Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 939
Filtrar
1.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697043

RESUMO

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros , Semicondutores , Imageamento por Ressonância Magnética/métodos , Animais , Elementos da Série dos Lantanídeos/química , Polímeros/química , Nanopartículas/química , Camundongos , Humanos , Gadolínio/química , Luminescência , Oxigênio Singlete/química , Ítrio/química , Fluoretos/química , Camundongos Nus
2.
Nat Commun ; 15(1): 3902, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724527

RESUMO

Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.


Assuntos
Nanofios , Polímeros , Nanofios/química , Animais , Camundongos , Polímeros/química , Linhagem Celular Tumoral , Gadolínio/química , Gadolínio/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Feminino , Humanos , Vacinação/métodos , Neoplasias/imunologia
3.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675647

RESUMO

This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.


Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Nanomedicina Teranóstica , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Humanos , Ouro/química , Dextranos/química , Gadolínio/química , Propriedades de Superfície , Hipertermia Induzida/métodos , Tamanho da Partícula
4.
Nanoscale ; 16(18): 9136, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38661520

RESUMO

Expression of concern for 'Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery' by Xiaoyong Wang et al., Nanoscale, 2013, 5, 8098-8104, https://doi.org/10.1039/C3NR02797J.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética , RNA Interferente Pequeno , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Gadolínio/química , Humanos , Compostos Férricos/química , Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Animais
5.
Inorg Chem ; 63(18): 8462-8475, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38642052

RESUMO

In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τMa and τMb. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.


Assuntos
Compostos Azabicíclicos , Quelantes , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Meios de Contraste/química , Animais , Camundongos , Quelantes/química , Quelantes/síntese química , Gadolínio/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Estereoisomerismo , Humanos , Feminino
6.
Chembiochem ; 25(10): e202400087, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38439618

RESUMO

The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in vivo. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small fraction of cells express the reporter. To overcome this limitation, we developed an approach for amplifying the sensitivity of molecular MRI by combining a chemogenetic contrast mechanism with a biophysical approach to increase water diffusion through the co-expression of a dual-gene construct comprising an organic anion transporting polypeptide, Oatp1b3, and a water channel, Aqp1. We first show that the expression of Aqp1 amplifies MRI contrast in cultured cells engineered to express Oatp1b3. We demonstrate that the contrast amplification is caused by Aqp1-driven increase in water exchange, which provides the gadolinium ions internalized by Oatp1b3-expressing cells with access to a larger water pool compared with exchange-limited conditions. We further show that our methodology allows cells to be detected using approximately 10-fold lower concentrations of gadolinium than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell cultures containing a low fraction of Oatp1b3-labeled cells that are undetectable on the basis of Oatp1b3 expression alone.


Assuntos
Aquaporina 1 , Genes Reporter , Imageamento por Ressonância Magnética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Água , Água/química , Humanos , Imageamento por Ressonância Magnética/métodos , Aquaporina 1/metabolismo , Aquaporina 1/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Gadolínio/química , Meios de Contraste/química , Meios de Contraste/metabolismo , Células HEK293 , Animais
7.
Adv Healthc Mater ; 13(11): e2303667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178648

RESUMO

Currently, cisplatin resistance has been recognized as a multistep cascade process for its clinical chemotherapy failure. Hitherto, it remains challenging to develop a feasible and promising strategy to overcome the cascade drug resistance (CDR) issue for achieving fundamentally improved chemotherapeutic efficacy. Herein, a novel self-assembled nanoagent is proposed, which is constructed by Pt(IV) prodrug, cyanine dye (cypate), and gadolinium ion (Gd3+), for systematically conquering the cisplatin resistance by employing near-infrared (NIR) light activated mild-temperature hyperthermia in tumor targets. The proposed nanoagents exhibit high photostability, GSH/H+-responsive dissociation, preferable photothermal conversion, and enhanced cellular uptake performance. In particular, upon 785-nm NIR light irradiation, the generated mild temperature of ≈ 43 °C overtly improves the cell membrane permeability and drug uptake, accelerates the disruption of intracellular redox balance, and apparently enhances the formation of Pt-DNA adducts, thereby effectively overcoming the CDR issue and achieves highly improved therapeutic efficacy for cisplatin-resistant tumor ablation.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Hipertermia Induzida , Indóis , Propionatos , Cisplatino/farmacologia , Cisplatino/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Animais , Hipertermia Induzida/métodos , Camundongos , Linhagem Celular Tumoral , Raios Infravermelhos , Gadolínio/química , Gadolínio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos Nus , Carbocianinas/química , Carbocianinas/farmacologia
8.
ACS Appl Mater Interfaces ; 16(6): 6743-6755, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295315

RESUMO

In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 µg mL-1, which also corresponds to a iron dose of 52 µg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.


Assuntos
Hipertermia Induzida , Nanoestruturas , Meios de Contraste/química , Gadolínio/química , Nanoestruturas/química , Imageamento por Ressonância Magnética/métodos , Peptídeo Hidrolases
9.
J Pept Sci ; 30(3): e3544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37726947

RESUMO

Magnetic resonance imaging (MRI) is a common medical imaging technique that provides three-dimensional body images. MRI contrast agents improve image contrast by raising the rate of water proton relaxation in specific tissues. Peptides and peptidomimetics act as scaffolds for MRI imaging agents because of their increased size and offer the possibility to engine a higher hydration value within the design. The design of a new Gd-based contrast agent must take into account high stability constants to avoid free Gd(III), with the subsequent nephrotoxicity, and high relaxivity values. This review analyzes various synthetic approaches, reports studies of relaxometric parameters, and focuses on the description and application of Gd(III)-chelates based on peptide and peptidomimetic scaffolds. In addition, the X-ray molecular structures of three DOTA complexes will be reported to emphasize the necessity of using the X-ray diffraction analysis to identify the coordination sphere of the metals and the mechanism of action of the compounds.


Assuntos
Meios de Contraste , Peptidomiméticos , Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Peptídeos
10.
Adv Sci (Weinh) ; 11(7): e2304171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030413

RESUMO

Nano-sized contrast agents (NCAs) hold potential for highly specific tumor contrast enhancement during magnetic resonance imaging. Given the quantity of contrast agents loaded into a single nano-carrier and the anticipated relaxation effects, the current molecular design approaches its limits. In this study, a novel molecular mechanism to augment the relaxation of NCAs is introduced and demonstrated. NCA formation is driven by the intramolecular self-folding of a single polymer chain that possesses systematically arranged hydrophilic and hydrophobic segments in water. Utilizing this self-folding molecular design, the relaxivity value can be elevated with minimal loading of gadolinium complexes, enabling sharp tumor imaging. Furthermore, the study reveals that this NCA can selectively accumulate into tumor tissues, offering effective anti-tumor results through gadolinium neutron capture therapy. The efficacy and versatility of this self-folding molecular design underscore its promise for cancer diagnosis and treatment.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Meios de Contraste/química , Gadolínio/química , Substâncias Macromoleculares , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
11.
Radiol Phys Technol ; 17(1): 153-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37991701

RESUMO

The utilization of contrast agents in magnetic resonance imaging (MRI) has become increasingly important in clinical diagnosis. However, the low diagnostic specificity of this technique is a limiting factor for the early detection of tumors. To develop a new contrast agent with a specific target for early stage tumors, we present the synthesis and characterization of a nanocontrast composed of gold nanoparticles (AuNPs), gadopentetic acid (Gd-DTPA), and epidermal growth factor (EGF). Carbodiimide-based chemistry was utilized to modify Gd-DTPA for functionalization with AuNPs. This resulted in the formation of the Au@Gd-EGF nanocontrast. The relaxation rate (1/T1) of the nanocontrast was analyzed using MRI, and cytotoxicity was determined based on cell viability and mitochondrial activity in a human breast adenocarcinoma cell line. Fourier-transform infrared spectroscopy analysis confirmed the effectiveness of carbodiimide in the formation of the Gd-DTPA-cysteamine complex in the presence of bands at 930, 1042, 1232, 1588, and 1716 cm-1. The complexes exhibited good interactions with the AuNPs. However, the signal intensity of the Au@Gd-EGF nanocontrast was lower than that of the commercial contrast agent because the r1/r2 relaxivities of the Gd-DTPA-based contrast agents were lower than those of the gadoversetamide-based molecules. The Au@Gd-EGF nanocontrast agent exhibited good biocompatibility, low cytotoxicity, and high signal intensity in MRI with active targeted delivery, suggesting significant potential for future applications in the early diagnosis of tumors.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Meios de Contraste , Gadolínio DTPA/química , Ouro/química , Fator de Crescimento Epidérmico , Gadolínio/química , Nanopartículas Metálicas/química , Imageamento por Ressonância Magnética/métodos , Carbodi-Imidas
12.
Chem Commun (Camb) ; 59(83): 12511-12514, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37789720

RESUMO

The synthesis, characterisation, and tumour cell uptake of six novel Gd(III)-diphenylphosphoryl-diphenylphosphonium complexes are reported. The propyl-linked Gd(III) complexes can accumulate inside human glioma cells at prodigious levels, approaching 1200%, over the parent triphenylphosphonium salts. DFT and quantum chemical topology analyses support a new type of conformationally-dependent tumour cell targeting vector.


Assuntos
Gadolínio , Neoplasias , Humanos , Gadolínio/farmacologia , Gadolínio/química , Neoplasias/patologia
13.
Acta Biomater ; 172: 454-465, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863345

RESUMO

Ultra-high-field (UHF) MRI has shown great advantages over low-field magnetic resonance imaging (MRI). Despite being the most commonly used MRI contrast agents, gadolinium chelates perform poorly in high magnetic fields, which significantly weakens their T1 intensity. In comparison, the rare element Holmium (Ho)-based nanoparticles (NPs) have demonstrated great potential as T2-weighted MRI contrast agents in UHF MRI due to their extremely short electron relaxation times (∼ 10-13s). In this study, a multifunctional nanotherapeutic probe was designed for UHF MRI-guided chemotherapy and photothermal therapy. The Ho (III)-doped mesoporous polydopamine (Ho-MPDA, HM) nanosphere was loaded with the chemotherapeutic drug mitoxantrone (MTO) and then coated with 4T1 cell membranes to enhance active targeting delivery to breast cancer. The prepared nanotherapeutic probe MTO@HMM@4T1 (HMM@T) exhibited good biocompatibility, high drug-loading capability and great potential as Ho (III)-based UHF MRI contrast agents. Moreover, the biodegradation of HMM@T in response to the intratumor pH and glutathione (GSH) promotes MTO release. Near-infrared (NIR) light irradiation of HM induced photothermal therapy and further enhanced drug release. Consequently, HMM@T effectively acted as an MRI-guided tumor-targeting chemo-photothermal therapy against 4T1 breast cancer. STATEMENT OF SIGNIFICANCE: Ultra-high-field (UHF) MRI has shown great advantages over low-field magnetic resonance imaging (MRI). Although gadolinium chelates are the most commonly used MRI contrast agents in clinical practice, they exhibit a significantly decreased T1 relaxivity at UHF. Holmium exhibits outstanding UHF magnetic resonance capabilities in comparison with gadolinium chelates currently used in clinic. Herein, a theranostic nanodrug (HMM@T) was designed for UHF MRI-guided chemo-photothermal therapy. The nanodrug possessed remarkable UHF T2 MRI properties (r2 = 152.13 mM-1s-1) and high drug loading capability of 18.4 %. The biodegradation of HMM@T NPs under triple stimulations of pH, GSH, and NIR led to an efficient release of MTO in tumor microenvironment. Our results revealed the potential of a novel UHF MRI-guided multifunctional nanosystem in cancer treatment.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Humanos , Feminino , Hólmio/farmacologia , Terapia Fototérmica , Meios de Contraste/farmacologia , Nanomedicina Teranóstica/métodos , Gadolínio/farmacologia , Gadolínio/química , Fototerapia/métodos , Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Doxorrubicina/farmacologia , Hipertermia Induzida/métodos , Microambiente Tumoral
14.
ACS Biomater Sci Eng ; 9(8): 4607-4618, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452737

RESUMO

Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.


Assuntos
Nanopartículas Metálicas , Itérbio/química , Gadolínio/química , Durapatita/química , Meios de Contraste/química , Nanopartículas Metálicas/química , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
15.
J Mater Chem B ; 11(19): 4346-4353, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158402

RESUMO

The synergy of magnetic resonance imaging (MRI) and time-gated luminescence imaging (TGLI) provides a robust platform with extensive spatial resolution (from submicrometer to hundred-micron) and unlimited penetration depth for visual detection of lesion tissues and target biomolecules. In this work, highly stable lanthanide (Eu3+ and Gd3+) complexes with a terpyridine polyacid ligand, CNSTTA-Ln3+, were chosen as signal reporters for TGLI (Ln3+ = Eu3+) and MRI (Ln3+ = Gd3+), respectively. After conjugating CNSTTA-Ln3+ with a tumor-targetable glycoprotein, transferrin (Tf), the obtained bioconjugate, showed low cytotoxicity and high stability and exhibited strong long-lived luminescence (Tf-CNSTTA-Eu3+, ϕ = 10.8%, τ = 1.27 ms), high magnetic resonance relaxivity (Tf-CNSTTA-Gd3+, r1 = 8.70 mM-1 s-1, r2 = 10.90 mM-1 s-1), and high binding affinity toward Tf receptor-overexpressed cancerous cells. On the basis of these features, a tumor-targetable probe was constructed by simply mixing Tf-CNSTTA-Eu3+ and Tf-CNSTTA-Gd3+, and successfully used for the bimodal TGLI and MRI of tumor cells in tumor-bearing mice. The bimodal imaging simultaneously provided the anatomical and molecular information of the tumor, which enabled the accuracy for tumor diagnosis to be mutually verified, and revealed the potential of Tf-CNSTTA-Gd3+/Eu3+ for the monitoring of cancer cells in vivo.


Assuntos
Európio , Neoplasias , Animais , Camundongos , Európio/química , Gadolínio/química , Luminescência , Transferrina , Imageamento por Ressonância Magnética/métodos
16.
ACS Appl Bio Mater ; 6(6): 2137-2144, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37229527

RESUMO

Iron oxide nanoparticles (IONPs) have been developed as contrast agents for T1- or T2-weighted magnetic resonance imaging (MRI) on account of their excellent physicochemical and biological properties. However, general strategies to improve longitudinal relaxivity (r1) often decrease transverse relaxivity (r2), thus synchronously strengthening the T1 and T2 enhancement effect of IONPs remains a challenge. Here, we report interface regulation and size tailoring of a group of FePt@Fe3O4 core-shell nanoparticles (NPs), which possess high r1 and r2 relaxivities. The increase of r1 and r2 is due to the enhancement of the saturation magnetization (Ms), which is a result of the strengthened exchange coupling across the core-shell interface. In vivo subcutaneous tumor study and brain glioma imaging revealed that FePt@Fe3O4 NPs can serve as a favorable T1-T2 dual-modal contrast agent. We envision that the core-shell NPs, through interface engineering, have great potential in preclinical and clinical MRI applications.


Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Gadolínio/química
17.
Dalton Trans ; 52(19): 6260-6266, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129192

RESUMO

Two zinc finger peptides, namely ZFQDLn and ZFQELn (Ln = Tb or Gd), with an appended Ln3+ chelate and a phosphoserine able to coordinate the Ln3+ ion are presented. The two peptides differ by the amino acid anchorage of the chelate, either aspartate (D) or glutamate (E). Both peptides are able to bind Zn2+ and adopt the ßßα fold. Interestingly, ZFQETb shows a decrease in sensitized Tb3+ luminescence upon Zn2+ binding whereas ZFQDTb does not. The luminescence change upon Zn2+ binding is attributed to a change in hydration number (q) of the Tb3+ ion due to the decoordination of the phosphoserine from the Ln3+ ion upon Zn2+ binding and peptide folding. This process is highly sensitive to the length of the linker between the Ln chelate and the peptidic backbone. The magnetic properties of the gadolinium analogue ZFQEGd were studied. An impressive relaxivity increase of 140% is observed at 60 MHz and 25 °C upon Zn2+ binding. These changes can be attributed to a combined increase effect of the hydration number of Gd3+ and of the rigidity of the system upon Zn2+ binding. Phantom MR images at 9.4 T show a clear signal enhancement in the presence of Zn2+. These zinc finger peptides offer a unique platform to design such Zn-responsive probes.


Assuntos
Gadolínio , Elementos da Série dos Lantanídeos , Gadolínio/química , Zinco/química , Elementos da Série dos Lantanídeos/química , Fosfosserina , Imageamento por Ressonância Magnética/métodos , Peptídeos , Dedos de Zinco
18.
Acta Biomater ; 164: 496-510, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054962

RESUMO

Developing a feasible way to feature longitudinal (T1) and transverse (T2) relaxation performance of contrast agents for magnetic resonance imaging (MRI) is important in cancer diagnosis and therapy. Improved accessibility to water molecule is essential for accelerating the relaxation rate of water protons around the contrast agents. Ferrocenyl compounds have reversible redox property for modulating the hydrophobicity/hydrophilicity of assemblies. Thus, they could be the candidates that can change water accessibility to the contrast agent surface. Herein, we incorporated ferrocenylseleno compound (FcSe) with Gd3+-based paramagnetic UCNPs, to obtain FNPs-Gd nanocomposites using T1-T2 MR/UCL trimodal imaging and simultaneous photo-Fenton therapy. When the surface of NaGdF4:Yb,Tm UNCPs was ligated by FcSe, the hydrogen bonding between hydrophilic selenium and surrounding water molecules accelerated their proton exchange to initially endow FNPs-Gd with high r1 relaxivity. Then, hydrogen nuclei from FcSe disrupted the homogeneity of the magnetic field around the water molecules. This facilitated T2 relaxation and resulted in enhanced r2 relaxivity. Notably, upon the near-infrared light-promoted Fenton-like reaction in the tumor microenvironment, hydrophobic ferrocene(II) of FcSe was oxidized into hydrophilic ferrocenium(III), which further increased the relaxation rate of water protons to obtain r1 = 1.90±0.12 mM-1 s-1 and r2 = 12.80±0.60 mM-1 s-1. With an ideal relaxivity ratio (r2/r1) of 6.74, FNPs-Gd exhibited high contrast potential of T1-T2 dual-mode MRI in vitro and in vivo. This work confirms that ferrocene and selenium are effective boosters that enhance the T1-T2 relaxivities of MRI contrast agents, which could provide a new strategy for multimodal imaging-guided photo-Fenton therapy of tumors. STATEMENT OF SIGNIFICANCE: T1-T2 dual-mode MRI nanoplatform with tumor-microenvironment-responsive features has been an attractive prospect. Herein, we designed redox ferrocenylseleno compound (FcSe) modified paramagnetic Gd3+-based UCNPs, to modulate T1-T2 relaxation time for multimodal imaging and H2O2-responsive photo-Fenton therapy. Selenium-hydrogen bond of FcSe with surrounding water molecules facilitated water accessibility for fast T1 relaxation. Hydrogen nucleus in FcSe perturbed the phase coherence of water molecules in an inhomogeneous magnetic field and thus accelerated T2 relaxation. In tumor microenvironment, FcSe was oxidized into hydrophilic ferrocenium via NIR light-promoted Fenton-like reaction which further increased both T1 and T2 relaxation rates; Meanwhile, the released toxic •OH performed on-demand cancer therapy. This work confirms that FcSe is an effective redox mediate for multimodal imaging-guided cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Meios de Contraste/farmacologia , Meios de Contraste/química , Metalocenos/farmacologia , Prótons , Peróxido de Hidrogênio/farmacologia , Gadolínio/química , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , Água , Imagem Multimodal , Microambiente Tumoral
19.
Small ; 19(25): e2208249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929641

RESUMO

Confirming bacterial infection at an early stage and distinguishing between sterile inflammation and bacterial infection is still highly needed for efficient treatment. Here, in situ highly sensitive magnetic resonance imaging (MRI) bacterial infection in vivo based on a peptide-modified magnetic resonance tuning (MRET) probe (MPD-1) that responds to matrix metallopeptidase 2 (MMP-2) highly expressed in bacteria-infected microenvironments is achieved. MPD-1 is an assembly of magnetic nanoparticle (MNP) bearing with gadolinium ion (Gd3+ ) modified MMP-2-cleavable self-assembled peptide (P1 ) and bacteria-targeting peptide (P), and it shows T2 -weighted signal due to the assemble of MNP and MRET ON phenomenon between MNP assembly and Gd3+ . Once MPD-1 accumulates at the bacterially infected site, P1 included in MPD-1 is cleaved explicitly by MMP-2, which triggers the T2 contrast agent of MPD-1 to disassemble into the monomer of MNP, leading the recovery of T1 -weighted signal. Simultaneously, Gd3+ detaches from MNP, further enhancing the T1 -weighted signal due to MRET OFF. The sensitive MRI of Staphylococcus aureus (low to 104 CFU) at the myositis site and accurate differentiation between sterile inflammation and bacterial infection based on the proposed MPD-1 probe suggests that this novel probe would be a promising candidate for efficiently detecting bacterial infection in vivo.


Assuntos
Infecções Bacterianas , Infectologia , Imageamento por Ressonância Magnética , Infecções Bacterianas/diagnóstico , Imageamento por Ressonância Magnética/instrumentação , Infectologia/instrumentação , Infectologia/métodos , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas Metálicas/química , Gadolínio/química , Peptídeos/química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/normas , Animais , Camundongos , Células RAW 264.7 , Staphylococcus aureus/isolamento & purificação , Sensibilidade e Especificidade , Infecções Estafilocócicas/diagnóstico
20.
Inorg Chem ; 62(1): 408-432, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525400

RESUMO

The remarkably narrow central line in the electron paramagnetic resonance spectrum and the very weak zero-field splitting (ZFS) make [GdIII(NO3Pic)] ([GdIII(TPATCN)]) an attractive starting point for the development of spin labels. For retaining the narrow line of this parent complex when modifying it with a substituent enabling bioconjugation, alkyl with a somehow remote functional group as a substituent at the picolinate moiety was found to be highly suitable because ZFS stayed weak, even if the threefold axial symmetry was broken. The ZFS is so weak that hyperfine coupling and/or g-value variations noticeably determine the linewidth in Q band and higher fields when the biomolecule is protonated, which is the standard situation, and in W band and higher fields for the protonated complex in a fully deuterated surrounding. Clearly, [NDSE-{GdIII(NO3Pic)}], a spin label targeting the cysteines in a peptide, is at a limit of linewidth narrowing through ZFS minimization. The labeling reaction is highly chemoselective and, applied to a polyproline with two cysteine units, it took no more than a minute at 7 °C and pH 7.8. Subsequent disulfide scrambling is very slow and can therefore be prevented. Double electron-electron resonance and relaxation-induced dipolar modulation enhancement applied to the spin-labeled polyproline proved the spin label useful for distance determination in peptides.


Assuntos
Cisteína , Gadolínio , Marcadores de Spin , Gadolínio/química , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA