Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Biomed Pharmacother ; 177: 117163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018876

RESUMO

Graveoline exhibits various biological activities. However, only limited studies have focused on its hepatoprotective properties. This study evaluated the anti-inflammatory and hepatoprotective activities of graveoline, a minor 2-phenylquinolin-4-one alkaloid isolated from Ruta graveolens L., in a liver injury model in vitro and in vivo. A network pharmacology approach was used to investigate the potential signaling pathway associated with the hepatoprotective activity of graveoline. Subsequently, biological experiments were conducted to validate the findings. Topological analysis of the KEGG pathway enrichment revealed that graveoline mediates its hepatoprotective activity through genes associated with the hepatitis B viral infection pathway. Biological experiments demonstrated that graveoline effectively reduced the levels of alanine transaminase and aspartate transaminase in lipopolysaccharide (LPS)-induced HepG2 cells. Graveoline exerted antihepatitic activity by inhibiting the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and elevated the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in vitro and in vivo. Additionally, graveoline exerted its hepatoprotective activity by inhibiting JAK1 and STAT3 phosphorylation both in vitro and in vivo. In summary, graveoline can attenuate acute liver injury by inhibiting the TNF-α inflammasome, activating IL-4 and IL-10, and suppressing the JAK1/STAT3 signaling pathway. This study sheds light on the potential of graveoline as a promising therapeutic agent for treating liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Galactosamina , Janus Quinase 1 , Lipopolissacarídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 1/antagonistas & inibidores , Animais , Humanos , Lipopolissacarídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Masculino , Células Hep G2 , Galactosamina/toxicidade , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Citocinas/metabolismo , Quinolinas/farmacologia
2.
Biochem Pharmacol ; 225: 116267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723721

RESUMO

Acute liver failure (ALF) is a critical condition that can lead to substantial liver dysfunction. It is characterized by complex clinical manifestations and rapid progression, presenting significant challenges in diagnosis and treatment. We investigated the protective effect of mefunidone (MFD), a novel antifibrosis pyridone agent, on ALF in mice, and explored its potential mechanism of action. MFD pretreatment can alleviate lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced ALF, reduce hepatocyte apoptosis, and reduce inflammation and oxidative stress. Additionally, MFD alleviated LPS/D-GalN-stimulated reactive oxygen species (ROS) production and cell death in AML12 cells. RNA sequencing enrichment analysis showed that MFD significantly affected the Mitogen-Activated Protein Kinase (MAPK) pathway. In vivo and in vitro experiments showed that MFD inhibited MKK4 and JNK phosphorylation. JNK activation caused by MKK4 and JNK activators could eliminate the therapeutic effect of MFD on AML12. In addition, MFD pretreatment alleviated ConA-induced ALF, reduced inflammation and oxidative stress in mice, and reduced mouse mortality. These results suggest that MFD can potentially protect against ALF, partially by inhibiting the MKK4-JNK pathway, and is a promising new therapeutic drug for ALF.


Assuntos
Falência Hepática Aguda , MAP Quinase Quinase 4 , Piperazinas , Piridonas , Animais , Masculino , Camundongos , Linhagem Celular , Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 4/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Piridonas/farmacologia , Piridonas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico
3.
Chem Pharm Bull (Tokyo) ; 72(3): 280-285, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325836

RESUMO

This study investigated the hepatoprotective effects of Juncus effusus (J. effusus) and Carbonized J. effusus against liver injury caused by D-galactosamine (D-GalN) in mice. J. effusus and Carbonized J. effusus were administered by gavage once daily starting seven days before the D-GalN treatment. The results of the study indicated that J. effusus and Carbonized J. effusus suppressed the D-GalN-induced generation of serum alanine transaminase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) was observed. The values of superoxide dismutase (SOD) exhibited an increase. In addition, J. effusus and Carbonized J. effusus promoted the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1) as well as the mRNA expression of Nrf2, HO-1, NQO-1 and Glutamate cysteine ligase catalytic subunit (GCLC). The compressed Carbonized J. effusus demonstrated the optimum impact. These results suggest that J. effusus and Carbonized J. effusus protect against D-GalN-induced acute liver injury through the activation of the Nrf2 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Galactosamina , Extratos Vegetais , Animais , Camundongos , Alanina Transaminase/metabolismo , Alanina Transaminase/farmacologia , Antioxidantes/farmacologia , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Galactosamina/toxicidade , Galactosamina/metabolismo , Lipopolissacarídeos/farmacologia , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
J Oleo Sci ; 72(11): 1027-1035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914264

RESUMO

Acute liver injury (ALI), posing a serious threaten to our life, has emerged as a public health issue around the world. ß-carotene has plenty of pharmacologic effects, such as anti-inflammatory, antioxidant, and antitumor activities. In this study, we focused on studying the protective role and potential molecular mechanisms of ß-carotene against D-galactosamine (D-GalN) and lipopolysaccharide (LPS) induced ALI. Our results indicated that ß-carotene pretreatment effectively hindered abnormal changes induced by LPS/D-GalN in liver histopathology. Meanwhile, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were downgraded with ß-carotene pretreatment. ß-carotene pretreatment also decreased malondialdehyde content and myeloperoxidase activity, increased glutathione peroxidase and superoxide dismutase levels, and reduced the levels of tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) in liver tissues. Further investigations found that ß-carotene mediated multiple signaling pathways in LPS/D-GalN-induced ALI, inhibiting NF-κB and MAPK signaling and upregulating the expression of Nrf2 and HO-1 proteins. All findings indicate that ß-carotene appears to protect mice against LPS/D-GalN induced ALI by reducing oxidative stress and inflammation, possibly via regulating NF-κB, MAPK, and Nrf2 signaling.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , beta Caroteno/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Galactosamina/toxicidade , Galactosamina/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Biol Pharm Bull ; 46(6): 848-855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258151

RESUMO

A methanol extract of rhizomes of Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) showed hepatoprotective effects against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. We had previously isolated 46 compounds, including several types of iridoid glycosides, phenylethanoid glycosides, and aromatics, etc., from the extract. Among them, picroside II, androsin, and 4-hydroxy-3-methoxyacetophenone exhibited active hepatoprotective effects at doses of 50-100 mg/kg, per os (p.o.) To characterize the mechanisms of action of these isolates and to clarify the structural requirements of phenylethanoid glycosides for their hepatoprotective effects, their effects were assessed in in vitro studies on (i) D-GalN-induced cytotoxicity in mouse primary hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. These isolates decreased the cytotoxicity caused by D-GalN without inhibiting LPS-induced macrophage activation and also reduced the sensitivity of hepatocytes to TNF-α. In addition, the structural requirements of phenylethanoids for the protective effects of D-GalN-induced cytotoxicity in mouse primary hepatocytes were evaluated.


Assuntos
Picrorhiza , Rizoma , Camundongos , Animais , Rizoma/química , Picrorhiza/química , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Glicosídeos Iridoides/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Galactosamina/toxicidade
6.
Tissue Cell ; 82: 102085, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018928

RESUMO

In this study, we aimed to investigate the effects of pentoxifylline [PTX] and caffeic acid phenethyl ester [CAPE] in D-galactosamine [D-GAL]-induced pulmonary injury in rats. The rats were randomly divided into six groups: control, D-GAL, D-GAL+PTX, D-GAL+CAPE, PTX and CAPE. Each group included eight animals. Lung sections from the control, PTX and CAPE groups had a normal histological appearance. The D-GAL group showed histopathological changes in lung tissue, including haemorrhage, oedema, inter-alveolar septal thickening and widespread infiltration of inflammatory lymphocytes and macrophages. Administration of PTX and CAPE significantly reduced histopathological damage scores in the D-GAL+PTX and D-GAL+CAPE groups compared with the D-GAL group. PTX and CAPE treatment also significantly decreased malondialdehyde levels, increased levels of reduced GSH and increased catalase and superoxide dismutase activity in lung tissue samples. These results indicate that the destructive effects of D-GAL-induced inflammation in the rat lung are significantly reduced following administration of PTX and CAPE.


Assuntos
Lesão Pulmonar , Pentoxifilina , Ratos , Animais , Pentoxifilina/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Fator de Necrose Tumoral alfa/farmacologia , Superóxido Dismutase , Galactosamina/toxicidade , Catalase , Pulmão/patologia , Ácidos Cafeicos/farmacologia , Malondialdeído , Antioxidantes/farmacologia
7.
Biochem Pharmacol ; 210: 115467, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849063

RESUMO

Geraniol (Ger), a natural acyclic monoterpene alcohol, has been reported to exert protective effects through anti-inflammation in Acute liver failure (ALF). However, its specific roles and precise mechanisms underlying anti-inflammatory effects in ALF have not yet fully explored. We aimed to investigated the hepatoprotective effects and mechanisms of Ger against ALF induced by lipopolysaccharide (LPS)/D-galactosamine (GaIN). In this study, the liver tissue and serum of LPS/D-GaIN-induced mice were collected. The degree of liver tissue injury was evaluated by HE and TUNEL staining. Serum levels of liver injury markers (ALT and AST) and inflammatory factors were measured by ELISA assays. PCR and western blotting were conducted to determine the expression of inflammatory cytokines, NLRP3 inflammasome-related proteins, PPAR-γ pathway-related proteins, DNA Methyltransferases and M1/M2 polarization cytokines. Immunofluorescence staining was used to assess the localization and expression of macrophage markers (F4/80 and CD86), NLRP3 and PPAR-γ. In vitro experiments were performed in macrophages stimulated with LPS with or without IFN-γ. Purification of macrophages and cell apoptosis was analyzed using flow cytometry. We found that Ger effectively alleviated ALF in mice, specified by the attenuation of liver tissue pathological damage, inhibition of ALT, AST and inflammatory factor levels, and inactivation of NLRP3 inflammasome. Meanwhile, downregulation M1 macrophage polarization may involve in the protective effects of Ger. In vitro, Ger reduced the activation of NLRP3 inflammasome and apoptosis through regulating PPAR-γ methylation by inhibiting M1 macrophage polarization. In conclusion, Ger protects against ALF through suppressing NLRP3 inflammasome-mediated inflammation and LPS-induced macrophage M1 polarization via modulating PPAR-γ methylation.


Assuntos
Inflamassomos , Falência Hepática Aguda , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , Monoterpenos Acíclicos/metabolismo , Monoterpenos Acíclicos/farmacologia , Galactosamina/toxicidade , Galactosamina/metabolismo , Metilação , PPAR gama/genética , PPAR gama/metabolismo , Transdução de Sinais , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Citocinas/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL
8.
J Pharm Pharmacol ; 74(12): 1765-1775, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227279

RESUMO

OBJECTIVES: The present research focused on estimating, for the first time, the potential protective effects of bromelain against D-galactosamine-induced acute liver injury in rats as well as identifying the possible underlying mechanisms. METHODS: Silymarin (100 mg/kg/day, p.o.) as a reference drug or bromelain (20 and 40 mg/kg/day, p.o.) were administered for 10 days, and on the 8th day of the experiment, a single dose of galactosamine (400 mg/kg/i.p.) induced acute liver injury. KEY FINDINGS: Pretreatment with bromelain improved liver functions and histopathological alterations induced by galactosamine. Bromelain ameliorated oxidative stress by inducing SIRT1 protein expression and increasing LKB1 content. This resulted in phosphorylating the AMPK/GSK3ß axis, which stimulated Nrf2 activation in hepatic cells and thus increased the activity of its downstream antioxidant enzymes [HO-1 and NQO1]. Besides, bromelain exerted significant anti-apoptotic and anti-inflammatory effects by suppressing hepatic contents of TNF-α, NF-κB p65, as well as caspase-8 and caspase-9. The protective effects of bromelain40 were proved to be better than silymarin and bromelain20 in most of the assessed parameters. CONCLUSIONS: Our results highlight the significant hepatoprotective effects of bromelain against acute liver injury through modulation of SIRT1/LKB1/AMPK, GSK3ß/Nrf2 signalling in addition to NF-κB p65/TNF-α/ caspase-8 and -9 pathway.


Assuntos
Bromelaínas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Bromelaínas/farmacologia , Caspase 8/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Galactosamina/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Silimarina/farmacologia , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Biomed Pharmacother ; 155: 113688, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150308

RESUMO

The liver is exposed to gut-derived bacterial endotoxin via portal circulation, and recognizes it through toll-like receptor 4 (TLR4). Endotoxin lipopolysaccharide (LPS) stimulates the self-ubiquitination of ubiquitin ligase TRAF6, which is linked to scaffold with protein kinase TAK1 for auto-phosphorylation and subsequent activation. TAK1 activity is a signal transducer in the activating pathways of transcription factors NF-κB and AP-1 for production of various cytokines. Here, we hypothesized that TRAF6-TAK1 axis would be implicated in endotoxin-induced liver disease. Following exposure to endotoxin LPS, TLR4-mediated phosphorylation of TAK1 and transcription of cell-death cytokine TNF-α were triggered in Kupffer cells but not in hepatocytes as well as TNF receptor-mediated and caspase-3-executed apoptosis was occurred in D-galactosamine (GalN)-sensitized hepatocytes under co-culture with Kupffer cells. Treatment with pyridinylmethylene benzothiophene (PMBT) improved endotoxin LPS-induced hepatocyte apoptosis in GalN-sensitized C57BL/6 mice via suppressing NF-κB- and AP-1-regulated expression of TNF-α in Kupffer cells, and rescued the mice from hepatic damage-associated bleeding and death. As a mechanism, PMBT directly inhibited Lys 63-linked ubiquitination of TRAF6, and mitigated scaffold assembly between TRAF6 and the TAK1-activator adaptors TAB1 and TAB2 complex in Kupffer cells. Thereby, PMBT interrupted TRAF6 ubiquitination-induced activation of TAK1 activity in the TLR4-mediated signal cascade leading to TNF-α production. However, PMBT did not directly affect the apoptotic activity of TNF-α on GalN-sensitized hepatocytes. Finally, we propose chemical inhibition of TRAF6-TAK1 axis in Kupffer cells as a strategy for treating liver disease due to gut-derived endotoxin or Gram-negative bacterial infection.


Assuntos
Hepatopatias , Fator 6 Associado a Receptor de TNF , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 3/metabolismo , Citocinas/metabolismo , Endotoxinas/toxicidade , Galactosamina/toxicidade , Ligases/metabolismo , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinas/metabolismo
10.
Front Immunol ; 13: 901566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874667

RESUMO

Acute liver injury (ALI) is a disease that seriously threatens human health and life, and a dysregulated inflammation response is one of the main mechanisms of ALI induced by various factors. Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein with multiple biological functions. At present, studies on PEBP4 exist mainly in the field of tumors and rarely in inflammation. This study aimed to explore the potential roles and mechanisms of PEBP4 on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALI. PEBP4 was downregulated after treatment with LPS/D-GalN in wild-type mice. PEBP4 hepatocyte-conditional knockout (CKO) aggravated liver damage and repressed liver functions, including hepatocellular edema, red blood cell infiltration, and increased aspartate aminotransferase (AST)/alanine aminotrans-ferase (ALT) activities. The inflammatory response was promoted through increased neutrophil infiltration, myeloperoxidase (MPO) activities, and cytokine secretions (interleukin-1ß, IL-1ß; tumor necrosis factor alpha, TNF-α; and cyclooxygenase-2, COX-2) in PEBP4 CKO mice. PEBP4 CKO also induced an apoptotic effect, including increasing the degree of apoptotic hepatocytes, the expressions and activities of caspases, and pro-apoptotic factor Bax while decreasing anti-apoptotic factor Bcl-2. Furthermore, the data demonstrated the levels of Toll-like receptor 4 (TLR4), phosphorylation-inhibitor of nuclear factor kappaB Alpha (p-IκB-α), and nuclear factor kappaB (NF-κB) p65 were upregulated, while the expressions of cytoplasmic IκB-α and NF-κB p65 were downregulated after PEBP4 CKO. More importantly, both the NF-κB inhibitor (Ammonium pyrrolidinedithiocarbamate, PDTC) and a small-molecule inhibitor of TLR4 (TAK-242) could inhibit TLR4/NF-κB signaling activation and reverse the effects of PEBP4 CKO. In summary, the data suggested that hepatocyte-conditional knockout of PEBP4 aggravated LPS/D-GalN-induced ALI, and the effect is partly mediated by activation of the TLR4/NF-κB signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Proteína de Ligação a Fosfatidiletanolamina , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Galactosamina/toxicidade , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/patologia , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
J Biochem Mol Toxicol ; 36(10): e23168, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35838105

RESUMO

Acute liver failure, associated with oxidative stress and sustained inflammation is the major clinical manifestation of liver diseases with a high mortality rate due to limited therapeutic options. Purpurin is a bioactive compound of Rubia cordifolia that has been used in textile staining, as a food additive, and as a treatment of multiple chronic and metabolic diseases associated with inflammation and oxidative stress. The present work aimed to investigate the protective efficacy of purpurin against hepatorenal damage. Thirty-six female albino rats were equally assigned into six groups. Purpurin was administered orally once a day for 6 days at doses of 05, 10, and 20 mg/kg, respectively. Intraperitoneal injection of lipopolysaccharide (50 µg/kg) was administered to the animals on 6th day evening, 1 h after d-galactosamine (300 mg/kg) administration to induce hepatorenal injury. The results revealed that purpurin alleviated alterations in serological and hematological parameters as well as restored histoarchitectural and cellular integrity of the liver and kidney. Purpurin restored superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione content in hepatorenal tissues. Accompanied by the diminution of increased bilirubin and biliverdin, purpurin also diminished total cholesterol, triglyceride, and lipid peroxidation in hepatorenal tissues. Purpurin markedly attenuated the elevation of CYP2E1, restored glutathione-S-transferase, and prevented DNA damage in hepatorenal tissues. Purpurin reduced iron overload by reducing heme depletion and recycling of ferritin and hemosiderin. It also reinforced biliverdin reductase, heme oxygenase-1 to employ hepatorenal protection by regulating antioxidant enzymes and other pathways that produced NADPH. Thus, it may be concluded that purpurin has protective potential against acute hepatorenal injury.


Assuntos
Galactosamina , Heme Oxigenase-1 , Animais , Feminino , Ratos , Antraquinonas , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biliverdina/metabolismo , Catalase/metabolismo , Colesterol/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Ferritinas , Aditivos Alimentares , Galactosamina/toxicidade , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Heme , Heme Oxigenase-1/metabolismo , Hemossiderina/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , NADP/metabolismo , Superóxido Dismutase/metabolismo , Transferases/metabolismo , Triglicerídeos , Regulação para Cima
12.
J Biochem Mol Toxicol ; 36(9): e23124, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35670011

RESUMO

Galactosamine (GalN) is a well-known agent for inducing viral hepatitis models in rodents, but it can cause toxicity on different organs. Vitamin U (Vit U) has been proved as a powerful antioxidant on many toxicity models. The present study was designed to investigate the protective effects of Vit U on GalN-induced stomach injury. Rats were divided into four groups as follows: control (group I), Vit U given animals (50 mg/kg per day; group II), GalN administered animals (500 mg/kg at a single dose; group III), GalN + Vit U given animals (at the same dose and time, group IV). At the end of the 3rd day, animals were killed, and stomach tissues were taken. They were homogenized and centrifuged. In comparison to the control group, glutathione, total antioxidant capacity levels, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and Na+ /K+ -ATPase activities of GalN group were found to be decreased. On the contrary, lipid peroxidation, advanced oxidized protein products, hexose-hexosamine, fucose, sialic acid, reactive oxygen species levels, as well as the activities of myeloperoxidase, xanthine oxidase, and lactate dehydrogenase were elevated. Administration of Vit U reversed these abnormalities in the GalN group. It can be concluded that Vit U exerts its unique antioxidant effect and prevents GalN-induced gastric damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Vitamina U , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fucose/farmacologia , Galactosamina/toxicidade , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Lactato Desidrogenases/metabolismo , Peroxidação de Lipídeos , Ácido N-Acetilneuramínico/farmacologia , Estresse Oxidativo , Peroxidase/metabolismo , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Vitamina U/farmacologia , Xantina Oxidase/metabolismo
13.
Cell Mol Gastroenterol Hepatol ; 13(6): 1649-1672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202887

RESUMO

BACKGROUND & AIMS: Acute liver failure (ALF) is a condition with high mortality and morbidity, characterized by glutathione depletion, oxidative stress, and mitochondrial dysfunction. Ferroptosis may be involved in ALF. Indeed, emerging studies have shown that ferroptosis plays a significant role in ALF. However, the mechanism of ferroptosis in hepatocytes during ALF remains unknown. METHODS: Hepatic-specific transforming growth factor ß receptor 1 knockout (TGFßr1Δhep-CKO) mice and nuclear factor erythroid 2-related factor 2 knockout (Nrf2-/-) mice were generated and subjected to ALF. Electron microscopy was used to detect mitochondrial and other cell substructure changes during ALF. RESULTS: In this study, we noticed that lipopolysaccharide (LPS)/D-galactosamine (D-GalN) induced caspases-mediated apoptosis as current research reported, we also found lipid peroxidation, reactive oxygen species accumulation, and glutathione, co-enzyme Q10 system inhibition mediated ferroptosis during LPS/D-GalN-induced ALF. Rescue studies have shown that ferrostatin-1 (Fer-1) and deferoxamine mesylate (DFOM), the inhibitor of ferroptosis, could alleviate LPS/D-GalN-induced ALF. In addition, we noticed that TGFß1 was increased during ALF, while ALF was relieved in TGFßr1Δhep-CKO mice. We also noticed that liver TGFßr1 deficiency alleviated LPS/D-GalN-induced apoptosis and ferroptosis by affecting the phosphorylation of glycogen synthase kinase 3ß and Nrf2, a key antioxidant factor, by up-regulating the levels of glutathione peroxidase 4 (GPX4), glutamine antiporter xCT (XCT), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1), and down-regulating transferrin receptor (TFR), prostaglandin-endoperoxide synthase (Ptgs2), chaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), and cytochrome P450 reductase (POR) expression. The further supplemental experiment showed that ferroptosis was aggravated significantly in Nrf2-/- mice compared with its wild-type controls and reversed by ferrostatin-1. CONCLUSIONS: This study shows that TGFßr1 plays a critical role in mediating LPS/D-GalN-induced ALF by promoting apoptosis and ferroptosis.


Assuntos
Ferroptose , Falência Hepática Aguda , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose , Galactosamina/metabolismo , Galactosamina/toxicidade , Glutationa/efeitos adversos , Glutationa/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo
14.
Inflammation ; 45(3): 1362-1373, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35098406

RESUMO

Acute liver failure (ALF) is a deadly clinical disorder with few effective treatments and unclear pathogenesis. In our previous study, we demonstrated that aberrant Wnt5a expression was involved in acute-on-chronic liver failure. However, the role of Wnt5a in ALF is unknown. We investigated the expression of Wnt5a and its downstream c-Jun N-terminal kinase (JNK) signaling in a mouse model of ALF established by coinjection of D-galactosamine (D-Gal) and lipopolysaccharide (LPS) in C57BL/6 mice. We also investigated the role of Box5, a Wnt5a antagonist, in vivo. Moreover, the effect of Wnt5a/JNK signaling on downstream inflammatory cytokine expression, phagocytosis, and migration in THP-1 macrophages was studied in vitro. Aberrant Wnt5a expression and JNK activation were detected in D-Gal/LPS-induced ALF mice. Box5 pretreatment reversed JNK activation and eventually decreased the mortality rate of D-Gal/LPS-treated mice, with reduced hepatic necrosis and apoptosis, serum ALT and AST levels, and liver inflammatory cytokine expression, although the latter was not significant. We further demonstrated that recombinant Wnt5a (rWnt5a)-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression and increased THP-1 macrophage phagocytosis in a JNK-dependent manner, which could be restored by Box5. In addition, rWnt5a-induced migration of THP-1 macrophages was also reversed by Box5. Our findings suggested that Wnt5a/JNK signaling plays an important role in the development of ALF and that Box5 could have particular hepatoprotective effects in ALF.


Assuntos
Galactosamina , Falência Hepática Aguda , Animais , Citocinas/metabolismo , Galactosamina/toxicidade , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
15.
Sheng Li Xue Bao ; 73(6): 901-908, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34961864

RESUMO

The aim of the present study was to investigate the effects of dexmedetomidine (DEX) on acute liver injury induced by lipopolysaccharide (LPS)/D-galactosamine (D-Gal) and the underlying mechanism. Male BALB/c mice were intraperitoneally injected with LPS/D-Gal to induce acute liver injury model, and pretreated with DEX or in combination with the autophagy inhibitor, 3-methyladenine (3-MA) 30 min before injection. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, as well as myeloperoxidase (MPO) activity in liver tissue were determined with the corresponding kits. Serum tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels were determined by ELISA. The protein expression levels of LC3-II and P62 in liver tissue were determined by Western blot. Liver histopathological changes were detected by HE staining. The results showed that, compared with control group, LPS/D-Gal enhanced ALT and AST activity, increased TNF-α and IL-6 levels, as well as MPO activity, up-regulated LC3-II and P62 protein expression levels, and significantly induced pathological damage in liver tissue. DEX reversed the above changes in the LPS/D-Gal group, whereas these protective effects of DEX were blocked by 3-MA. The above results suggest that DEX alleviates LPS/D-Gal-induced acute liver injury, which may be associated with the up-regulation of LC3-II protein expression and the activation of autophagy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Dexmedetomidina , Proteínas Associadas aos Microtúbulos/metabolismo , Alanina Transaminase , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Dexmedetomidina/farmacologia , Galactosamina/toxicidade , Interleucina-6/sangue , Lipopolissacarídeos/toxicidade , Fígado , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima
16.
Nutrition ; 91-92: 111466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34600223

RESUMO

D-galactosamine (Ga1N), a well-known hepatotoxic agent, induces liver injury resembling human viral hepatitis usually followed by the regeneration processes. Hepatocyte growth factor (HGF) is a cytoprotective factor involved in regeneration of the injured liver. However, the effects of exogenous HGF remain poorly understood because of its rapid clearance by the liver. This study was undertaken to find out whether HGF and fish oil facilitated the reversal of GalN-induced toxicity in primary hepatocyte cultures of albino mice. Primary hepatocytes cultures were established from mice liver tissue. The study involved the effect of GalN on hepatocytes and also determination of the protective role of fish oil on hepatocyte cultures. Cell proliferation tests and liver function tests were done to determine the degree of GalN effect on cultured hepatocytes. Biochemical parameters of cultured cells were also performed to check the recovery effect of fish oil on GalN-induced hepatotoxicity. The combination of Ga1N and HGF triggered cell proliferation in primary hepatocyte cultures specifying activation of regeneration through HGF. However, hepatocyte function tests revealed that although the regeneration process was initiated, its function was slightly altered by Ga1N. Therefore, to control its effect at a functional level, we tested fish oil doses and indicated its influence. This work can be a useful tool for studying hepatotoxic-induced cell regeneration in vitro; moreover, the data indicates that HGF and fish oil has hepatoprotective activity against Ga1N and may aid as a suitable adjuvant in clinical conditions associated with liver damage.


Assuntos
Galactosamina , Fator de Crescimento de Hepatócito , Animais , Óleos de Peixe , Galactosamina/toxicidade , Hepatócitos , Fígado , Camundongos
17.
Immunol Lett ; 240: 24-30, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525396

RESUMO

The mitochondria are the primary source of reactive oxygen species (ROS) under pathological condition, but the significance of mitochondrial ROS in the development of Lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury remains unclear. In the present study, the level of mitochondrial ROS in LPS/D-Gal has been determined by MitoSox staining and the potential roles of mitochondrial ROS in LPS/D-Gal-induced liver injury have been investigated by using the mitochondria-targeting antioxidant MitoQ. The results indicated that LPS/D-Gal exposure induced the generation of mitochondrial ROS while treatment with MitoQ reduced the level of mitochondrial ROS. Treatment with MitoQ ameliorated LPS/D-Gal-induced histopathologic abnormalities, suppressed the elevation of AST and ALT, and increased the survival rate of the experimental animals. Treatment with MitoQ also suppressed LPS/D-Gal-induced production of tumor necrosis factor α (TNF-α), inhibited the activities of caspase-3, caspase-8 and caspase-9, decreased the level of cleaved caspase-3 and reduced the counts of TUNEL positive cells. These results indicate that mitochondrial ROS is involved in the development of LPS-induced acute liver injury and the mitochondria-targeting antioxidant MitoQ might have potential value for the treatment of inflammation-based acute liver injury.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Mitocôndrias Hepáticas/metabolismo , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias Hepáticas/patologia , Ubiquinona/farmacologia
18.
Bioengineered ; 12(1): 7205-7214, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34546847

RESUMO

Schisandrin B is a dibenzocyclooctadiene derivative extracted fromSchisandra chinensis (Turcz.) Baill., that exhibits anti-oxidation, anti-inflammation, anti-tumor and hepatoprotective activities. To understand the hepatoprotective mechanism of schisandrin B, this study investigated the efficacy of schisandrin B on L02 cells after treatment with D-GalN. Following pretreatment with 40 µM schisandrin B, L02 cells were stimulated with 40 mM D-GalN. Cell viability, apoptosis, the expression levels of genes associated with apoptosis, and the intracellular oxidative stress indexes were measured. The viability of L02 cells was determined using MTT assay, and the Annexin V-FITC/PI assay kit was utilized for the assessment of apoptosis. The activities of GSH-Px and SOD, the level of MDA were assessed, separately, using relative detection kits. Moreover, RT-PCR as well as Western blot was applied to measure the mRNA and protein expression of Bax and Bcl-2. The results indicated that schisandrin B significantly prevented D-GalN­induced oxidative damage in L02 cells (P<0.05), decreased GSH-Px and SOD activities (P<0.05), increased MDA content (P<0.05). Furthermore, schisandrin B inhibited D-GalN-induced apoptosis in L02 cells (P<0.05), regulated the expression of Bax and Bcl-2 (P<0.05). The results indicated that schisandrin B decreased the D-GalN-induced intracellular oxidative stress indexes generation, and inhibited the down-regulation of Bcl-2 and up-regulation of Bax induced by D-GalN. In conclusion, schisandrin B was shown to exert protective effect against oxidative damage of L02 cells, which, in part, was achieved by regulating the mRNA and protein levels of Bax and Bcl-2.


Assuntos
Apoptose/efeitos dos fármacos , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Linhagem Celular , Ciclo-Octanos/farmacologia , Galactosamina/toxicidade , Hepatócitos/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética
19.
Oxid Med Cell Longev ; 2021: 9932099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457120

RESUMO

Oxidative stress, inflammation, and apoptosis are crucial in the pathogenesis of acute liver failure (ALF). 4-Octyl itaconate (OI) showed antioxidative and anti-inflammatory properties in many disease models. However, its role in lipopolysaccharide- (LPS-)/D-galactosamine- (D-GalN-) induced ALF is still not investigated. Here, we established an ALF murine model induced by LPS/D-GalN administration. And we found that OI improved survival rate in the murine ALF model. Our results also showed that OI alleviated LPS/D-GalN-induced hepatic histopathological injury and reduced the serum activities of alanine transaminase and aspartate transaminase. Moreover, OI reduced serum levels of proinflammatory cytokines such as monocyte chemotactic protein-1, tumor necrosis factors-α, and interlukin-6. Additionally, OI mitigated oxidative stress and alleviated lipid peroxidation in a murine model of ALF. This was evaluated by a reduction of thiobarbituric acid reactive substances (TBARS) in liver tissues. In addition, OI increased the ratio of reduced glutathione/oxidized glutathione and the activities of antioxidant enzymes including catalase and superoxide dismutase. Moreover, the apoptosis of hepatocytes in the liver was inhibited by OI. Furthermore, we found that OI inhibited LPS-induced nuclear translocation and activation of factor-kappa B (NF-κB) p65 in macrophages which could be inhibited by OI-induced activation of nuclear factor erythroid-2-related factor (Nrf2) signaling. Additionally, D-GalN-induced reactive oxygen species (ROS) generation and apoptosis in hepatocytes were inhibited by OI-induced activation of Nrf2 signaling. Therefore, the underlying mechanism for OI's protective effect in LPS/D-GalN-induced ALF may be associated with deactivation of NF-κB signaling in macrophages to reduce inflammation and inhibition of ROS-related hepatocyte apoptosis by activating Nrf2. In conclusion, OI showed a protective role in LPS/D-GalN-induced ALF by reducing inflammation, enhancing antioxidant capacity, and inhibiting cell apoptosis.


Assuntos
Apoptose , Galactosamina/toxicidade , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Estresse Oxidativo , Succinatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(6): 495-500, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34060443

RESUMO

Objective To establish a novel hepatocyte injury model induced by lipopolysaccharide/D-galactosamine (LPS/D-GalN) in vitro. Methods Freshly isolated mouse primary hepatocytes were cultured in vitro and treated with different doses of tumor necrosis factor-α (TNF-α) and 5 mg/mL of D-GalN. The supernatants from hepatocyte culture were detected for alanine aminotransferase (ALT) activity by chemiluminescence assay. Bone marrow-derived macrophages (BMDMs) were stimulated with 1 µg/mL of LPS and the level of TNF-α in supernatants were detected by ELISA. Primary hepatocytes were treated with the BMDM supernatants combined with 5 mg/mL D-GalN or 50 ng/mL actinomycin D (ActD) for 24 hours. The level of ALT from hepatocyte supernatant was detected and morphology of hepatocytes was observed with microscopy. BMDMs and hepatocytes were co-cultured and treated with 1 µg/mL of LPS combined with D-GalN or ActD for 24 hours. Hepatocyte injury was reflected by the ALT activity and hepatocyte morphology. Results The ALT activity was significantly increased in the supernatants of hepatocytes treated with TNF-α and D-GalN, indicating the obvious hepatocyte injury. Co-treatment with LPS-primed BMDM supernatants and D-GalN or ActD could cause hepatocyte injury, as reflected by markedly increased ALT activity and the deformed and cracked hepatocytes. In the context of co-culture of BMDM and hepatocytes, treatment with LPS and D-GalN led to obvious hepatocyte injury as expected. LPS combined with ActD could not cause hepatocyte injury, since the BMDMs started to die earlier than they could secret TNF-α to destruct hepatocytes. Hepatocytes with normal morphology and deformed BMDMs were observed. Conclusion LPS/D-GalN can be used to induce hepatocyte injury in vitro. D-GalN, rather than ActD, should be used as a transcriptional inhibitor when the TNF-α -induced hepatocyte injury is evaluated in a co-culture system of BMDMs and hepatocytes.


Assuntos
Galactosamina , Lipopolissacarídeos , Alanina Transaminase , Animais , Galactosamina/toxicidade , Hepatócitos , Camundongos , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA