Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
1.
Cell ; 185(13): 2370-2386.e18, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35597242

RESUMO

2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , AMP Cíclico/biossíntese , GMP Cíclico/biossíntese , Ligases/metabolismo , NAD+ Nucleosidase/metabolismo , Doenças das Plantas , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Interleucina-1/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
mBio ; 12(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500341

RESUMO

Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.


Assuntos
Adenosina Trifosfatases/metabolismo , GMP Cíclico/biossíntese , Eritrócitos/parasitologia , Guanilato Ciclase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , GMP Cíclico/genética , Guanilato Ciclase/genética , Humanos , Malária/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Domínios Proteicos , Proteínas de Protozoários/genética
3.
Tohoku J Exp Med ; 247(4): 215-222, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971638

RESUMO

Carbon monoxide (CO) and nitric oxide (NO) exhibit physiological properties that include the activation of guanylate cyclase. NO inhibits replication of rhinovirus (RV), a major cause of the common cold and exacerbation of bronchial asthma and chronic obstructive pulmonary disease. However, the anti-rhinoviral effects of CO remain unclear. This study investigated whether the exogenous application of low-dose CO could inhibit RV replication in human alveolar and airway epithelial cells. A549 human lung carcinoma cells with alveolar epithelial features and primary cultures of human tracheal epithelial (HTE) cells were pretreated with CO (100 ppm) and infected with a major group RV, type 14 RV (RV14). CO exposure reduced RV14 titers in the supernatants and RV RNA levels in A549 and HTE cells. The treatment with a guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, reversed the inhibitory effects of CO exposure on RV14 replication in A549 cells. Pretreatment of A549 cells with 8-Br-cGMP, a cell-permeable cGMP analog, caused the decrease in RV14 replication, while CO exposure increased cGMP production. CO exposure also increased the expression levels of interferon (IFN)-γ mRNA and protein. In contrast, pretreatment with CO did not increase DNA fragmentation and did not reduce the expression of intercellular adhesion molecule-1, the RV14 receptor, or the number of acidic endosomes, through which RV RNA enters the cytoplasm. These findings suggest that low-dose CO may decrease RV14 replication in alveolar and airway epithelial cells. IFN-γ production, which is induced by CO exposure via guanylate cyclase activation-mediated cGMP production, may be involved in RV14 replication inhibition.


Assuntos
Monóxido de Carbono/farmacologia , Células Epiteliais/virologia , Alvéolos Pulmonares/virologia , Rhinovirus/fisiologia , Replicação Viral/efeitos dos fármacos , Células A549 , Ácidos , GMP Cíclico/antagonistas & inibidores , GMP Cíclico/biossíntese , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células Epiteliais/efeitos dos fármacos , Guanilato Ciclase/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interferon gama/biossíntese , Alvéolos Pulmonares/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos
4.
In Vitro Cell Dev Biol Anim ; 55(1): 45-51, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30397855

RESUMO

Osteocytes regulate bone remodeling, especially in response to mechanical loading and unloading of bone, with nitric oxide reported to play an important role in that process. In the present study, we found that 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a second messenger of nitric oxide in various types of cells, was produced by osteocytes in bone tissue as well as cultured osteocytic Ocy454 cells. The amount of 8-nitro-cGMP in Ocy454 cells increased during incubation with parathyroid hormone or prostaglandin E2, both of which are known to upregulate receptor activator of nuclear factor-κB ligand (RANKL) mRNA expression in osteocytes. On the other hand, exogenous 8-nitro-cGMP did not have effects on either the presence or absence of these bioactive substances. Furthermore, neither an inhibitor of nitric oxide synthase nor 8-bromo-cGMP, a cell-permeable analog of cGMP, showed remarkable effects on mRNA expression of sclerostin or RANKL. These results indicate that neither nitric oxide nor its downstream compounds, including 8-nitro-cGMP, alone are sufficient for induction of functional changes in osteocytes.


Assuntos
GMP Cíclico/análogos & derivados , Dinoprostona/farmacologia , Osteócitos/metabolismo , Hormônio Paratireóideo/farmacologia , Regulação para Cima , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , GMP Cíclico/biossíntese , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fêmur/citologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos Endogâmicos C57BL , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Anticancer Res ; 38(11): 6099-6106, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30396924

RESUMO

BACKGROUND/AIM: Budding uninhibited by benzimidazole-related 1 (BUBR1) and endothelial nitric oxide synthase (eNOS) are related to aging and angiogenesis. This study examined the effect of low BUBR1 expression on eNOS expression in vivo, in vitro, and human gastric cancer tissues. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were passaged to investigate the effect of aging on BUBR1 and eNOS expression; expression of eNOS and phospho-eNOS protein was assessed in BUBR1 siRNA-transfected HUVECs. Additionally, guanosine 3',5' cyclic monophosphate (cGMP) and eNOS protein levels were measured in BUBR1-insufficient mice (Bubr1L/-). BUBR1 and eNOS expression levels were also evaluated in human gastric cancer tissues. RESULTS: BUBR1 and eNOS, but not p-eNOS, levels were reduced significantly in aged and BUBR1 siRNA-transfected HUVECs. Additionally, cGMP production and the eNOS protein level were reduced in Bubr1L/- mice. Human gastric cancer tissues with low BUBR1 expression showed no eNOS expression. CONCLUSION: A decrease in BUBR1 reduced eNOS bioavailability through a pathway other than eNOS phosphorylation.


Assuntos
Óxido Nítrico Sintase Tipo III/biossíntese , Proteínas Serina-Treonina Quinases/deficiência , Neoplasias Gástricas/enzimologia , Fatores Etários , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , GMP Cíclico/biossíntese , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Fator A de Crescimento do Endotélio Vascular/farmacologia
6.
Nucleic Acids Res ; 46(6): 2765-2776, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514227

RESUMO

Cyclic dinucleotides are second messenger molecules produced by both prokaryotes and eukaryotes in response to external stimuli. In bacteria, these molecules bind to RNA riboswitches and several protein receptors ultimately leading to phenotypic changes such as biofilm formation, ion transport and secretion of virulence factors. Some cyclic dinucleotide analogs bind differentially to biological receptors and can therefore be used to better understand cyclic dinucleotide mechanisms in vitro and in vivo. However, production of some of these analogs involves lengthy, multistep syntheses. Here, we describe a new, simple method for enzymatic synthesis of several 3', 5' linked cyclic dinucleotide analogs of c-di-GMP, c-di-AMP and c-AMP-GMP using the cyclic-AMP-GMP synthetase, DncV. The enzymatic reaction efficiently produced most cyclic dinucleotide analogs, such as 2'-amino sugar substitutions and phosphorothioate backbone modifications, for all three types of cyclic dinucleotides without the use of protecting groups or organic solvents. We used these novel analogs to explore differences in phosphate backbone and 2'-hydroxyl recognition between GEMM-I and GEMM-Ib riboswitches.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/biossíntese , Ligases/metabolismo , Nucleotídeos Cíclicos/biossíntese , Algoritmos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , GMP Cíclico/biossíntese , GMP Cíclico/química , Fosfatos de Dinucleosídeos/química , Cinética , Ligases/química , Ligases/genética , Magnésio/química , Magnésio/metabolismo , Estrutura Molecular , Nucleotídeos Cíclicos/química , Ligação Proteica , Vibrio cholerae/enzimologia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 390(12): 1177-1188, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018913

RESUMO

Although the Nobel Prize for the discovery of nitric oxide (NO) dates back almost 20 years now, the knowledge about cGMP signaling is still constantly increasing. It looks even so that our understanding of the role of the soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) in health and disease is in many aspects at the beginning and far from being understood. This holds even true for the therapeutic impact of innovative drugs acting on both the NO/sGC and the pGC pathways. Since cGMP, as second messenger, is involved in the pathogenesis of numerous diseases within the cardiovascular, pulmonary, renal, and endocrine systems and also plays a role in neuronal, sensory, and tumor processes, drug applications might be quite broad. On the 8th International Conference on cGMP, held in Bamberg, Germany, world leading experts came together to discuss these topics. All aspects of cGMP research from the basic understanding of cGMP signaling to clinical applicability were discussed in depth. In addition, present and future therapeutic applications of cGMP-modulating pharmacotherapy were presented ( http://www.cyclicgmp.net/index.html ).


Assuntos
GMP Cíclico/fisiologia , Animais , GMP Cíclico/biossíntese , Guanilato Ciclase/metabolismo , Cardiopatias/enzimologia , Cardiopatias/metabolismo , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Óxido Nítrico/fisiologia
8.
Free Radic Biol Med ; 112: 553-566, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28870522

RESUMO

Recent studies have suggested a link between vascular dysfunction and innate immune activation including toll-like receptors (TLRs), but the detailed mechanism remains unclear. Here we investigated whether poly (I:C) [a synthetic double-strand RNA recognized by TLR3, melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene I (RIG-I)] affected nitric oxide (NO)/cGMP-related vascular relaxation, one of the major cascades of relaxation, in rat superior mesenteric arteries. Using organ-cultured arteries, we found that poly (I:C) (30µg/mL for approximately 1 day) markedly reduced sodium nitroprusside (SNP)-induced relaxation (vs. vehicle); this was prevented by co-treatment with a TLR3 inhibitor. Relaxation induced by 8-Br cGMP (a phosphodiesterase (PDE)-resistant cGMP analogue) and the expression of proteins related to NO/cGMP signaling did not differ between vehicle- and poly (I:C)-treated groups. When PDEs were inhibited by IBMX (a nonselective PDE inhibitor), the SNP-induced relaxation was still greatly reduced in poly (I:C)-treated arteries (vs. vehicle). Poly (I:C) reduced SNP-stimulated cGMP production, but increased NO production and iNOS expression (vs. vehicle). The impairment of SNP-induced relaxation by poly (I:C) was prevented by co-treatment with either iNOS or a nuclear factor-kappa B (NF-κB) inhibitor. This effect induced by poly (I:C) appeared to be independent of oxidative stress. The SNP-induced relaxation was reduced in freshly isolated arteries by pre-incubation with SNP in a concentration-dependent manner. Poly (I:C) did not alter protein levels of TLR3, TRIF/TICAM-1, or phospho-IRF3/IRF3, whereas RIG-I and MDA5 were significantly upregulated (vs. vehicle). These results suggest that poly (I:C) impairs NO donor-induced relaxation in rat superior mesenteric arteries via overexposure to NO produced by the NF-κB/iNOS pathway.


Assuntos
Artéria Mesentérica Superior/efeitos dos fármacos , NF-kappa B/genética , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico/metabolismo , Poli I-C/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , GMP Cíclico/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Masculino , Artéria Mesentérica Superior/citologia , Artéria Mesentérica Superior/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Nitroprussiato/farmacologia , RNA Helicases/genética , RNA Helicases/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Técnicas de Cultura de Tecidos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Vasodilatação/efeitos dos fármacos
9.
Methods Mol Biol ; 1621: 131-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567650

RESUMO

Cyclic nucleotides such as 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.


Assuntos
Cromatografia Líquida/normas , GMP Cíclico/isolamento & purificação , Guanilato Ciclase/metabolismo , Proteínas de Plantas/metabolismo , Plantas/química , Espectrometria de Massas em Tandem/normas , Calibragem , Domínio Catalítico , GMP Cíclico/biossíntese , Ensaios Enzimáticos , Expressão Gênica , Guanilato Ciclase/genética , Cinética , Proteínas de Plantas/genética , Plantas/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Nat Rev Microbiol ; 15(5): 271-284, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28163311

RESUMO

Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP).


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/biossíntese , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais/fisiologia
11.
Antioxid Redox Signal ; 26(4): 165-181, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412893

RESUMO

AIM: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. RESULTS: GSNOR null (GSNOR-/-) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR-/- lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR-/- TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR-/- TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR-/- muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. INNOVATION: GSNOR may act as a "brake" on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. CONCLUSIONS: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165-181.


Assuntos
Álcool Desidrogenase/deficiência , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Fadiga Muscular/genética , Força Muscular/genética , Músculo Esquelético/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , GMP Cíclico/biossíntese , Genótipo , Hipertrofia , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Neovascularização Fisiológica
12.
Pharmacol Ther ; 163: 74-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27108947

RESUMO

Inhibitors of PDE3, a family of dual-specificity cyclic nucleotide phosphodiesterases, are used clinically to increase cardiac contractility by raising intracellular cAMP content in cardiac myocytes and to reduce vascular resistance by increasing intracellular cGMP content in vascular smooth muscle myocytes. When used in the treatment of patients with heart failure, PDE3 inhibitors are effective in the acute setting but increase sudden cardiac death with long-term administration, possibly reflecting pro-apoptotic and pro-hypertrophic consequences of increased cAMP-mediated signaling in cardiac myocytes. cAMP-mediated signaling in cardiac myocytes is highly compartmentalized, and different phosphodiesterases, by controlling cAMP content in functionally discrete intracellular microcompartments, regulate different cAMP-mediated pathways. Four variants/isoforms of PDE3 (PDE3A1, PDE3A2, PDE3A3, and PDE3B) are expressed in cardiac myocytes, and new experimental results have demonstrated that these isoforms, which are differentially localized intracellularly through unique protein-protein interactions, control different physiologic responses. While the catalytic regions of these isoforms may be too similar to allow the catalytic activity of each isoform to be selectively inhibited, targeting their unique protein-protein interactions may allow desired responses to be elicited without the adverse consequences that limit the usefulness of existing PDE3 inhibitors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Inibidores da Fosfodiesterase 3/farmacologia , Animais , AMP Cíclico/biossíntese , GMP Cíclico/biossíntese , Insuficiência Cardíaca/mortalidade , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosforilação/fisiologia , Isoformas de Proteínas , Transdução de Sinais/fisiologia
13.
Microbiology (Reading) ; 162(6): 1000-1008, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27023099

RESUMO

Polyphosphate (polyP) degradation in Escherichia coli stationary phase triggers biofilm formation via the LuxS quorum sensing system. In media containing excess of phosphate (Pi), high polyP levels are maintained in the stationary phase with the consequent inhibition of biofilm formation. The transcriptional-response regulator PhoB, which is activated under Pi limitation, is involved in the inhibition of biofilm formation in several bacterial species. In the current study, we report, for the first time, we believe that E. coli PhoB can be activated in non-limiting Pi conditions, leading to inhibition of biofilm formation. In fact, PhoB was activated when high polyP levels were maintained in the stationary phase, whereas it remained inactive when the polymer was degraded or absent. PhoB activation was mediated by acetyl phosphate with the consequent repression of biofilm formation owing to the downregulation of c-di-GMP synthesis and the inhibition of autoinducer-2 production. These results allowed us to propose a model showing that PhoB is a component in the signal cascade regulating biofilm formation triggered by fluctuations of polyP levels in E. coli cells during stationary phase.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/metabolismo , Organofosfatos/metabolismo , Polifosfatos/metabolismo , Liases de Carbono-Enxofre/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Ativação Enzimática , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Homosserina/análogos & derivados , Homosserina/biossíntese , Lactonas , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Transdução de Sinais
14.
Nat Commun ; 7: 10508, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852925

RESUMO

The division of labour is a central feature of the most sophisticated biological systems, including genomes, multicellular organisms and societies, which took millions of years to evolve. Here we show that a well-organized and robust division of labour can evolve in a matter of days. Mutants emerge within bacterial colonies and work with the parent strain to gain new territory. The two strains self-organize in space: one provides a wetting polymer at the colony edge, whereas the other sits behind and pushes them both along. The emergence of the interaction is repeatable, bidirectional and only requires a single mutation to alter production of the intracellular messenger, cyclic-di-GMP. Our work demonstrates the power of the division of labour to rapidly solve biological problems without the need for long-term evolution or derived sociality. We predict that the division of labour will evolve frequently in microbial populations, where rapid genetic diversification is common.


Assuntos
Evolução Biológica , Interações Microbianas/fisiologia , Pseudomonas fluorescens/fisiologia , Bactérias , Proteínas de Bactérias/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Mutação da Fase de Leitura , Pseudomonas fluorescens/genética
15.
J Immunol ; 196(4): 1741-52, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792800

RESUMO

There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-ß and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.


Assuntos
Imunidade Adaptativa/imunologia , Adjuvantes Imunológicos/farmacologia , Antígenos/imunologia , GMP Cíclico/análogos & derivados , Imunoterapia/métodos , Adenoviridae/imunologia , Animais , Western Blotting , GMP Cíclico/biossíntese , GMP Cíclico/imunologia , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética
16.
Annu Rev Med ; 67: 229-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26473417

RESUMO

The intracellular nucleotide cyclic guanosine monophosphate (cGMP) is found in many human organ tissues. Its concentration increases in response to the activation of receptor enzymes called guanylyl cyclases (GCs). Different ligands bind GCs, generating the second messenger cGMP, which in turn leads to a variety of biological actions. A deficit or dysfunction of this pathway at the cardiac, vascular, and renal levels manifests in cardiovascular diseases such as heart failure, arterial hypertension, and pulmonary arterial hypertension. An impairment of the cGMP pathway also may be involved in the pathogenesis of obesity as well as dementia. Therefore, agents enhancing the generation of cGMP for the treatment of these conditions have been intensively studied. Some have already been approved, and others are currently under investigation. This review discusses the potential of novel drugs directly or indirectly targeting cGMP as well as the progress of research to date.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , GMP Cíclico/biossíntese , Guanilato Ciclase/efeitos dos fármacos , Doenças Metabólicas/metabolismo , Peptídeos Natriuréticos/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Benzoatos/uso terapêutico , Doenças Cardiovasculares/metabolismo , GMP Cíclico/deficiência , Ativadores de Enzimas/uso terapêutico , Guanilato Ciclase/metabolismo , Humanos , Ligantes , Doenças Metabólicas/tratamento farmacológico , Peptídeos Natriuréticos/uso terapêutico , Neprilisina/antagonistas & inibidores , Inibidores de Fosfodiesterase/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 465(4): 784-9, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26307537

RESUMO

Signals induced by mechanical loading and C-type natriuretic peptide (CNP) represent chondroprotective routes that may potentially prevent osteoarthritis (OA). We examined whether CNP will reduce hyaluronan production and export via members of the multidrug resistance protein (MRP) and diminish pro-inflammatory effects in human chondrocytes. The presence of interleukin-1ß (IL-1ß) increased HA production and export via MRP5 that was reduced with CNP and/or loading. Treatment with IL-1ß conditioned medium increased production of catabolic mediators and the response was reduced with the hyaluronan inhibitor, Pep-1. The induction of pro-inflammatory cytokines by the conditioned medium was reduced by CNP and/or Pep-1, αCD44 or αTLR4 in a cytokine-dependent manner, suggesting that the CNP pathway is protective and should be exploited further.


Assuntos
Condrócitos/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , GMP Cíclico/biossíntese , Citocinas/biossíntese , Regulação da Expressão Gênica , Homeostase , Humanos , Ácido Hialurônico/antagonistas & inibidores , Ácido Hialurônico/biossíntese , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Peptídeos/metabolismo , Transdução de Sinais
18.
Mol Med Rep ; 12(1): 705-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25738255

RESUMO

The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) leads to intimal thickening of the aorta and is, therefore, important in the development of arteriosclerosis. As a result, the use of antiproliferative and antimigratory agents for VSMCs offers promise for the treatment of vascular disorders. Although several studies have demonstrated that ligustrazine may be used to treat heart and blood vessel diseases, the detailed mechanism underlying its actions remain to be elucidated. In the present study, the inhibitory effect of ligustrazine on platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation and migration, and the underlying mechanisms were investigated. The findings demonstrated that ligustrazine significantly inhibited PDGF-BB-stimulated VSMC proliferation. VSMCs dedifferentiated into a proliferative phenotype under PDGF-BB stimulation, which was effectively reversed by the administration of ligustrazine. In addition, ligustrazine also downregulated the production of nitric oxide and cyclic guanine monophosphate, induced by PDGF-BB. Additionally, ligustrazine significantly inhibited PDGF-BB-stimulated VSMC migration. Mechanistic investigation indicated that the upregulation of cell cycle-associated proteins and the activation of the extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB was suppressed by the administration of ligustrazine. In conclusion, the present study, demonstrated for the first time, to the best of our knowledge, that ligustrazine downregulated PDGF-BB-induced VSMC proliferation and migration partly, at least, through inhibiting the activation of the ERK and P38 MAPK signaling.


Assuntos
Arteriosclerose/genética , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/administração & dosagem , Pirazinas/administração & dosagem , Arteriosclerose/metabolismo , Becaplermina , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , GMP Cíclico/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-sis/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
Angew Chem Int Ed Engl ; 54(20): 5933-8, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25788334

RESUMO

Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene- and cell-based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue-light-inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue-light-dependent penile erection associated with occasional ejaculation after illumination of EROS-transfected corpus cavernosum in male rats. Photostimulated short-circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction.


Assuntos
Luz , Optogenética/métodos , Ereção Peniana/efeitos dos fármacos , Animais , GMP Cíclico/biossíntese , GMP Cíclico/metabolismo , Disfunção Erétil/tratamento farmacológico , Guanilato Ciclase/metabolismo , Masculino , Ratos
20.
Biochem Pharmacol ; 92(4): 661-8, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25451691

RESUMO

Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H2S) modulate vascular tone. In view of their therapeutic potential for ocular diseases, we examined the effect of exogenous CO and H2S on tone of isolated rabbit ophthalmic artery and their interaction with endogenous and exogenous NO. Ophthalmic artery segments mounted on a wire myograph were challenged with cumulative concentrations of phenylephrine (PE) in the presence or absence of NG-nitro-L-arginine (LNNA) to inhibit production of NO, the CO-releasing molecules CORMs or the H2S-donor GYY4137. The maximal vasoconstriction elicited by PE reached 20-30% of that induced by KCl but was dramatically increased by incubation with LNNA. GYY4137 significantly raised PE-mediated vasoconstriction, but it did not change the response to PE in the presence of LNNA or the relaxation to sodium nitroprusside (SNP). CORMs concentration-dependently inhibited PE-induced constriction, an effect that was synergistic with endogenous NO (reduced by LNNA), but insensitive to blockade of guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-α]quinoxalin-1-one (ODQ). In vascular tissues cyclic GMP (cGMP) levels seemed reduced by GYY4137 (not significantly), but were not changed by CORM. These data indicate that CO is able per se to relax isolated ophthalmic artery and to synergize with NO, while H2S counteracts the effect of endogenous NO. CO does not stimulate cGMP production in our system, while H2S may reduce cGMP production stimulated by endogenous NO. These findings provide new insights into the complexities of gas interactions in the control of ophthalmic vascular tone, highlighting potential pharmacological targets for ocular diseases.


Assuntos
Monóxido de Carbono/farmacologia , Sulfeto de Hidrogênio/farmacologia , Tono Muscular , Óxido Nítrico/farmacologia , Artéria Oftálmica/efeitos dos fármacos , Animais , GMP Cíclico/biossíntese , Artéria Oftálmica/metabolismo , Artéria Oftálmica/fisiologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA