Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757341

RESUMO

Ferroptosis, a recently discovered type of programmed cell death triggered by excessive accumulation of iron­dependent lipid peroxidation, is linked to several malignancies, including non­small cell lung cancer. Long non­coding RNAs (lncRNAs) are involved in ferroptosis; however, data on their role and mechanism in cancer therapy remains limited. Therefore, the aim of the present study was to identify ferroptosis­associated mRNAs and lncRNAs in A549 lung cancer cells treated with RAS­selective lethal 3 (RSL3) and ferrostatin­1 (Fer­1) using RNA sequencing. The results demonstrated that lncRNA lung cancer­associated transcript 1 (LUCAT1) was significantly upregulated in lung adenocarcinoma and lung squamous cell carcinoma tissues. Co­expression analysis of differentially expressed mRNAs and lncRNAs suggested that LUCAT1 has a crucial role in ferroptosis. LUCAT1 expression was markedly elevated in A549 cells treated with RSL3, which was prevented by co­incubation with Fer­1. Functionally, overexpression of LUCAT1 facilitated cell proliferation and reduced the occurrence of ferroptosis induced by RSL3 and Erastin, while inhibition of LUCAT1 expression reduced cell proliferation and increased ferroptosis. Mechanistically, downregulation of LUCAT1 resulted in the downregulation of both GTP cyclohydrolase 1 (GCH1) and ferroptosis suppressor protein 1 (FSP1). Furthermore, inhibition of LUCAT1 expression upregulated microRNA (miR)­34a­5p and then downregulated GCH1. These results indicated that inhibition of LUCAT1 expression promoted ferroptosis by modulating the downregulation of GCH1, mediated by miR­34a­5p. Therefore, the combination of knocking down LUCAT1 expression with ferroptosis inducers may be a promising strategy for lung cancer treatment.


Assuntos
Regulação para Baixo , Ferroptose , GTP Cicloidrolase , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Ferroptose/genética , MicroRNAs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células A549 , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Proliferação de Células , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Masculino , Linhagem Celular Tumoral , Feminino , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo
2.
Exp Mol Med ; 56(5): 1107-1122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689083

RESUMO

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.


Assuntos
Biopterinas , GTP Cicloidrolase , Lesão Pulmonar , Espécies Reativas de Oxigênio , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/etiologia , GTP Cicloidrolase/metabolismo , GTP Cicloidrolase/genética , Humanos , Tolerância a Radiação/genética , Lactato Desidrogenase 5/metabolismo , Camundongos Knockout , Óxido Nítrico/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Processamento de Proteína Pós-Traducional , Radiação Ionizante
3.
Arq. neuropsiquiatr ; 65(4b): 1224-1227, dez. 2007. ilus, tab
Artigo em Inglês | LILACS | ID: lil-477776

RESUMO

Dopa-responsive dystonia (DRD) is an inherited metabolic disorder now classified as DYT5 with two different biochemical defects: autosomal dominant GTP cyclohydrolase 1 (GCH1) deficiency or autosomal recessive tyrosine hydroxylase deficiency. We report the case of a 10-years-old girl with progressive generalized dystonia and gait disorder who presented dramatic response to levodopa. The phenylalanine to tyrosine ratio was significantly higher after phenylalanine loading test. This condition had two different heterozygous mutations in the GCH1 gene: the previously reported P23L mutation and a new Q182E mutation. The characteristics of the DRD and the molecular genetic findings are discussed.


Distonia dopa-responsiva (DRD), classificada como DYT5, é um erro inato do metabolismo que pode ser causado por dois diferentes tipos de defeito bioquímico: deficiência de GTP ciclo-hidrolase 1 (GCH1) (autossômica dominante) ou de tirosina hidroxilase (autossômica recessiva). Descrevemos o caso de menina de 10 anos com distonia generalizada progressiva e alteração da marcha com importante melhora após uso de levodopa. A relação fenilalanina/tirosina estava aumentada após teste de sobrecarga com fenilalanina. O estudo molecular mostrou que o paciente apresenta uma combinação hererozigótica de mutação no gene GCH1: a já conhecida mutação P23L e uma nova mutação Q182E. Discutem-se as características da DRD e as alterações genéticas possíveis.


Assuntos
Criança , Feminino , Humanos , Dopaminérgicos/uso terapêutico , Distonia/tratamento farmacológico , Distonia/genética , GTP Cicloidrolase/genética , Levodopa/uso terapêutico , Mutação de Sentido Incorreto/genética , Distonia/sangue , Heterozigoto , Fenilalanina/sangue , Tirosina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA