Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474307

RESUMO

Mitochondrial plasticity, marked by a dynamism between glycolysis and oxidative phosphorylation due to adaptation to genetic and microenvironmental alterations, represents a characteristic feature of melanoma progression. Sphingolipids play a significant role in various aspects of cancer cell biology, including metabolic reprogramming. Previous observations have shown that the lysosomal sphingolipid-metabolizing enzyme ß-galactosylceramidase (GALC) exerts pro-oncogenic functions in melanoma. Here, mining the cBioPortal for a Cancer Genomics data base identified the top 200 nuclear-encoded genes whose expression is negatively correlated with GALC expression in human melanoma. Their categorization indicated a significant enrichment in Gene Ontology terms and KEGG pathways related to mitochondrial proteins and function. In parallel, proteomic analysis by LC-MS/MS of two GALC overexpressing human melanoma cell lines identified 98 downregulated proteins when compared to control mock cells. Such downregulation was confirmed at a transcriptional level by a Gene Set Enrichment Analysis of the genome-wide expression profiling data obtained from the same cells. Among the GALC downregulated proteins, we identified a cluster of 42 proteins significantly associated with GO and KEGG categorizations related to mitochondrion and energetic metabolism. Overall, our data indicate that changes in GALC expression may exert a significant impact on mitochondrial plasticity in human melanoma cells.


Assuntos
Galactosilceramidase , Melanoma , Humanos , Galactosilceramidase/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952085

RESUMO

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Cães , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidase/genética , Psicosina , Transplante de Células-Tronco Hematopoéticas/métodos , Terapia Genética/métodos , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445731

RESUMO

ß-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism by removing ß-galactosyl moieties from ß-galactosylceramide and ß-galactosylsphingosine. Previous observations have shown that GALC may exert pro-oncogenic functions in melanoma and Galc silencing, leading to decreased oncogenic activity in murine B16 melanoma cells. The tumor-driving BRAF(V600E) mutation is present in approximately 50% of human melanomas and represents a major therapeutic target. However, such mutation is missing in melanoma B16 cells. Thus, to assess the impact of GALC in human melanoma in a more relevant BRAF-mutated background, we investigated the effect of GALC overexpression on the proteomic landscape of A2058 and A375 human melanoma cells harboring the BRAF(V600E) mutation. The results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrate that significant differences exist in the protein landscape expressed under identical cell culture conditions by A2058 and A375 human melanoma cells, both harboring the same BRAF(V600E)-activating mutation. GALC overexpression resulted in a stronger impact on the proteomic profile of A375 cells when compared to A2058 cells (261 upregulated and 184 downregulated proteins versus 36 and 14 proteins for the two cell types, respectively). Among them, 25 proteins appeared to be upregulated in both A2058-upGALC and A375-upGALC cells, whereas two proteins were significantly downregulated in both GALC-overexpressing cell types. These proteins appear to be involved in melanoma biology, tumor invasion and metastatic dissemination, tumor immune escape, mitochondrial antioxidant activity, endoplasmic reticulum stress responses, autophagy, and/or apoptosis. Notably, analysis of the expression of the corresponding genes in human skin cutaneous melanoma samples (TCGA, Firehose Legacy) using the cBioPortal for Cancer Genomics platform demonstrated a positive correlation between GALC expression and the expression levels of 14 out of the 27 genes investigated, thus supporting the proteomic findings. Overall, these data indicate for the first time that the expression of the lysosomal sphingolipid-metabolizing enzyme GALC may exert a pro-oncogenic impact on the proteomic landscape in BRAF-mutated human melanoma.


Assuntos
Melanoma Experimental , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Galactosilceramidase/genética , Esfingolipídeos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Mutação , Linhagem Celular Tumoral , Melanoma Maligno Cutâneo
4.
Brain Dev ; 45(7): 408-412, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080866

RESUMO

BACKGROUND: Late-onset Krabbe disease is a disorder with autosomal recessive inheritance caused by a deficiency in galactocerebrosidase (GALC) activity. Its late-onset form usually shows slow disease progression with atypical symptoms including spastic paresis. The efficacy of hematopoietic stem cell transplantation (HSCT) in late-onset Krabbe disease has not been fully established. CASE REPORT: We describe the case of a patient with late-onset Krabbe disease showing progressive spastic paraparesis. At the age of 18, one and a half years after the development of symptoms, the patient underwent HSCT. After HSCT, the patient's GALC activity returned to a normal level and the lesions in the brain and spinal cord became faint on images. Over two and a half years after the HSCT, the patient's gait remained spastic, however, an improvement in gait speed and modified Rankin Scale score was observed. No severe adverse events occurred during this period. CONCLUSION: Our experience reported herein provides additional evidence for a favorable course in HSCT conducted in the early course of late-onset Krabbe disease.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/patologia , Espasticidade Muscular , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síncope , Galactosilceramidase/genética
6.
Neurosci Lett ; 752: 135841, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766733

RESUMO

Krabbe disease (globoid cell leukodystrophy) is a lysosomal storage disease (LSD) characterized by progressive and profound demyelination. Infantile, juvenile and adult-onset forms of Krabbe disease have been described, with infantile being the most common. Children with an infantile-onset generally appear normal at birth but begin to miss developmental milestones by six months of age and die by two to four years of age. Krabbe disease is caused by a deficiency of the acid hydrolase galactosylceramidase (GALC) which is responsible for the degradation of galactosylceramides and sphingolipids, which are abundant in myelin membranes. The absence of GALC leads to the toxic accumulation of galactosylsphingosine (psychosine), a lysoderivative of galactosylceramides, in oligodendrocytes and Schwann cells resulting in demyelination of the central and peripheral nervous systems, respectively. Treatment strategies such as enzyme replacement, substrate reduction, enzyme chaperones, and gene therapy have shown promise in LSDs. Unfortunately, Krabbe disease has been relatively refractory to most single-therapy interventions. Although hematopoietic stem cell transplantation can alter the course of Krabbe disease and is the current standard-of-care, it simply slows the progression, even when initiated in pre-symptomatic children. However, the recent success of combinatorial therapeutic approaches in small animal models of Krabbe disease and the identification of new pathogenic mechanisms provide hope for the development of effective treatments for this devastating disease. This review provides a brief history of Krabbe disease and the evolution of single and combination therapeutic approaches and discusses new pathogenic mechanisms and how they might impact the development of more effective treatment strategies.


Assuntos
Galactosilceramidase/deficiência , Leucodistrofia de Células Globoides/terapia , Animais , Terapia Combinada/métodos , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Galactosilceramidase/genética , Galactosilceramidas/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Esfingolipídeos/metabolismo
7.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508430

RESUMO

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Assuntos
Galactosilceramidase/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patologia , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Galactosilceramidase/metabolismo , Vetores Genéticos/administração & dosagem , Leucodistrofia de Células Globoides/sangue , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Recidiva
8.
PLoS One ; 15(10): e0239824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002040

RESUMO

Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both environmental and genetic factors. While genome wide association studies have identified several susceptibility loci, many causal variants and genes underlying these associations remain undetermined. Identifying these is essential in order to gain mechanistic insight and identify biological pathways that may be targeted therapeutically. We hypothesized that gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD and may help identify causal genes. Whole-exome sequencing data from two independent cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using the NeuroX-array was used for replication analysis. We employed collapsing methods (burden and the sequence kernel association test) to detect gene-based enrichment of rare, protein-altering variation within established PD susceptibility loci. Our analyses showed trends for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing correction. Our findings provide no evidence of rare mutation enrichment in genes within PD-associated loci, in our datasets. While not excluding that rare mutations in these genes may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much larger sequencing datasets will be required for their detection.


Assuntos
Exoma , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Galactosilceramidase/genética , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a RNA/genética
9.
Cancer Res ; 80(22): 5011-5023, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32998995

RESUMO

Disturbance of sphingolipid metabolism may represent a novel therapeutic target in metastatic melanoma, the most lethal form of skin cancer. ß-Galactosylceramidase (GALC) removes ß-galactose from galactosylceramide and other sphingolipids. In this study, we show that downregulation of galcb, a zebrafish ortholog of human GALC, affects melanoblast and melanocyte differentiation in zebrafish embryos, suggesting a possible role for GALC in melanoma. On this basis, the impact of GALC expression in murine B16-F10 and human A2058 melanoma cells was investigated following its silencing or upregulation. Galc knockdown hampered growth, motility, and invasive capacity of B16-F10 cells and their tumorigenic and metastatic activity when grafted in syngeneic mice or zebrafish embryos. Galc-silenced cells displayed altered sphingolipid metabolism and increased intracellular levels of ceramide, paralleled by a nonredundant upregulation of Smpd3, which encodes for the ceramide-generating enzyme neutral sphingomyelinase 2. Accordingly, GALC downregulation caused SMPD3 upregulation, increased ceramide levels, and inhibited the tumorigenic activity of human melanoma A2058 cells, whereas GALC upregulation exerted opposite effects. In concordance with information from melanoma database mining, RNAscope analysis demonstrated a progressive increase of GALC expression from common nevi to stage IV human melanoma samples that was paralleled by increases in microphthalmia transcription factor and tyrosinase immunoreactivity inversely related to SMPD3 and ceramide levels. Overall, these findings indicate that GALC may play an oncogenic role in melanoma by modulating the levels of intracellular ceramide, thus providing novel opportunities for melanoma therapy. SIGNIFICANCE: Data from zebrafish embryos, murine and human cell melanoma lines, and patient-derived tumor specimens indicate that ß-galactosylceramidase plays an oncogenic role in melanoma and may serve as a therapeutic target.


Assuntos
Ceramidas/metabolismo , Galactosilceramidase/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Galactosilceramidase/genética , Inativação Gênica , Humanos , Neoplasias Pulmonares/secundário , Melanócitos/citologia , Melanócitos/enzimologia , Melanoma/metabolismo , Melanoma/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Neoplasias Cutâneas/metabolismo , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Regulação para Cima , Peixe-Zebra
10.
Nat Commun ; 11(1): 5356, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097716

RESUMO

Krabbe disease (KD) is caused by a deficiency of galactosylceramidase (GALC), which induces demyelination and neurodegeneration due to accumulation of cytotoxic psychosine. Hematopoietic stem cell transplantation (HSCT) improves clinical outcomes in KD patients only if delivered pre-symptomatically. Here, we hypothesize that the restricted temporal efficacy of HSCT reflects a requirement for GALC in early brain development. Using a novel Galc floxed allele, we induce ubiquitous GALC ablation (Galc-iKO) at various postnatal timepoints and identify a critical period of vulnerability to GALC ablation between P4-6 in mice. Early Galc-iKO induction causes a worse KD phenotype, higher psychosine levels in the rodent brainstem and spinal cord, and a significantly shorter life-span of the mice. Intriguingly, GALC expression peaks during this critical developmental period in mice. Further analysis of this mouse model reveals a cell autonomous role for GALC in the development and maturation of immature T-box-brain-1 positive brainstem neurons. These data identify a perinatal developmental period, in which neuronal GALC expression influences brainstem development that is critical for KD pathogenesis.


Assuntos
Tronco Encefálico/enzimologia , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Animais , Tronco Encefálico/embriologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Psicosina/metabolismo , Tamoxifeno , Transcriptoma
11.
J Clin Invest ; 130(9): 4906-4920, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773406

RESUMO

Globoid cell leukodystrophy (GLD; Krabbe disease) is a progressive, incurable neurodegenerative disease caused by deficient activity of the hydrolytic enzyme galactosylceramidase (GALC). The ensuing cytotoxic accumulation of psychosine results in diffuse central and peripheral nervous system (CNS, PNS) demyelination. Presymptomatic hematopoietic stem cell transplantation (HSCT) is the only treatment for infantile-onset GLD; however, clinical outcomes of HSCT recipients often remain poor, and procedure-related morbidity is high. There are no effective therapies for symptomatic patients. Herein, we demonstrate in the naturally occurring canine model of GLD that presymptomatic monotherapy with intrathecal AAV9 encoding canine GALC administered into the cisterna magna increased GALC enzyme activity, normalized psychosine concentration, improved myelination, and attenuated inflammation in both the CNS and PNS. Moreover, AAV-mediated therapy successfully prevented clinical neurological dysfunction, allowing treated dogs to live beyond 2.5 years of age, more than 7 times longer than untreated dogs. Furthermore, we found that a 5-fold lower dose resulted in an attenuated form of disease, indicating that sufficient dosing is critical. Finally, postsymptomatic therapy with high-dose AAV9 also significantly extended lifespan, signifying a treatment option for patients for whom HSCT is not applicable. If translatable to patients, these findings would improve the outcomes of patients treated either pre- or postsymptomatically.


Assuntos
Dependovirus , Galactosilceramidase , Terapia Genética , Leucodistrofia de Células Globoides , Animais , Modelos Animais de Doenças , Cães , Galactosilceramidase/biossíntese , Galactosilceramidase/genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/terapia
12.
Genet Med ; 22(6): 1108-1118, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32089546

RESUMO

PURPOSE: Newborn screening (NBS) for Krabbe disease (KD) is performed by measurement of galactocerebrosidase (GALC) activity as the primary test. This revealed that GALC activity has poor specificity for KD. Psychosine (PSY) was proposed as a disease marker useful to reduce the false positive rate for NBS and for disease monitoring. We report a highly sensitive PSY assay that allows identification of KD patients with minimal PSY elevations. METHODS: PSY was extracted from dried blood spots or erythrocytes with methanol containing d5-PSY as internal standard, and measured by liquid chromatography-tandem mass spectrometry. RESULTS: Analysis of PSY in samples from controls (N = 209), GALC pseudodeficiency carriers (N = 55), GALC pathogenic variant carriers (N = 27), patients with infantile KD (N = 26), and patients with late-onset KD (N = 11) allowed for the development of an effective laboratory screening and diagnostic algorithm. Additional longitudinal measurements were used to track therapeutic efficacy of hematopoietic stem cell transplantion (HSCT). CONCLUSION: This study supports PSY quantitation as a critical component of NBS for KD. It helps to differentiate infantile from later onset KD variants, as well as from GALC variant and pseudodeficiency carriers. Additionally, this study provides further data that PSY measurement can be useful to monitor KD progression before and after treatment.


Assuntos
Leucodistrofia de Células Globoides , Psicosina , Teste em Amostras de Sangue Seco , Galactosilceramidase/genética , Humanos , Recém-Nascido , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Triagem Neonatal
13.
Hum Gene Ther ; 30(9): 1039-1051, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184217

RESUMO

Krabbe disease is an inherited neurodegenerative disease caused by mutations in the galactosylceramidase gene. In the infantile form, patients die before 3 years of age. Systemic adeno-associated virus serotype 9 (AAV9) gene therapy was recently shown to reverse the disease course in human patients in another lethal infantile neurodegenerative disease. To explore AAV9 therapy for Krabbe disease, we engineered a codon-optimized AAV9 galactosylceramidase vector. We further incorporated features to allow AAV9-derived galactosylceramidase to more efficiently cross the blood-brain barrier and be secreted from transduced cells. We tested the optimized vector by a single systemic injection in the twitcher mouse, an authentic Krabbe disease model. Untreated twitcher mice showed characteristic neuropathology and motion defects. They died prematurely with a median life span of 41 days. Intravenous injection in 2-day-old twitcher mice reduced central and peripheral neuropathology and significantly improved the gait pattern and body weight. Noticeably, the median life span was extended to 150 days. Intraperitoneal injection in 6- to 12-day-old twitcher mice also significantly improved the motor function, body weight, and median life span (to 104 days). Our results far exceed the ≤70 days median life span seen in all reported stand-alone systemic AAV therapies. Our study highlights the importance of vector engineering for Krabbe disease gene therapy. The engineered vector warrants further development.


Assuntos
Dependovirus/genética , Galactosilceramidase/genética , Terapia Genética , Vetores Genéticos/genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Transgenes , Animais , Modelos Animais de Doenças , Ativação Enzimática , Galactosilceramidase/metabolismo , Expressão Gênica , Ordem dos Genes , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/isolamento & purificação , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/fisiopatologia , Camundongos , Fenótipo , Transdução Genética , Resultado do Tratamento
14.
Mov Disord ; 34(5): 614-624, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726573

RESUMO

Lysosomal storage disorders comprise a clinically heterogeneous group of autosomal-recessive or X-linked genetic syndromes caused by disruption of lysosomal biogenesis or function resulting in accumulation of nondegraded substrates. Although lysosomal storage disorders are diagnosed predominantly in children, many show variable expressivity with clinical presentations possible later in life. Given the important role of lysosomes in neuronal homeostasis, neurological manifestations, including movement disorders, can accompany many lysosomal storage disorders. Over the last decade, evidence from genetics, clinical epidemiology, cell biology, and biochemistry have converged to implicate links between lysosomal storage disorders and adult-onset movement disorders. The strongest evidence comes from mutations in Glucocerebrosidase, which cause Gaucher's disease and are among the most common and potent risk factors for PD. However, recently, many additional lysosomal storage disorder genes have been similarly implicated, including SMPD1, ATP13A2, GALC, and others. Examination of these links can offer insight into pathogenesis of PD and guide development of new therapeutic strategies. We systematically review the emerging genetic links between lysosomal storage disorders and PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Transtornos Parkinsonianos/genética , Adulto , Criança , Galactosilceramidase/genética , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Leucodistrofia de Células Globoides/genética , Mucopolissacaridose III/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Doenças de Niemann-Pick/genética , Doença de Parkinson/genética , Fenótipo , ATPases Translocadoras de Prótons/genética , Doença de Sandhoff/genética , Esfingomielina Fosfodiesterase/genética
15.
BMC Gastroenterol ; 19(1): 2, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616622

RESUMO

BACKGROUND: Tissue inflammation in inflammatory bowel diseases (IBD) is associated with a decrease in local pH. The gene encoding G-protein-coupled receptor 65 (GPR65) has recently been reported to be a genetic risk factor for IBD. In response to extracellular acidification, proton activation of GPR65 stimulates cAMP and Rho signalling pathways. We aimed to analyse the clinical and functional relevance of the GPR65 associated single nucleotide polymorphism (SNP) rs8005161. METHODS: 1138 individuals from a mixed cohort of IBD patients and healthy volunteers were genotyped for SNPs associated with GPR65 (rs8005161, rs3742704) and galactosylceramidase (rs1805078) by Taqman SNP assays. 2300 patients from the Swiss IBD Cohort Study (SIBDC) were genotyped for rs8005161 by mass spectrometry based SNP genotyping. IBD patients from the SIBDC carrying rs8005161 TT, CT, CC and non-IBD controls (CC) were recruited for functional studies. Human CD14+ cells were isolated from blood samples and subjected to an extracellular acidic pH shift, cAMP accumulation and RhoA activation were measured. RESULTS: In our mixed cohort, but not in SIBDC patients, the minor variant rs8005161 was significantly associated with UC. In SIBDC patients, we observed a consistent trend in increased disease severity in patients carrying the rs8005161-TT and rs8005161-CT alleles. No significant differences were observed in the pH associated activation of cAMP production between IBD (TT, CT, WT/CC) and non-IBD (WT/CC) genotype carriers upon an acidic extracellular pH shift. However, we observed significantly impaired RhoA activation after an extracellular acidic pH shift in IBD patients, irrespective of the rs8005161 allele. CONCLUSIONS: The T allele of rs8005161 might confer a more severe disease course in IBD patients. Human monocytes from IBD patients showed impaired pH associated RhoA activation upon an acidic pH shift.


Assuntos
Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Adulto , Alelos , AMP Cíclico/sangue , Feminino , Galactosilceramidase/genética , Predisposição Genética para Doença , Genótipo , Homozigoto , Humanos , Concentração de Íons de Hidrogênio , Doenças Inflamatórias Intestinais/fisiopatologia , Receptores de Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/fisiologia , Fatores de Risco , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/sangue
16.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905906

RESUMO

Krabbe disease (KD) is an autosomal recessive sphingolipidosis caused by the deficiency of the lysosomal hydrolase ß-galactosylceramidase (GALC). Oligodendroglia degeneration and demyelination of the nervous system lead to neurological dysfunctions which are usually lethal by two years of age. At present, the only clinical treatment with any proven efficacy is hematopoietic stem-cell transplantation, which is more effective when administered in the neonatal period to presymptomatic recipients. Bone marrow (BM) sinusoidal endothelial cells (SECs) play a pivotal role in stem cell engraftment and reconstitution of hematopoiesis. Previous observations had shown significant alterations of microvascular endothelial cells in the brain of KD patients and in Galc mutant twitcher mice, an authentic model of the disease. In the present study, we investigated the vascular component of the BM in the femurs of symptomatic homozygous twitcher mice at postnatal day P36. Histological, immunohistochemical, and two-photon microscopy imaging analyses revealed the presence of significant alterations of the diaphyseal BM vasculature, characterized by enlarged, discontinuous, and hemorrhagic SECs that express the endothelial marker vascular endothelial growth factor receptor-2 (VEGFR2) but lack platelet/endothelial cell adhesion molecule-1 (CD31) expression. In addition, computer-aided image analysis indicates that twitcher CD31-/VEGFR2+ SECs show a significant increase in lumen size and in the number and size of endothelial gaps compared to BM SECs of wild type littermates. These results suggest that morphofunctional defects in the BM vascular niche may contribute to the limited therapeutic efficacy of hematopoietic stem-cell transplantation in KD patients at symptomatic stages of the disease.


Assuntos
Medula Óssea/metabolismo , Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Animais , Medula Óssea/patologia , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Galactosilceramidase/genética , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Cancer Biomark ; 22(3): 417-426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29758927

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) is a promising biomarker for cancer prognosis and monitoring. Molecular characterizing of CTCs could provide beneficial information on the basis of CTCs counting. OBJECTIVE: To investigate the epithelial-mesenchymal transition (EMT) phenotypes and GALC mRNA expression of CTCs in non-small cell lung cancer (NSCLC) patients. METHODS: We analyzed the baseline number, EMT classification, and GALC expression of CTCs in 47 NSCLC patients using CanPatrol platform and RNA in situ hybridization technique. RESULTS: CTCs were detected in 91.5% patients ranging 0-47/5 mL blood. Increased CTCs were associated with advanced tumor stages (6/5 mL) compared with early stages (3.5/5 mL). Patients with effective treatment response presented lower CTCs (3.5/5 mL) than patients with insufficient response (7/5 mL). Epithelial, hybrid and mesenchymal CTCs were detected in 55.4%, 78.7% and 61.7% patients, respectively. Patients with distant metastasis and poor curative outcomes presented higher level of EMT-CTCs. GALC expression was positive in CTCs of 80.6% patients and closely correlated with tumor number and distant metastasis and treatment outcomes. CONCLUSIONS: EMT phenotypes and GALC expression of CTCs are correlated with cancer metastasis and therapeutic outcomes, suggesting them to be potential markers for the prognosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Galactosilceramidase/genética , Expressão Gênica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Células Neoplásicas Circulantes , Adulto , Idoso , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Fenótipo , Prognóstico , RNA Mensageiro/genética
18.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433937

RESUMO

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Assuntos
Metabolismo dos Carboidratos , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Terapia Genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Fenótipo , Animais , Vias Autônomas/metabolismo , Vias Autônomas/patologia , Vias Autônomas/ultraestrutura , Axônios/metabolismo , Axônios/patologia , Axônios/ultraestrutura , Comportamento Animal , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Distribuição Tecidual , Transdução Genética , Resultado do Tratamento
19.
Hum Gene Ther ; 29(7): 785-801, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316812

RESUMO

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an inherited, neurologic disorder that results from deficiency of a lysosomal enzyme, galactosylceramidase. Most commonly, deficits of galactosylceramidase result in widespread central and peripheral nervous system demyelination and death in affected infants typically by 2 years of age. Hematopoietic stem-cell transplantation is the current standard of care in children diagnosed prior to symptom onset. However, disease correction is incomplete. Herein, the first adeno-associated virus (AAV) gene therapy experiments are presented in a naturally occurring canine model of GLD that closely recapitulates the clinical disease progression, neuropathological alterations, and biochemical abnormalities observed in human patients. Adapted from studies in twitcher mice, GLD dogs were treated by combination intravenous and intracerebroventricular injections of AAVrh10 to target both the peripheral and central nervous systems. Combination of intravenous and intracerebroventricular AAV gene therapy had a clear dose response and resulted in delayed onset of clinical signs, extended life-span, correction of biochemical defects, and attenuation of neuropathology. For the first time, therapeutic effect has been established in the canine model of GLD by targeting both peripheral and central nervous system impairments with potential clinical implications for GLD patients.


Assuntos
Galactosilceramidase/administração & dosagem , Terapia Genética , Leucodistrofia de Células Globoides/terapia , Doenças do Sistema Nervoso Periférico/terapia , Animais , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Dependovirus/genética , Modelos Animais de Doenças , Cães , Galactosilceramidase/genética , Vetores Genéticos/administração & dosagem , Humanos , Lactente , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia
20.
Eur J Paediatr Neurol ; 21(3): 522-529, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109651

RESUMO

BACKGROUND: Krabbe disease (KD) is an inherited leukodystrophy due to a defect in the GALC gene which encodes the lysosomal galactosylceramide ß-galactosidase (GALC). About two thirds of patients show the early onset form of KD dominated by cerebral demyelination leading to death in early infancy. Late onset forms include a spectrum of late infantile, juvenile and adult clinical courses. The deficiency of GALC leads to a galactosylceramide lipidosis in which lysosomal storage phenomena are seen almost only at the ultrastructural level. RESULTS: In a 4-year-old boy, the clinical suspicion of KD was high according to neurologic and neuroimaging findings. However, laboratory results were inconclusive; white blood cell GALC activity being at 23 to 25% of the normal level, and GALC genotyping revealing the new homozygous p.Ala543Pro variant which, ex silico, was of unclear significance. Studying a skin biopsy, cultured fibroblasts showed the GALC activity at 21 to 30% of the normal level; ultrastructurally, clearly KD-specific inclusions were seen in the eccrine sweat gland cells, confirming a KD diagnosis. CONCLUSION: The high clinical suspicion combined with the morphologic evidence for KD predict that the p.Ala543Pro variant is pathogenic for (late onset) KD. A hypothesis linked to the proline in the mutant GALC may explain the in vitro effect with high residual GALC activity. This patient would not have been correctly diagnosed, despite the strong clinical criteria of KD, if the electron microscopic results had not been available. The detailed knowledge of neurologic and neuroimaging signs is important in diagnostically problematic KD patients in which also an electron microscopic approach can be crucial.


Assuntos
Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/genética , Mutação , Células Cultivadas , Pré-Escolar , Fibroblastos/metabolismo , Genótipo , Homozigoto , Humanos , Corpos de Inclusão/ultraestrutura , Transtornos de Início Tardio/genética , Transtornos de Início Tardio/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Masculino , Glândulas Sudoríparas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA