Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38552774

RESUMO

Alzheimer's disease (AD) and depression are inflammatory pathologies, leading to increased inflammatory response and neurotoxicity. Therefore, this study aimed to evaluate the effect of the treatment with fluoxetine and/or galantamine and/or donepezil on the levels of proinflammatory and anti-inflammatory cytokines in a mixed animal model of depression and dementia. Adult male Wistar rats underwent chronic mild stress (CMS) protocol for 40 days and were subjected to stereotaxic surgery for intra-hippocampal administration of amyloid-beta (Aꞵ) peptide or artificial cerebrospinal fluid (ACSF) to mimic the dementia animal model. On the 42nd day, animals were treated with water, galantamine, donepezil, and/or fluoxetine, orally for 17 days. On the 57th and 58th days, the Splash and Y-maze tests for behavior analysis were performed. The frontal cortex and hippocampus were used to analyze the tumor necrosis factor alfa (TNF-α), interleukin 1 beta (IL-1ꞵ), IL-6, and IL-10 levels. The results of this study show that animals subjected to CMS and administration of Aꞵ had anhedonia, cognitive impairment, increased TNF-α and IL-1ꞵ levels in the frontal cortex, and reduced IL-10 levels in the hippocampus. All treatment groups were able to reverse the cognitive impairment. Only donepezil did not decrease the TNF-α levels in the hippocampus. Fluoxetine + galantamine and fluoxetine + donepezil reversed the anhedonia. Fluoxetine reversed the anhedonia and IL-1ꞵ levels in the frontal cortex. In addition, fluoxetine + donepezil reversed the reduction of IL-10 levels in the hippocampus. The results indicate a pathophysiological interaction between AD and depression, and the association of medications in the future may be a possible therapeutic strategy to reduce inflammation, especially the fluoxetine-associated treatments.


Assuntos
Demência , Depressão , Modelos Animais de Doenças , Donepezila , Fluoxetina , Galantamina , Hipocampo , Ratos Wistar , Animais , Masculino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Donepezila/farmacologia , Donepezila/uso terapêutico , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Demência/tratamento farmacológico , Depressão/tratamento farmacológico , Galantamina/farmacologia , Galantamina/uso terapêutico , Citocinas/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Estresse Psicológico/complicações , Peptídeos beta-Amiloides/metabolismo , Anedonia/efeitos dos fármacos
2.
Eur Rev Med Pharmacol Sci ; 28(2): 805-813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305623

RESUMO

OBJECTIVE: Doxorubicin (DXR) is commonly used as a drug for cancer treatment. However, there have been reports of neurotoxicity associated with chemotherapy. Galantamine (GLN) is a medication that inhibits cholinesterase activity, providing relief from the neurotoxic effects commonly seen in individuals with Alzheimer's disease. This study explored the potential ameliorative effect of GLN on brain neurotoxicity induced by DXR. MATERIALS AND METHODS: Forty rats were allocated into four separate groups for a study that lasted for a period of fourteen days. The control group was given normal saline, DXR group was given 5 mg/kg DXR every three days (cumulative dose of 20 mg/kg) through intraperitoneal injection. The GLN group was given 5 mg/kg GLN through oral gavage daily, while the DXR+GLN group was given DXR+GLN simultaneously. An analysis of brain proteins using ELISA to assess apoptosis through the concentration of inflammation and oxidative injury markers. RESULTS: The DXR treatment led to increased neuroinflammation by elevation of nuclear factor kappa B (NF-κB), and cyclooxygenase-2 (COX-2), oxidative stress by rise of malondialdehyde (MDA), and decline of superoxide dismutase (SOD), and no changes in catalase and glutathione (GSH), cell death by elevation of Bax and caspase-3 and reduced Bcl-2, and increase lipid peroxidation, impaired mitochondrial function. When GLN is administered alongside DXR, it has been observed to positively impact various biological markers, including COX-2, NF-κB, MDA, SOD, Bax, Bcl-2, and caspase-3 levels. Additionally, GLN improves lipid peroxidation and mitochondrial activity. CONCLUSIONS: DXR therapy in rats results in the development of neurotoxicity, and a combination of GLN can recover these toxicities, suggesting GLN promising evidence for mitigating the neurotoxic effects induced by DXR.


Assuntos
Galantamina , NF-kappa B , Ratos , Animais , Galantamina/farmacologia , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Estresse Oxidativo , Doxorrubicina/toxicidade , Glutationa/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
3.
In Vivo ; 38(2): 606-610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418160

RESUMO

BACKGROUND/AIM: Acute lung injury (ALI) is associated with a high mortality rate and cancer patients who receive chemotherapy are at high risk of ALI during neutropenia recovery. Galantamine is a cholinesterase inhibitor used for Alzheimer's disease treatment. Previous studies have shown that galantamine reduced inflammatory response in lipopolysaccharide (LPS)-induced ALI in rats. Mer protein was negatively associated with inflammatory response. The aim of the study was to investigate whether galantamine is effective in LPS-induced ALI during neutropenia recovery and its effect on Mer tyrosine kinase (MerTK) expression in mice. MATERIALS AND METHODS: Intraperitoneal cyclophosphamide was given to mice to induce neutropenia. After 7 days, LPS was administered by intratracheal instillation. Intraperitoneal galantamine was given once before LPS administration and in another group, galantamine was given twice before LPS administration. RESULTS: Galantamine attenuated LPS-induced ALI in histopathological analysis. The neutrophil percentage was lower in the group where galantamine was injected once, compared to the LPS group (p=0.007). MerTK expression was also higher in the group where galantamine was injected once but did not reach statistical significance (p=0.101). CONCLUSION: Galantamine attenuated inflammation in LPS-induced ALI during neutropenia recovery.


Assuntos
Lesão Pulmonar Aguda , Neutropenia , Humanos , Camundongos , Ratos , Animais , Galantamina/efeitos adversos , Galantamina/metabolismo , Lipopolissacarídeos/efeitos adversos , c-Mer Tirosina Quinase/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico , Proteínas Tirosina Quinases/metabolismo , Pulmão/patologia
4.
Inflammopharmacology ; 32(1): 405-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37429998

RESUMO

Rheumatoid arthritis (RA) affects the joints and the endocrine system via persistent immune system activation. RA patients have a higher frequency of testicular dysfunction, impotence, and decreased libido. This investigation aimed to evaluate the efficacy of galantamine (GAL) on testicular injury secondary to RA. Rats were allocated into four groups: control, GAL (2 mg/kg/day, p.o), CFA (0.3 mg/kg, s.c), and CFA + GAL. Testicular injury indicators, such as testosterone level, sperm count, and gonadosomatic index, were evaluated. Inflammatory indicators, such as interleukin-6 (IL-6), p-Nuclear factor kappa B (NF-κB p65), and anti-inflammatory cytokine interleukin-10 (IL-10), were assessed. Cleaved caspase-3 expression was immunohistochemically investigated. Protein expressions of Janus kinase (JAK), signal transducers and activators of transcription (STAT3), and Suppressors of Cytokine Signaling 3 (SOCS3) were examined by Western blot analysis. Results show that serum testosterone, sperm count, and gonadosomatic index were increased significantly by GAL. Additionally, GAL significantly diminished testicular IL-6 while improved IL-10 expression relative to CFA group. Furthermore, GAL attenuated testicular histopathological abnormalities by CFA and downregulated cleaved caspase-3 and NF-κB p65 expressions. It also downregulated JAK/STAT3 cascade with SOCS3 upregulation. In conclusion, GAL has potential protective effects on testicular damage secondary to RA via counteracting testicular inflammation, apoptosis, and inhibiting IL-6/JAK/STAT3/SOCS3 signaling.


Assuntos
Artrite Reumatoide , Interleucina-6 , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , Masculino , Animais , Ratos , Interleucina-10 , Caspase 3 , Galantamina , NF-kappa B , Piroptose , Sêmen , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Espermatogênese , Citocinas , Apoptose , Artrite Reumatoide/tratamento farmacológico , Testosterona
5.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005217

RESUMO

The number of patients with Alzheimer's disease (AD) continues to rise and, despite the efforts of researchers, there are still no effective treatments for this multifaceted disease. The main objective of this work was the search for multifunctional and more effective anti-Alzheimer agents. Herein, we report the evaluation of a library of quercetin-1,2,3-triazole hybrids (I-IV) in antioxidant, hydrogen peroxide-induced oxidative stress protection, and cholinesterases (AChE and BuChE) inhibitory activities. Hybrids IIf and IVa-d showed potent in vitro inhibitory activity on eqBuChE (IC50 values between 11.2 and 65.7 µM). Hybrid IIf, the best inhibitor, was stronger than galantamine, displaying an IC50 value of 11.2 µM for eqBuChE, and is also a competitive inhibitor. Moreover, toxicity evaluation for the most promising hybrids was performed using the Artemia salina toxicity assay, showing low toxicity. Hybrids IIf, IVb, and IVd did not affect viability at 12.5 µM and also displayed a protective effect against oxidative stress induced by hydrogen peroxide in cell damage in MCF-7 cells. Hybrids IIf, IVb, and IVd act as multifunctional ligands in AD pathologies.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Peróxido de Hidrogênio , Doença de Alzheimer/tratamento farmacológico , Galantamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Eur J Pharmacol ; 952: 175810, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37245858

RESUMO

Fibromyalgia (FM) is a pain disorder marked by generalized musculoskeletal pain accompanied by depression, fatigue, and sleep disturbances. Galantamine (Gal) is a positive allosteric modulator of neuronal nicotinic acetylcholine receptors (nAChRs) and a reversible inhibitor of cholinesterase. The current study aimed to explore the therapeutic potential of Gal against reserpine (Res)-induced FM-like condition along with investigating the α7-nAChR's role in Gal-mediated effects. Rats were injected with Res (1 mg/kg/day; sc) for 3 successive days then Gal (5 mg/kg/day; ip) was given alone and with the α7-nAChR blocker methyllycaconitine (3 mg/kg/day; ip), for the subsequent 5 days. Galantamine alleviated Res-induced histopathological changes and monoamines depletion in rats' spinal cord. It also exerted analgesic effect along with ameliorating Res-induced depression and motor-incoordination as confirmed by behavioral tests. Moreover, Gal produced anti-inflammatory effect through modulating AKT1/AKT2 and shifting M1/M2 macrophage polarization. The neuroprotective effects of Gal were mediated through activating cAMP/PKA and PI3K/AKT pathways in α7-nAChR-dependent manner. Thus, Gal can ameliorate Res-induced FM-like symptoms and mitigate the associated monoamines depletion, neuroinflammation, oxidative stress, apoptosis, and neurodegeneration through α7-nAChR stimulation, with the involvement of cAMP/PKA, PI3K/AKT, and M1/M2 macrophage polarization.


Assuntos
Fibromialgia , Galantamina , Ratos , Animais , Galantamina/farmacologia , Galantamina/uso terapêutico , Reserpina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Microglia , Fibromialgia/induzido quimicamente , Fibromialgia/tratamento farmacológico
7.
PLoS One ; 18(4): e0284994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104478

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder considered as a global public health threat influencing many people. Despite the concerning rise in the affected population, there is still a shortage of potent and safe therapeutic agents. The aim of this research is to discover novel natural source molecules with high therapeutic effects, stability and less toxicity for the treatment of AD, specifically targeting acetylcholinesterase (AChE). This research can be divided into two steps: in silico search for molecules by systematic simulations and in vitro experimental validations. We identified five leading compounds, namely Queuine, Etoperidone, Thiamine, Ademetionine and Tetrahydrofolic acid by screening natural molecule database, conducting molecular docking and druggability evaluations. Stability of the complexes were investigated by Molecular Dynamics simulations and free energy calculations were conducted by Molecular Mechanics Generalized Born Surface Area method. All five complexes were stable within the binding catalytic site (CAS) of AChE, with the exception of Queuine which remains stable on the peripheral site (PAS). On the other hand Etoperidone both interacts with CAS and PAS sites showing dual binding properties. Binding free energy values of Queuine and Etoperidone were -71.9 and -91.0 kcal/mol respectively, being comparable to control molecules Galantamine (-71.3 kcal/mol) and Donepezil (-80.9 kcal/mol). Computational results were validated through in vitro experiments using the SH-SY5Y(neuroblastoma) cell line with Real Time Cell Analysis (RTCA) and cell viability assays. The results showed that the selected doses were effective with half inhibitory concentrations estimated to be: Queuine (IC50 = 70,90 µM), Etoperidone (IC50 = 712,80 µM), Thiamine (IC50 = 18780,34 µM), Galantamine (IC50 = 556,01 µM) and Donepezil (IC50 = 222,23 µM), respectively. The promising results for these molecules suggest the development of the next step in vivo animal testing and provide hope for natural therapeutic aids in the treatment of AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Donepezila/farmacologia , Donepezila/química , Acetilcolinesterase/metabolismo , Galantamina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Neuroblastoma/tratamento farmacológico , Tiamina/uso terapêutico
8.
Appl Microbiol Biotechnol ; 107(7-8): 2155-2167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36922438

RESUMO

Genus Crinum L. is a member of the Amaryllidaceae family having beautiful, huge, ornamental plants with umbels of lily-like blooms that are found in tropical and subtropical climates all over the world. For thousands of years, Crinum has been used as a traditional medicine to treat illnesses and disorders. Numerous distinct alkaloids of the Amaryllidaceae group, whose most well-known properties include analgesic, anticholinergic, antitumor, and antiviral, have recently been discovered by phytochemical analyses. However, because of decades of overexploitation for their economically significant bioactive ingredients and poor seed viability and germination rates, these plants are now threatened in their native environments. Because of these factors, researchers are investigating micropropagation techniques to optimize phytochemicals in vitro. This review's objective is to offer details on the distribution, phytochemistry, micropropagation, in vitro galanthamine synthesis, and pharmacology which will help to design biotechnological techniques for the preservation, widespread multiplication, and required secondary metabolite production from Crinum spp. KEY POINTS: • Botanical description and phytochemical profile of Crinum spp. • In vitro micropropagation method of Crinum sp. • Bioactive compound galanthamine isolation techniques and its pharmacological properties.


Assuntos
Alcaloides , Crinum , Crinum/química , Extratos Vegetais/farmacologia , Galantamina , Alcaloides/química , Compostos Fitoquímicos
9.
J Nat Prod ; 86(4): 939-946, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36808969

RESUMO

A series of new N-aryl galantamine analogues (5a-5x) were designed and synthesized by modification of galantamine, using Pd-catalyzed Buchwald-Hartwig cross-coupling reaction in good to excellent yields. The cholinesterase inhibitory and neuroprotective activities of N-aryl derivatives of galantamine were evaluated. Among the synthesized compounds, the 4-methoxylpyridine-galantamine derivative (5q) (IC50 = 0.19 µM) exhibited excellent acetylcholinesterase inhibition activity, as well as significant neuroprotective effect against H2O2-induced injury in SH-SY5Y cells. Molecular docking, staining, and Western blotting analyses were performed to demonstrate the mechanism of action of 5q. Derivative 5q would be a promising multifunctional lead compound for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Galantamina/farmacologia , Galantamina/uso terapêutico , Acetilcolinesterase/metabolismo , Paládio , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Simulação de Acoplamento Molecular , Peróxido de Hidrogênio , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Catálise , Relação Estrutura-Atividade , Estrutura Molecular
10.
Planta ; 257(3): 51, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757512

RESUMO

MAIN CONCLUSION: The polyploidization of Hippeastrum papilio influences its primary and secondary metabolism including the biosynthesis of bioactive alkaloids. Hippeastrum papilio is an ornamental plant that has advantages in comparison to the currently used plants for the extraction of galanthamine, a natural compound used for the cognitive treatment of Alzheimer's disease. In the present study, an autotetraploid line of H. papilio was induced for the first time, after treatment with 0.05% colchicine for 48 h. The chromosome number in diploids was found to be 2n = 2x = 22 and for autotetraploids 2n = 4x = 44. The flow cytometric analyses detected a DNA C-value of 14.88 ± 0.03 pg (1C) in diploids and 26.57 ± 0.12 pg in autotetraploids. The morphological, cytological, and phytochemical studies showed significant differences between diploids and autotetraploids. The length and width of stomata in autotetraploids were 22.47% and 17.94%, respectively, larger than those observed in the diploid leaves. The biomass of one-year-old autotetraploid H. papilio plants was reduced by 53.99% for plants' fresh weight, 56.53% for leaves' fresh weight, and 21.70% for bulb diameter. The GC-MS analysis of methanol extracts from one-year-old diploid and autotetraploid H. papilio plants revealed over 60 primary and secondary metabolites including alkaloids, phenolic acids, sterols, saccharides, and alcohols, among others. Principal component analysis of the metabolite profiles indicates a divergence of the metabolism between diploid and autotetraploid plants. The content of galanthamine and haemanthamine was found to be 49.73% and 80.10%, respectively, higher in the leaves of autotetraploids, compared to the diploid ones. The biosynthesis of the saccharides shows a tendency to be upregulated in tetraploid plants, while that of phenolic acids was downregulated. Polyploidization of H. papilio creates possibilities for further crop improvement aimed at high-galanthamine-producing genotypes.


Assuntos
Alcaloides , Diploide , Galantamina , Plantas , Tetraploidia , Compostos Fitoquímicos
11.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768823

RESUMO

Galantamine is a natural alkaloid extracted from the Amaryllidaceae plants and is used as the active ingredient of a drug approved for the treatment of the early stages of Alzheimer's disease. It mainly acts as an acetylcholinesterase (AChE) inhibitor, increasing concentrations of the acetylcholine neurotransmitter. Recent cellular studies have also shown the ability of galantamine to protect SH-SY5Y cell lines against amyloid-ß (Aß)-induced toxicity. Such investigations have supported and validated further in-depth studies for understanding the chemical and molecular features associated with galantamine-protective abilities. In addition to galantamine, other natural alkaloids are known to possess AChE inhibitory activity; among them lycorine has been extensively investigated for its antibacterial, anti-inflammatory and antitumoral activities as well. Despite its interesting biological properties, lycorine's neuroprotective functions against Aß-induced damages have not been explored so far. In this research study, the ability of galantamine and lycorine to suppress Aß-induced in vitro neuronal toxicity was evaluated by investigating the chemical interactions of the two alkaloids with Aß peptide. A multi-technique spectroscopic analysis and cellular cytotoxicity assays were applied to obtain new insights on these molecular associations. The comparison between the behaviors exhibited by the two alkaloids indicates that both compounds possess analogue abilities to interact with the amyloidogenic peptide and protect cells.


Assuntos
Alcaloides , Neuroblastoma , Humanos , Acetilcolinesterase/metabolismo , Alcaloides/farmacologia , Peptídeos beta-Amiloides , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Galantamina/farmacologia , Galantamina/química , Neuroblastoma/metabolismo
12.
Pharm Dev Technol ; 28(2): 153-163, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36662596

RESUMO

Pomegranate seed oil with its high levels of phenolic compounds is known to exhibit neuroprotective effects. Delivering hydrophilic drugs to the brain is challenging since blood-brain barrier allows only a few lipophilic molecules into the brain, thus posing an additional barrier for drug delivery to the brain in conditions like Alzheimer's. The present study focuses on the preparation of the stable galantamine hydrobromide (GHBr) microemulsion (ME) using pomegranate seed oil (PSO) as an adjuvant. The developed ME was characterized for various physicochemical properties, cytotoxicity, and protective role against Amyloid Beta (1-42) oligomer-induced toxicity in IMR 32 cell line. GHBr and PSO ratio was optimized based on an in-vitro diffusion study and compatibility study using DSC and FTIR. The ME was prepared by the water titration method and optimized using the one variable at a time (OVAT) strategy. Globule size and PDI of GHBr PSO ME were found to be 200.36 ± 0.01 nm, and 0.219 ± 0.011 nm respectively. GHBr PSO ME showed significantly better results in terms of cell line toxicity, antioxidant activity and protective effect against Aß induced cell death. The results obtained showed the potential of using PSO as an effective synergistic agent along with the anti-Alzheimer's drug for the treatment of disease.


Assuntos
Antioxidantes , Punica granatum , Galantamina , Peptídeos beta-Amiloides , Emulsões/química , Óleos de Plantas/química
13.
Rev. saúde pública (Online) ; 57: 83, 2023. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1522874

RESUMO

ABSTRACT OBJECTIVE To analyze the consumption of drugs for Alzheimer's disease on the Brazilian private market and its geographical distribution from 2014 to 2020. METHODS National data from the Brazilian National System of Controlled Product Management were used, regarding sales of donepezil, galantamine, rivastigmine, and memantine from January 2014 to December 2020. Sales data were used as a proxy for drug consumption and expressed as defined daily dose/1,000 inhabitants/year at national, regional, federative unit and microregion levels. RESULTS Drug consumption went from 5,000 defined daily doses/1,000 inhabitants, in 2014, to more than 16,000/1,000 inhabitants, in 2020, and all federative units showed positive variation. The Brazilian Northeast had the highest cumulative consumption in the period but displayed microregional disparities while the North region had the lowest consumption. Donepezil and memantine were the most consumed drugs, with the highest growth in consumption from 2014 to 2020. CONCLUSION The consumption of medicines indicated to treat Alzheimer's disease tripled in Brazil between 2014 and 2020, which may relate to the increase in the prevalence of the disease in the country, greater access to health services, and inappropriate use. This challenges managers and healthcare providers due to population aging and the increased prevalence of chronic-degenerative diseases.


RESUMO OBJETIVO Analisar o consumo de medicamentos para a doença de Alzheimer no mercado privado brasileiro e sua distribuição geográfica entre os anos de 2014 e 2020. MÉTODOS Foram utilizados dados do Sistema Nacional de Gerenciamento de Produtos Controlados relativos às vendas de donepezila, galantamina, rivastigmina e memantina, entre janeiro de 2014 a dezembro de 2020, em todo o território nacional. Os dados de venda foram utilizados como proxy para o consumo dos medicamentos, avaliado em dose diária definida (DDD)/1.000 habitantes/ano em nível nacional, regional, por unidade federativa e microrregião. RESULTADOS O consumo dos medicamentos passou de 5.000 DDD/1.000 habitantes em 2014 para mais de 16.000 DDD/1.000 habitantes em 2020, e todas as unidades de federação apresentaram variação positiva. A região Nordeste apresentou o maior consumo acumulado no período, porém exibiu disparidades microrregionais. A região Norte apresentou o menor consumo. Os medicamentos mais consumidos foram donepezila e memantina, os quais também apresentaram maior crescimento do consumo no intervalo de tempo entre os anos de 2014 e 2020. CONCLUSÃO O consumo de medicamentos para o tratamento da doença de Alzheimer triplicou no Brasil entre os anos de 2014 e 2020, o que pode estar relacionado ao aumento da prevalência da doença no país e/ou maior acesso a serviços de saúde, assim como estar ligado, também, à utilização inapropriada destes medicamentos. Este é um desafio para gestores e profissionais de saúde num cenário de envelhecimento populacional e aumento da prevalência de doenças crônico-degenerativas.


Assuntos
Demência , Uso de Medicamentos , Medicamentos do Componente Especializado da Assistência Farmacêutica , Medicamentos sob Prescrição , Doença de Alzheimer , Brasil , Memantina , Doença Crônica , Rivastigmina , Donepezila , Galantamina
14.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499171

RESUMO

Oxidative stress is an essential factor in the development and progression of Alzheimer's disease (AD). An excessive amount of reactive oxygen species (ROS) induces the peroxidation of lipid membranes, reduces the activity of antioxidant enzymes and causes neurotoxicity. In this study, we investigated the antioxidant and cholinesterase inhibitory potential of a novel galantamine-curcumin hybrid, named 4b, administered orally in two doses (2.5 mg/kg and 5 mg/kg) in scopolamine (SC)-induced neurotoxicity in mice. To evaluate the effects of 4b, we used galantamine (GAL) (3 mg/kg) and curcumin (CCN) (25 mg/kg) as positive controls. Ex vivo experiments on mouse brains showed that the higher dose of 4b (5 mg/kg) increased reduced glutathione (GSH) levels by 46%, catalase (CAT) and superoxide dismutase (SOD) activity by 57%, and glutathione peroxidase (GPx) activity by 108%, compared with the SC-treated group. At the same time, 4b (5 mg/kg) significantly reduced the brain malondialdehyde (MDA) level by 31% and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities by 40% and 30%, respectively, relative to the SC-impaired group. The results showed that 4b acted as an antioxidant agent and brain protector, making it promising for further experimental research in the field of neurodegenerative diseases.


Assuntos
Curcumina , Síndromes Neurotóxicas , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Butirilcolinesterase , Escopolamina/farmacologia , Acetilcolinesterase/metabolismo , Curcumina/farmacologia , Peroxidação de Lipídeos , Galantamina/farmacologia , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo
15.
Chem Biodivers ; 19(12): e202200315, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36282001

RESUMO

Series of synthetic coumarin derivatives (1-16) were tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes linked to the pathology of Alzheimer's disease (AD). Compound 16 was the most active AChE inhibitor with IC50 32.23±2.91 µM, while the reference (galantamine) had IC50 =1.85±0.12 µM. Compounds 9 (IC50 75.14±1.82 µM), 13 (IC50 =16.14±0.43 µM), were determined to be stronger BChE inhibitors than the reference galantamine (IC50 =93.53±2.23 µM). The IC50 value of compound 16 for BChE inhibition (IC50 =126.56±11.96 µM) was slightly higher than galantamine. The atomic interactions between the ligands and the key amino acids inside the binding cavities were simulated to determine their ligand-binding positions and free energies. The three inhibitory coumarins (9, 13, 16) were next tested for their effects on the genes associated with AD using human neuroblastoma (SH-SY5Y) cell lines. Our data indicate that they could be considered for further evaluation as new anti-Alzheimer drug candidates.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Galantamina , Cumarínicos/farmacologia , Cumarínicos/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
16.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234964

RESUMO

Data on alkaloid interactions with the physiologically important transition metals, iron and copper, are mostly lacking in the literature. However, these interactions can have important consequences in the treatment of both Alzheimer's disease and cancer. As isoquinoline alkaloids include galanthamine, an approved drug for Alzheimer's disease, as well as some potentially useful compounds with cytostatic potential, 28 members from this category of alkaloids were selected for a complex screening of interactions with iron and copper at four pathophysiologically relevant pH and in non-buffered conditions (dimethyl sulfoxide) by spectrophotometric methods in vitro. With the exception of the salts, all the alkaloids were able to chelate ferrous and ferric ions in non-buffered conditions, but only five of them (galanthine, glaucine, corydine, corydaline and tetrahydropalmatine) evoked some significant chelation at pH 7.5 and only the first two were also active at pH 6.8. By contrast, none of the tested alkaloids chelated cuprous or cupric ions. All the alkaloids, with the exception of the protopines, significantly reduced the ferric and cupric ions, with stronger effects on the latter. These effects were mostly dependent on the number of free aromatic hydroxyls, but not other hydroxyl groups. The most potent reductant was boldine. As most of the alkaloids chelated and reduced the ferric ions, additional experimental studies are needed to elucidate the biological relevance of these results, as chelation is expected to block reactive oxygen species formation, while reduction could have the opposite effect.


Assuntos
Doença de Alzheimer , Citostáticos , Quelantes/química , Cobre/química , Dimetil Sulfóxido , Galantamina , Humanos , Radical Hidroxila , Ferro/química , Isoquinolinas/farmacologia , Espécies Reativas de Oxigênio , Substâncias Redutoras , Sais
17.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144504

RESUMO

Aiming to find Amaryllidaceae alkaloids against breast cancer, including the highly aggressive triple-negative breast cancer, the phytochemical study of Pancratium maritimum was carried out. Several Amaryllidaceae-type alkaloids, bearing scaffolds of the haemanthamine-, homolycorine-, lycorine-, galanthamine-, and tazettine-type were isolated (3-11), along with one alkamide (2) and a phenolic compound (1). The antiproliferative effect of compounds (1-11) was evaluated by the sulforhodamine B assay against triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, breast cancer cells MCF-7, and the non-malignant fibroblast (HFF-1) and breast (MCF12A) cell lines. The alkaloids 3, 5, 7, and 11 showed significant growth inhibitory effects against all breast cancer cell lines, with IC50 (half-maximal inhibitory concentration) values ranging from 0.73 to 16.3 µM. The homolycorine-type alkaloid 7 was selected for further investigation in MDA-MB-231 cells. In the annexin-V assay, compound 7 increased cell death by apoptosis, which was substantiated, in western blot analyses, by the increased expression of the pro-apoptotic protein Bax, and the decreased expression of the anti-apoptotic protein Bcl-xL. Consistently, it further stimulated mitochondrial reactive oxygen species (ROS) generation. The antiproliferative effect of compound 7 was also associated with G2/M cell cycle arrest, which was supported by an increase in the p21 protein expression levels. In MDA-MB-231 cells, compound 7 also exhibited synergistic effects with conventional chemotherapeutic drugs such as etoposide.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Alcaloides/farmacologia , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/farmacologia , Anexinas , Apoptose , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Etoposídeo/farmacologia , Feminino , Galantamina/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144637

RESUMO

Sweroside is a secoiridoid glycoside and belongs to a large group of naturally occurring monoterpenes with glucose sugar attached to C-1 in the pyran ring. Sweroside can promote different biological activities such as antifungal, antibacterial, hepatoprotective, gastroprotective, sedative and antitumor, antioxidant, and neuroprotective activities. Zebrafish were given sweroside (12.79, 8.35, and 13.95 nM) by immersion once daily for 8 days, along with scopolamine (Sco, 100 µM) 30 min before the initiation of the behavioral testing to cause anxiety and memory loss. Employing the novel tank diving test (NTT), the Y-maze, and the novel object recognition test (NOR), anxiety-like reactions and memory-related behaviors were assessed. The following seven groups (n = 10 animals per group) were used: control, Sco (100 µM), sweroside treatment (2.79, 8.35, and 13.95 nM), galantamine (GAL, 2.71 µM as the positive control in Y-maze and NOR tests), and imipramine (IMP, 63.11 µM as the positive control in NTT test). Acetylcholinesterase activity (AChE) and the antioxidant condition of the brains were also evaluated. The structure of sweroside isolated from Schenkia spicata was identified. Treatment with sweroside significantly improved the Sco-induced decrease of the cholinergic system activity and brain oxidative stress. These results suggest that sweroside exerts a significant effect on anxiety and cognitive impairment, driven in part by the modulation of the cholinergic system activity and brain antioxidant action.


Assuntos
Escopolamina , Peixe-Zebra , Animais , Acetilcolinesterase/metabolismo , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/efeitos adversos , Encéfalo/metabolismo , Colinérgicos/farmacologia , Galantamina/farmacologia , Glucose/farmacologia , Hipnóticos e Sedativos/farmacologia , Imipramina/farmacologia , Glucosídeos Iridoides/farmacologia , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Estresse Oxidativo , Escopolamina/efeitos adversos , Açúcares , Peixe-Zebra/metabolismo
19.
Neuropharmacology ; 217: 109191, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835213

RESUMO

Postoperative delirium (POD) occurs in a few days after major surgery under general anesthesia and may cause serious health problems. However, effective intervention and treatment remain unavailable because the underlying mechanisms have far been elucidated. In the present study, we explored the role of the malfunctioned astrocytes in POD. Our results showed that mice with tibia fracture displayed spatial and temporal memory impairments, reduced LTP, and activated astrocytes in the hippocampus in early postoperative stage. Using electrophysiological and Ca2+ imaging techniques in hippocampal slices, we demonstrated the malfunctions of astrocytes in surgery mice: depolarized resting membrane potential, higher membrane conductance and capacitance, and attenuated Ca2+ elevation in response to external stimulation. The degraded calcium signaling in hippocampal astrocytes in surgery mice was restored by correcting the diminution of acetylcholine release with galantamine. Furthermore, pharmacologically blocking astrocyte activation with fluorocitrate and enhancing cholinergic inputs with galantamine normalized hippocampal LTP in surgery mice. Finally, inhibition of astrocyte activation with fluorocitrate in the hippocampus improved cognitive function in surgery mice. Therefore, the prevention of astrocyte activation may be a valuable strategy for the intervention of cognitive dysfunction in POD, and acetylcholine receptors may be valid drug targets for this purpose.


Assuntos
Astrócitos , Galantamina , Animais , Colinérgicos/farmacologia , Cognição , Galantamina/farmacologia , Hipocampo , Camundongos , Plasticidade Neuronal/fisiologia
20.
Mol Med ; 28(1): 60, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659521

RESUMO

BACKGROUND: African Americans (AAs) are disproportionately affected by cardiovascular disease (CVD), they are 20% more likely to die from CVD than whites, chronic exposure to inflammation and oxidative stress contributes to CVD. In previous studies, enhancing parasympathetic cholinergic activity has been shown to decrease inflammation. Considering that AAs have decreased parasympathetic activity compared to whites, we hypothesize that stimulating it with a central acetylcholinesterase (AChE) inhibitor, galantamine, would prevent lipid-induced oxidative stress. OBJECTIVE: To test the hypothesis that acute dose of galantamine, an AChE inhibitor, decreases lipid-induced oxidative stress in obese AAs. METHODS: Proof-of-concept, double-blind, randomized, placebo-controlled, crossover study that tested the effect of a single dose of 16 mg of galantamine versus placebo on lipid-induced oxidative stress in obese AAs. Subjects were studied on two separate days, one week apart. In each study day, 16 mg or matching placebo was administered before 20% intralipids infusion at doses of 0.8 mL/m2/min with heparin at doses of 200 U/h for 4 h. Outcomes were assessed at baseline, 2 and 4 h during the infusion. MAIN OUTCOME MEASURES: Changes in F2-isoprostane (F2-IsoPs), marker of oxidative stress, measured in peripheral blood mononuclear cells (PBMC) and in plasma at baseline, 2, and 4-h post-lipid infusion. Secondary outcomes include changes in inflammatory cytokines (IL-6, TNF alpha). RESULTS: A total of 32 obese AA women were screened and fourteen completed the study (age 37.8 ± 10.70 years old, BMI 38.7 ± 3.40 kg/m2). Compared to placebo, 16 mg of galantamine significantly inhibited the increase in F2-IsoPs in PBMC (0.007 ± 0.008 vs. - 0.002 ± 0.006 ng/sample, P = 0.016), and plasma (0.01 ± 0.02 vs. - 0.003 ± 0.01 ng/mL, P = 0.023). Galantamine also decreased IL-6 (11.4 ± 18.45 vs. 7.7 ± 15.10 pg/mL, P = 0.021) and TNFα levels (18.6 ± 16.33 vs. 12.9 ± 6.16 pg/mL, P = 0.021, 4-h post lipid infusion) compared with placebo. These changes were associated with an increased plasma acetylcholine levels induced by galantamine (50.5 ± 10.49 vs. 43.6 ± 13.38 during placebo pg/uL, P = 0.025). CONCLUSIONS: In this pilot, proof-of-concept study, enhancing parasympathetic nervous system (PNS) cholinergic activity with galantamine inhibited lipid-induced oxidative stress and inflammation induced by lipid infusion in obese AAs. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT02365285.


Assuntos
Doenças Cardiovasculares , Galantamina , Acetilcolinesterase , Adulto , Negro ou Afro-Americano , Colinérgicos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Galantamina/farmacologia , Galantamina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Leucócitos Mononucleares , Lipídeos , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA