Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Sci Total Environ ; 912: 169110, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065506

RESUMO

Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.


Assuntos
Cosméticos , Gadus morhua , Poluentes Químicos da Água , Purificação da Água , Animais , Feminino , Encéfalo , Cosméticos/toxicidade , Cosméticos/análise , Ecossistema , Monitoramento Ambiental , Perfilação da Expressão Gênica , Preparações Farmacêuticas , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Masculino
2.
Environ Res ; 234: 116516, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399986

RESUMO

Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.


Assuntos
Gadus morhua , Microbioma Gastrointestinal , Microbiota , Petróleo , Poluentes Químicos da Água , Animais , Gadus morhua/metabolismo , Petróleo/análise , Petróleo/metabolismo , Petróleo/toxicidade , Peixes , Microbiota/genética , Poluentes Químicos da Água/análise
3.
J Agric Food Chem ; 71(26): 10144-10154, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339085

RESUMO

Fermentation techniques may induce alterations in fish allergen immunoreactivity. In this study, the influence of fermentation with three different strains of Lactobacillus helveticus (Lh187926, Lh191404, and Lh187926) on the immunoreactivity of Atlantic cod allergens was investigated via several methods. Gradually reduced protein composition and band intensity due to the fermentation by strain Lh191404 were found in SDS-PAGE analysis, and decreased immunoreactivity of fish allergens was confirmed by Western blotting and ELISA analysis due to the fermentation of strain Lh191404. Additionally, results from nLC-MS/MS and immunoinformatics tools analysis demonstrated that the protein polypeptide and allergen composition of Atlantic cod showed evident alterations after fermentation, with the epitopes of the main fish allergens being heavily exposed and destroyed. These results indicated that the fermentation of L. helveticus Lh191404 could destroy the structure and linear epitopes of the allergens from Atlantic cod and may have considerable potential in mitigating the allergenicity of fish.


Assuntos
Gadus morhua , Lactobacillus helveticus , Animais , Alérgenos/química , Gadus morhua/metabolismo , Fermentação , Espectrometria de Massas em Tandem , Epitopos/química , Peixes/metabolismo
4.
Food Funct ; 14(11): 5151-5166, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183435

RESUMO

Gadus morhua is an important commercial fish rich in nutrients required for daily metabolism. However, the regulation of G. morhua peptides (GMP) on osteoblast growth remains unclear. In order to clarify the regulatory effects of GMP on osteoblasts, the effects of GMP on the growth of MC3T3-E1 cells were investigated, and the osteogenic peptides were identified and screened. The results showed that GMP promoted the proliferation and differentiation of osteoblasts by regulating the BMP/WNT signaling pathway at concentrations of 1-100 µg mL-1. Molecular docking studies showed that a decapeptide, MNKKREAEFQ (P-GM-1), had a high affinity for integrins 3VI4 and 1L5G (-CDOCKER interaction energy: 161.30, 212.27 kcal mol-1). Additionally, the proliferation rate of MC3T3-E1 cells was increased by 27%, and ALP activity was significantly increased under P-GM-1 treatment (100 µg mL-1). Moreover, P-GM-1 promotes bone formation, maintains bone homeostasis, and prevents osteoporosis in ovariectomized mice by regulating the BMP/Smad signaling pathway. This study confirmed the potential of GMP in the regulation of bone mineral density and provided a certain theoretical basis for the development of anti-osteoporosis active factors from GMP.


Assuntos
Gadus morhua , Osteogênese , Animais , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular , Diferenciação Celular , Osteoblastos , Peptídeos/farmacologia , Peptídeos/metabolismo , Proliferação de Células , Homeostase
5.
Food Funct ; 14(3): 1510-1519, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651848

RESUMO

Umami peptides have currently become the research focus in the food umami science field and the key direction for umami agent development. This is because umami peptides have good processing characteristics, umami and nutritional values. We here used virtual screening (including online enzymolysis through ExPASy PeptideCutter, bioactivity screening using the PeptideRanker, toxicity and physicochemical property prediction using Innovagen and ToxinPred software), molecular docking, and electronic tongue analysis to identify umami peptides generated from Atlantic cod myosin. Twenty-three putative umami peptides were screened from the myosin. Molecular docking results suggested that these 23 peptides could enter the binding pocket in the T1R3 cavity, wherein Glu128 and Asp196 were the main amino acid residues, and that hydrogen bonding and electrostatic interactions were the main binding forces. Twelve synthetic peptides tested on the electronic tongue exhibited umami taste and a synergistic effect with monosodium glutamate (MSG). Among them, GGR, AGCD, and SGDAW had higher umami intensities than the other peptides, while SGDAW and NDDGW exhibited stronger umami-enhancing capabilities in 0.1% MSG solution. This study offers a method for the rapid screening of umami peptides from marine protein resources and places the foundation for their application in the food industry.


Assuntos
Gadus morhua , Animais , Simulação de Acoplamento Molecular , Gadus morhua/metabolismo , Glutamato de Sódio/química , Peptídeos/química , Paladar , Receptores Acoplados a Proteínas G/metabolismo
6.
Food Chem ; 402: 134234, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36137388

RESUMO

This study aimed to evaluate the effect of pumping stress (pumping and pumping-resting) and postmortem time (before and after rigor mortis) on phosphorylation profiles of myofibrillar protein (MP) and sarcoplasmic protein (SP) of Atlantic cod (Gadus morhua) fillets. The result showed that MP had higher global phosphorylation levels than SP regardless of stress condition and postmortem time. The pumping process resulted in significant changes in phosphorylation of structural proteins including myosin heavy and light chains. Pumping also affected the phosphorylation status of heat shock proteins and metabolic enzymes involved in the glycolytic pathways, indicating the possible role of phosphorylation in regulating energy hemostasis of fish under stressful conditions. The pumping-induced phosphorylation changes mainly occurred before rigor mortis, and postmortem time affected the phosphorylation status to a less extent. This work contributes to a deeper understanding on protein phosphorylation affected by pre-slaughter stress and postmortem time of fish.


Assuntos
Gadus morhua , Rigor Mortis , Animais , Gadus morhua/genética , Gadus morhua/metabolismo , Fosforilação , Miosinas/metabolismo , Proteínas de Choque Térmico/metabolismo
7.
Environ Toxicol Chem ; 41(8): 1967-1976, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622057

RESUMO

The offshore oil industry in Atlantic Canada necessitates a greater understanding of the potential impacts of oil exposure and spill response measures on cold-water marine species. We used a standardized scoring index to characterize sublethal developmental impacts of physically and chemically dispersed crude oil in early life stages of Atlantic cod (Gadus morhua) and assessed intraspecific variation in the response among cod families. Cod (origin: Scotian Shelf, Canada) were laboratory-crossed to produce embryos from five specific families, which were subsequently exposed prehatch to gradient dilutions of a water-accommodated fraction (WAF) and a chemically enhanced WAF (CEWAF; prepared with Corexit 9500A) for 24 h. Postexposure, live embryos were transferred into filtered seawater and monitored to hatch; then, all live fish had sublethal endpoints assessed using the blue-sac disease (BSD) severity index. In both WAF and CEWAF groups, increasing exposure concentrations (measured as total petroleum hydrocarbons) resulted in an increased incidence of BSD symptoms (impaired swimming ability, increased degree of spinal curvature, yolk-sac edemas) in cod across all families. This positive concentration-dependent increase in BSD was similar between physically (WAF) versus chemically (CEWAF) dispersed oil exposures, indicating that dispersant addition does not exacerbate the effect of crude oil on BSD incidence in cod. Sensitivity varied between families, with some families having less BSD than others with increasing exposure concentrations. To our knowledge, our study is the first to demonstrate the occurrence in fishes of intraspecific variation among families in sublethal responses to oil and dispersant exposure. Our results suggest that sublethal effects of crude oil exposure will not be uniformly observed across cod populations and that sensitivity depends on genetic background. Environ Toxicol Chem 2022;41:1967-1976. © 2022 SETAC.


Assuntos
Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Peixes/fisiologia , Lipídeos/química , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/toxicidade
8.
NPJ Biofilms Microbiomes ; 8(1): 36, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508464

RESUMO

It is difficult to disentangle the many variables (e.g. internal or external cues and random events) that shape the microbiota in the gastrointestinal tract of any living species. Ecological assembly processes applied to microbial communities can elucidate these drivers. In our study, farmed Atlantic cod (Gadus morhua) were fed a diet of 10% macroalgae supplement (Ulva rigida [ULVA] or Ascophyllum nodosum [ASCO] or a non-supplemented control diet [CTRL]) over 12 weeks. We determined the influence of ecological assembly processes using a suite of null-modelling tools. We observed dissimilarity in the abundance of common OTUs over time, which was driven by deterministic assembly. The CTRL samples showed selection as a critical assembly process. While dispersal limitation was a driver of the gut microbiome for fish fed the macroalgae supplemented diet at Week 12 (i.e., ASCO and ULVA). Fish from the ASCO grouping diverged into ASCO_N (normal) and ASCO_LG (lower growth), where ASCO_LG individuals found the diet unpalatable. The recruitment of new taxa overtime was altered in the ASCO_LG fish, with the gut microbiome showing phylogenetic underdispersion (nepotistic species recruitment). Finally, the gut microbiome (CTRL and ULVA) showed increasing robustness to taxonomic disturbance over time and lower functional redundancy. This study advances our understanding of the ecological assembly and succession in the hindgut of juvenile Atlantic cod across dietary treatments. Understanding the processes driving ecological assembly in the gut microbiome, in fish research specifically, could allow us to manipulate the microbiome for improved health or resilience to disease for improved aquaculture welfare and production.


Assuntos
Gadus morhua , Microbioma Gastrointestinal , Animais , Dieta/veterinária , Suplementos Nutricionais , Filogenia
9.
Food Funct ; 13(4): 1975-1988, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35089293

RESUMO

Atlantic cod (Gadus morhua) is one of the most important fishes in the world with high nutritional value and economic value. However, the impact and underlying mechanism of the G. morhua peptides (GMPs) on osteoclastogenesis and bone mineral density (BMD) regulation remain unclear. The purpose of this study was to investigate the effects of GMPs on osteoclast formation and anti-osteoporosis activity in vitro and in vivo. The results showed that GMPs significantly reduced receptor activator of nuclear factor (RANKL) induced tartrate-resistant acid phosphatase (TRAP) activity, and decreased the expression of osteoclast regulatory factors c-Fos and NFATc1 by inhibiting the activation of MAPK and NF-κB pathways, and thereby inhibiting osteoclast formation and bone resorption. In vivo, GMP protects mice against ovariectomy-induced bone loss by regulating the balance of major factors released in bone formation and resorption. Taken together, GMP could be a potential candidate or dietary supplement for the prevention of osteoporosis.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Alimento Funcional , Gadus morhua , Peptídeos/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Ovariectomia , Peptídeos/farmacologia , Ligante RANK , Células RAW 264.7/efeitos dos fármacos
10.
Sci Total Environ ; 814: 152732, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34974025

RESUMO

The aim of the present study was to investigate effects of per- and polyfluoroalkyl substances (PFAS), both single compounds and a mixture of these, using precision-cut liver slices (PCLS) from Atlantic cod (Gadus morhua). PCLS were exposed for 48 h to perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) (10, 50 and 100 µM), and three mixtures of these at equimolar concentrations (10, 50 and 100 µM). Transcriptomic responses were assessed using RNA sequencing. Among exposures to single PFAS, PFOS produced the highest number of differentially expressed genes (DEGs) compared to PFOA and PFNA (86, 25 and 31 DEGs, respectively). Exposure to the PFAS mixtures resulted in a markedly higher number of DEGs (841). Clustering analysis revealed that the expression pattern of the PFAS mixtures were more similar to PFOS compared to PFOA and PFNA, suggesting that effects induced by the PFAS mixtures may largely be attributed to PFOS. Pathway analysis showed significant enrichment of pathways related to oxidative stress, cholesterol metabolism and nuclear receptors in PFOS-exposed PCLS. Fewer pathways were significantly enriched following PFOA and PFNA exposure alone. Significantly enriched pathways following mixture exposure included lipid biosynthesis, cancer-related pathways, nuclear receptor pathways and oxidative stress-related pathways such as ferroptosis. The expression of most of the genes within these pathways was increased following PFAS exposure. Analysis of non-additive effects in the 100 µM PFAS mixture highlighted genes involved in the antioxidant response and membrane transport, among others, and the majority of these genes had synergistic expression patterns in the mixture. Nevertheless, 90% of the DEGs following mixture exposure showed additive expression patterns, suggesting additivity to be the major mixture effect. In summary, PFAS exposure promoted effects on cellular processes involved in oxidative stress, nuclear receptor pathways and sterol metabolism in cod PCLS, with the strongest effects observed following PFAS mixture exposure.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Gadus morhua , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Animais , Poluentes Ambientais/metabolismo , Fluorocarbonos/análise , Gadus morhua/genética , Fígado/química , Estresse Oxidativo , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
Sci Total Environ ; 807(Pt 1): 150697, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610396

RESUMO

Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.


Assuntos
Gadus morhua , Petróleo , Poluentes Químicos da Água , Animais , Larva , Petróleo/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Ecotoxicol Environ Saf ; 229: 113100, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923326

RESUMO

During sub-sea oil spills to the marine environment, oil droplets will rise towards the sea surface at a rate determined by their density and diameter as well as the vertical turbulence in the water. Micro-droplets (< 50 µm) are expected to have prolonged residence times in the water column. If present, pelagic fish eggs may thus be exposed to dispersed oil from subsurface oil spills for days, and the contribution of these micro-droplets to toxicity is not well known. The purpose of this work was to investigate to what extent timing of exposure and the presence of oil micro droplets affects PAH uptake and survival of pelagic Atlantic cod eggs. A single batch of eggs was separated in two groups and exposed to dispersions and corresponding water-soluble fraction at 3-7 days (Early exposure) and 9-13 days (Late exposure) post fertilization. Partitioning of PAHs between crude oil microdroplets, water and eggs was estimated as well as the contribution of oil droplets to PAH body residue and acute and delayed mortality. Timing of oil exposure clearly affects both the mortality rate and the timing of mortality. Even though the body residue of PAHs were lower when embryos were exposed in the later embryonic stage, mortality rate increased relative to the early exposure indicating that critical body residue threshold is stage specific. Although our results suggest that the dissolved fraction is the dominating driver for toxicity in cod embryos exposed to oil dispersions, crude oil micro droplets contribute to increased mortality as well.


Assuntos
Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
13.
Aquat Toxicol ; 237: 105881, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139396

RESUMO

Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.


Assuntos
Óleos Combustíveis , Gadus morhua , Petróleo , Poluentes Químicos da Água , Animais , Ecossistema , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Food Chem ; 340: 127877, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889201

RESUMO

To ensure emulsions to be continuously stable, the hydrolysates recovered from cod bones by papain acted as a natural surfactant to synthesize high-stability bilayer nano-emulsions. As assisted by Tween 20, the average diameter of synthesized nano-emulsion with enzymatic hydrolysate could exhibit stability between 300-400 nm under a broad range of pH (4-8), temperatures (30-90 °C) and salt concentration (25-250 mM). With the addition of the hydrolysates, the rate of increase of the TBARS value in the emulsion decreased. Moreover, the bilayer structure of the nano-emulsion was characterized under an atomic force microscopy and a cryo-scanning electron microscopy. Nano-LC-Q-TOF-MS was adopted to primarily identify peptides that contained hydrophobic and hydrophilic amino acids at the emulsion interface. Besides, the absorbed peptides on the interface of emulsion enhanced the stability of emulsion lipid oxidation.


Assuntos
Emulsões/química , Proteínas de Peixes/química , Polissorbatos/química , Aminoácidos/química , Animais , Microscopia Crioeletrônica , Gadus morhua , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Nanoestruturas/química , Oxirredução , Papaína/química , Peptídeos , Tensoativos/química , Temperatura , Água/química
15.
Sci Total Environ ; 755(Pt 1): 142904, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138996

RESUMO

Because of their global consumption and persistence, per- and polyfluoroalkyl substances (PFASs), are ubiquitously distributed in the environment, as well as in wildlife and humans. In the present study, we have employed an ex vivo organ culture technique, based on the floating agarose method, of Atlantic cod ovarian tissue to investigate the effects of three different concentrations of PFOS, PFOA (1, 5 and 25 µM) and PFNA (0.5, 5 and 50 µM), used singly and in also in combination (1×, 20× and 100×). In the 1× exposure mixture, concentrations were decided based on their proportional levels (in molar equivalents) relative to PFOS, which is the most abundant PFAS in cod liver from a 2013 screening project. To investigate the detailed underlying mechanisms and biological processes, transcriptome sequencing was performed on exposed ovarian tissue. The number of differentially expressed genes (DEGs) having at least 0.75 log2-fold change was elevated in high, compared to low and medium concentration exposures. The highest PFNA, PFOA and PFOS concentrations, and the highest (100×) mixture exposure, showed 40, 68, 1295, and 802 DEGs, respectively. The latter two exposure groups shared a maximum of 438 DEGs. In addition, they both shared the majority of functionally enriched pathways belonging to biological processes such as cellular signaling, cell adhesion, lipid metabolism, immunological responses, cancer, reproduction and metabolism. Shortlisted DEGs that were specifically annotated to reproduction associated gene ontology (GO) terms were observed only in the highest PFOS and mixture exposure groups. These transcripts contributed to ovarian key events such as steroidogenesis (star, cyp19a1a), oocyte growth (amh), maturation (igfbp5b, tgfß2, tgfß3), and ovulation (pgr, mmp2). Contrary to other PFAS congeners, the highest PFOS concentration showed almost similar transcript expression patterns compared to the highest mixture exposure group. This indicates that PFOS is the active component of the mixture that significantly altered the normal functioning of female gonads, and possibly leading to serious reproductive consequences in teleosts.


Assuntos
Ácidos Alcanossulfônicos , Fenômenos Biológicos , Fluorocarbonos , Gadus morhua , Ácidos Alcanossulfônicos/toxicidade , Animais , Feminino , Fluorocarbonos/toxicidade , Gadus morhua/genética , Humanos , Fígado , Transcriptoma
16.
Front Immunol ; 11: 609456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362798

RESUMO

The absence of MHC class II antigen presentation and multiple pathogen recognition receptors in the Atlantic cod has not impaired its immune response however how underlying mechanisms have adapted remains largely unknown. In this study, ex vivo cod macrophages were challenged with various bacterial and viral microbe-associated molecular patterns (MAMP) to identify major response pathways. Cytosolic MAMP-PRR pathways based upon the NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) were identified as the critical response pathways. Our analyses suggest that internalization of exogenous ligands through scavenger receptors drives both pathways activating transcription factors like NF-kB (Nuclear factor-kappa B) and interferon regulatory factors (IRFs). Further, ligand-dependent differential expression of a unique TLR25 isoform and multiple NLR paralogues suggests (sub)neofunctionalization toward specific immune defensive strategies. Our results further demonstrate that the unique immune system of the Atlantic cod provides an unprecedented opportunity to explore the evolutionary history of PRR-based signaling in vertebrate immunity.


Assuntos
Gadus morhua/imunologia , Sistema Imunitário/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Proteínas NLR/imunologia , Nucleotídeos/imunologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Humanos , Fatores Reguladores de Interferon/imunologia , Macrófagos/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia
17.
Proc Natl Acad Sci U S A ; 117(45): 27997-28004, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093204

RESUMO

Amyloid formation involves the conversion of soluble protein species to an aggregated state. Amyloid fibrils of ß-parvalbumin, a protein abundant in fish, act as an allergen but also inhibit the in vitro assembly of the Parkinson protein α-synuclein. However, the intrinsic aggregation mechanism of ß-parvalbumin has not yet been elucidated. We performed biophysical experiments in combination with mathematical modeling of aggregation kinetics and discovered that the aggregation of ß-parvalbumin is initiated by the formation of dimers stabilized by disulfide bonds and then proceeds via primary nucleation and fibril elongation processes. Dimer formation is accelerated by H2O2 and hindered by reducing agents, resulting in faster and slower aggregation rates, respectively. Purified ß-parvalbumin dimers readily assemble into amyloid fibrils with similar morphology as those formed when starting from monomer solutions. Furthermore, addition of preformed dimers accelerates the aggregation reaction of monomers. Aggregation of purified ß-parvalbumin dimers follows the same kinetic mechanism as that of monomers, implying that the rate-limiting primary nucleus is larger than a dimer and/or involves structural conversion. Our findings demonstrate a folded protein system in which spontaneously formed intermolecular disulfide bonds initiate amyloid fibril formation by recruitment of monomers. This dimer-induced aggregation mechanism may be of relevance for human amyloid diseases in which oxidative stress is often an associated hallmark.


Assuntos
Amiloide/metabolismo , Parvalbuminas/metabolismo , Multimerização Proteica/fisiologia , Amiloide/química , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Dimerização , Dissulfetos , Gadus morhua/metabolismo , Peróxido de Hidrogênio/química , Cinética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
18.
Food Chem ; 333: 127489, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653685

RESUMO

To improve the utilization of cod skin collagen peptides (CSCP), we heated them with xylose at 80 °C, 100 °C, and 120 °C for up to 150 min to prepare xylose-CSCP Maillard reaction products (MRPs), and then investigated their physicochemical and functional properties. The results showed that Arg, Lys, Phe, and Asp were the major amino acids involved in the Maillard reaction. After being heated at 120 °C for 150 min, the ABTS scavenging activity and reducing power of xylose-CSCP MRPs were 99.59% and 0.887 absorbance units, respectively. Xylose-CSCP MRPs had better emulsifying properties and foaming properties than CSCP. Furthermore, 26 volatile compounds, including 2,5-dimethyl-pyrazine and 2-ethyl-3,5-dimethylpyrazine, were identified from xylose-CSCP MRPs by gas chromatography-ion mobility spectrometry. Newly formed heterocyclic compounds might be responsible for the flavor and antioxidant capacity of xylose-CSCP MRPs. These results suggest the potential for xylose-CSCP MRPs to serve as functional food ingredients.


Assuntos
Fenômenos Químicos , Colágeno/química , Gadus morhua , Reação de Maillard , Peptídeos/química , Pele/química , Xilose/química , Animais , Antioxidantes/química , Temperatura Alta , Paladar
19.
Mar Pollut Bull ; 153: 110993, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275542

RESUMO

In the province of Newfoundland and Labrador, fishing is a core occupation and also a source of marine plastic pollution. To look at this relationship, we examined 216 gastrointestinal tracts of Atlantic cod (Gadus morhua) caught by commercial fishers at Fogo Island, Newfoundland and Labrador, Canada. We found three tracts contained plastic for a frequency of occurrence of 1.4%. While this result is consistent with other cod sampled in the province, this study found two gastrointestinal tracts contained intact bait bags, used in commercial pots, and the third tract contained a polypropylene thread, likely originating from fishing rope. Our findings demonstrate the frequency of plastic ingestion in this region is low, but fishing-gear related plastics represent a key source of marine plastics in the region that should be addressed.


Assuntos
Gadus morhua , Plásticos , Animais , Canadá , Monitoramento Ambiental , Contaminação de Alimentos/estatística & dados numéricos , Humanos , Ilhas , Terra Nova e Labrador
20.
FEBS Open Bio ; 10(4): 495-506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115900

RESUMO

Transglutaminases are a family of enzymes that catalyse the cross-linking of proteins by forming covalent bonds between lysine and glutamine residues in various polypeptides. Cross-linking reactions are involved in blood clots, skin formation, embryogenesis and apoptosis. Clinically, these enzymes appear to be implicated in neurodegenerative diseases, tumours and coeliac diseases. Transglutaminases have great potential for use in the food industry because of their ability to cross-link proteins that are not normally linked. Here, a gene coding for transglutaminase from Atlantic cod was cloned into a bacterial expression vector and used to transform protein expression in a strain of Escherichia coli. The successful expression of recombinant transglutaminase protein from Atlantic cod (AcTG-1) as a soluble protein upon induction at low temperature was confirmed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, immunoblotting and mass spectrometry analysis. Biochemical characterisation demonstrated that the transglutaminase was active between 0 and 65 °C, but was completely inactivated after 20-min incubation at 70 °C. Interestingly, the enzyme displayed cold-adapted features, such as temperature instability combined with high catalytic efficiency at low temperatures (8-16 °C). In addition, the enzyme had optimal activity at 50 °C, a new feature for a cold-adapted enzyme. AcTG-1 was active in the pH range from 6 to 9, with an optimum at pH 8, and required 5 mm calcium for maximum activity. Potential calcium-binding sites in the enzyme were predictable, making the enzyme an appropriate model for studying structure-function relationships in the calcium-dependent transglutaminase family. In vitro gel analysis revealed that transglutaminase cross-linked casein, collagen and gelatin. The binding of fish fillets in the presence of recombinant AcTG-1 provided further macroscopic proof for the potential application of AcTG-1 as a biological cross-linker in the food industry. Once binding occurred, fish fillets withstood further processing such as frying, boiling, freeze-thawing and chilling. The low-temperature activity and new enzymatic properties of AcTG-1 appear to offer advantages over commercially available enzymatic glues in the food industry.


Assuntos
Cálcio/metabolismo , Temperatura Baixa , Manipulação de Alimentos , Gadus morhua/metabolismo , Medicina , Transglutaminases/genética , Transglutaminases/metabolismo , Adesivos/química , Adesivos/metabolismo , Animais , Caseínas/metabolismo , Colágeno/metabolismo , Reagentes de Ligações Cruzadas , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Gelatina/metabolismo , Glutamina/metabolismo , Concentração de Íons de Hidrogênio , Lisina/metabolismo , Peptídeos/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transglutaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA