein-stabilized emulsions were compared to surfactant-stabilized emulsions to investigate the potential of their interfacial interactions to impart unique structures in the filled gels. The structure development was followed in situ using rheology and the final heat-induced gels were characterized by small and large amplitude oscillatory rheology and confocal microscopy. The development of the gel modulus as well as the final gel properties were linked to the type of interactions between the whey protein matrix and the protein adsorbed at the oil interface. The final gels were selectively dissolved in various buffers, and the results showed that replacing interfacial whey protein with lupin protein resulted in a reduced amount of disulfide bridges, explaining the softer gel in the lupin containing gels compared to those with whey protein. Non-covalent interactions were the main forces involved in the formation of actively filled droplets in the gel network. This work demonstrated that by modulating the interfacial composition of the oil droplets, differing gel structures could be achieved due to differences in the protein-protein interactions between the continuous and the interfacial phase. There is therefore potential for the development of innovative products using lupin-whey protein mixtures, by careful control of the processing steps and the matrix composition.


Assuntos
Proteínas , Tensoativos , Proteínas do Soro do Leite/química , Emulsões/química , Géis/química
20.
Adv Healthc Mater ; 13(12): e2303546, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224572

RESUMO

This work reports localized in vivo gene transfer by biodegradation of the adeno-associated virus-encapsulating alginate microspheres (AAV-AMs) loaded in collagen gel carriers. AAV-AMs are centrifugally synthesized by ejecting a mixed pre-gel solution of alginate and AAV to CaCl2 solution to form an ionically cross-linked hydrogel microsphere immediately. The AAV-AMs are able to preserve the AAV without diffusing out even after spreading them on the cells, and the AAV is released and transfected by the degradation of the alginate microsphere. In addition, AAV-AMs can be stored by cryopreservation until use. By implanting this highly convenient AAV-encapsulated hydrogel, AAV-AMs can be loaded into collagen gel carriers to fix the position of the implanted AAV-AMs and achieve localized gene transfer in vivo. In vivo experiments show that the AAV-AMs loaded in collagen gel carriers are demonstrated to release the encapsulated AAV for gene transfer in the buttocks muscles of mice. While conventional injections caused gene transfer to the entire surrounding tissue, the biodegradation of AAV-AMs shows that gene transfer is achieved locally to the muscles. This means that the proposed AAV-loaded system is shown to be a superior method for selective gene transfer.


Assuntos
Alginatos , Colágeno , Dependovirus , Microesferas , Dependovirus/genética , Alginatos/química , Animais , Colágeno/química , Camundongos , Técnicas de Transferência de Genes , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Géis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA