Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Methods Mol Biol ; 2442: 75-87, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320520

RESUMO

Galectins can display unique sensitivity to oxidative changes that result in significant conformational alterations that prevent carbohydrate recognition. While a variety of approaches can be utilized to prevent galectin oxidation, several of these require inclusion of reducing agents that not only prevent galectins from undergoing oxidative inactivation but can also interfere with normal redox potentials required for fundamental cellular processes. To overcome the limitations associated with placing cells in an artificial reducing environment, cysteine residues on galectins can be directly alkylated with iodoacetamide to form a stable thioether adduct that is resistant to further modification. Iodoacetamide alkylated galectin remains stable over prolonged periods of time and retains the carbohydrate binding and biological activities of the protein. As a result, this approach allows examination of the biological roles of a stabilized form of galectin-1 without introducing the confounding variables that can occur when typical soluble reducing agents are employed.


Assuntos
Galectina 1 , Galectinas , Alquilação , Galectina 1/química , Galectina 1/metabolismo , Galectinas/metabolismo , Iodoacetamida , Espectrometria de Massas
2.
Mol Divers ; 26(3): 1697-1714, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34482478

RESUMO

In this study, a set of dietary polyphenols was comprehensively studied for the selective identification of the potential inhibitors/modulators for galectin-1. Galectin-1 is a potent prognostic indicator of tumor progression and a highly regarded therapeutic target for various pathological conditions. This indicator is composed of a highly conserved carbohydrate recognition domain (CRD) that accounts for the binding affinity of ß-galactosides. Although some small molecules have been identified as galectin-1 inhibitors/modulators, there are limited studies on the identification of novel compounds against this attractive therapeutic target. The extensive computational techniques include potential drug binding site recognition on galectin-1, binding affinity predictions of ~ 500 polyphenols, molecular docking, and dynamic simulations of galectin-1 with selective dietary polyphenol modulators, followed by the estimation of binding free energy for the identification of dietary polyphenol-based galectin-1 modulators. Initially, a deep neural network-based algorithm was utilized for the prediction of the druggable binding site and binding affinity. Thereafter, the intermolecular interactions of the polyphenol compounds with galectin-1 were critically explored through the extra-precision docking technique. Further, the stability of the interaction was evaluated through the conventional atomistic 100 ns dynamic simulation study. The docking analyses indicated the high interaction affinity of different amino acids at the CRD region of galectin-1 with the proposed five polyphenols. Strong and consistent interaction stability was suggested from the simulation trajectories of the selected dietary polyphenol under the dynamic conditions. Also, the conserved residue (His44, Asn46, Arg48, Val59, Asn61, Trp68, Glu71, and Arg73) associations suggest high affinity and selectivity of polyphenols toward galectin-1 protein.


Assuntos
Galectina 1 , Polifenóis , Sítios de Ligação , Carboidratos/química , Galectina 1/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
3.
J Biomol Struct Dyn ; 40(20): 10094-10105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34219624

RESUMO

Galectin-1 (Gal-1) is the first member of galectin family, which has a carbohydrate recognition domain, specifically binds towards ß-galactoside containing oligosaccharides. Owing its association with carbohydrates, Gal-1 is involved in many biological processes such as cell signaling, adhesion and pathological pathways such as metastasis, apoptosis and increased tumour cell survival. The development of ß-galactoside based inhibitors would help to control the Gal-1 expression. In the current study, we carried out molecular dynamics (MD) simulations to examine the structural and dynamic behaviour Gal-1-thiodigalactoside (TDG), Gal-1-lactobionic acid (LBA) and Gal-1-beta-(1→6)-galactobiose (G16G) complexes. The analysis of glycosidic torsional angles revealed that ß-galactoside analogues TDG and LBA have a single binding mode (BM1) whereas G16G has two binding modes (BM1 and BM2) for interacting with Gal-1 protein. We have computed the binding free energies for the complexes Gal-1-TDG, Gal-1-LBA and Gal-1-G16G using MM/PBSA and are -6.45, -6.22 and -3.08 kcal/mol, respectively. This trend agrees well with experiments that the binding of Gal-1 with TDG is stronger than LBA. Further analysis revealed that the interactions due to direct and water-mediated hydrogen bonds play a significant role to the structural stability of the complexes. The result obtained from this study is useful to formulate a set of rules and derive pharmacophore-based features for designing inhibitors against galectin-1.Communicated by Ramaswamy H. Sarma.


Assuntos
Galectina 1 , Simulação de Dinâmica Molecular , Humanos , Galectina 1/química , Galectina 1/metabolismo , Galactosídeos , Carboidratos
4.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920014

RESUMO

Galectins represent ß-galactoside-binding proteins with numerous functions. Due to their role in tumor progression, human galectins-1, -3 and -7 (Gal-1, -3 and -7) are potential targets for cancer therapy. As plant derived glycans might act as galectin inhibitors, we prepared galactans by partial degradation of plant arabinogalactan-proteins. Besides commercially purchased galectins, we produced Gal-1 and -7 in a cell free system and tested binding capacities of the galectins to the galactans by biolayer-interferometry. Results for commercial and cell-free expressed galectins were comparable confirming functionality of the cell-free produced galectins. Our results revealed that galactans from Echinacea purpurea bind to Gal-1 and -7 with KD values of 1-2 µM and to Gal-3 slightly stronger with KD values between 0.36 and 0.70 µM depending on the sensor type. Galactans from the seagrass Zostera marina with higher branching of the galactan and higher content of uronic acids showed stronger binding to Gal-3 (0.08-0.28 µM) compared to galactan from Echinacea. The results contribute to knowledge on interactions between plant polysaccharides and galectins. Arabinogalactan-proteins have been identified as a new source for production of galactans with possible capability to act as galectin inhibitors.


Assuntos
Galectina 1/genética , Galectina 3/genética , Galectinas/genética , Sistema Livre de Células , Galactanos/química , Galactanos/metabolismo , Galectina 1/química , Galectina 3/química , Galectinas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica , Zosteraceae/química
5.
Chemistry ; 26(43): 9620-9631, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368810

RESUMO

The synthesis of tailored bioactive carbohydrates usually comprises challenging (de)protection steps, which lowers synthetic yields and increases time demands. We present here a regioselective single-step introduction of benzylic substituents at 3-hydroxy groups of ß-d-galactopyranosyl-(1→1)-thio-ß-d-galactopyranoside (TDG) employing dibutyltin oxide in good yields. These glycomimetics act as inhibitors of galectins-human lectins, which are biomedically attractive targets for therapeutic inhibition in, for example, cancerogenesis. The affinity of the prepared glycomimetics to galectin-1 and galectin-3 was studied in enzyme-linked immunosorbent (ELISA)-type assays and their potential to inhibit galectin binding on the cell surface was shown. We used our original in vivo biotinylated galectin constructs for easy detection by flow cytometry. The results of the biological experiments were compared with data from molecular modeling with both galectins. The present work reveals a facile and elegant synthetic route for the preparation of TDG-derived glycomimetics that exhibit differing selectivity and affinity to galectins depending on the choice of 3-O-substitution.


Assuntos
Carboidratos/química , Galectina 1/química , Galectina 3/química , Galectinas/química , Tiogalactosídeos/química , Proteínas Sanguíneas , Galactose , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/metabolismo , Humanos , Modelos Moleculares
6.
Cytokine ; 131: 155020, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413706

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease that leads to small joints irreversible destruction. Despite intense efforts, the pathophysiology of RA currently remains unclear. We aimed to gain insight into the pathophysiology process in peptidomic perspective and to identify bioactive peptides for RA treatment. METHODS: The endogenous peptides in synovial tissue between control and rheumatoid arthritis group were identified by liquid chromatography-mass spectrometry (LC-MS/MS). Since the biological function of peptides were always associated with precursor proteins, the potential function of the differentially peptides were predicted by GO and pathway analysis of their precursors. Besides, peptides located in the domains of their precursors were identified. Finally, we determined the impact of galectin-1 derived peptide by administration on the damage to MH7A cells caused by TNF-α. RESULTS: Totally, 141 down-regulated peptides and 10 up-regulated peptides were identified (Fold change > 1.5 and P < 0.05). It indicated that these differentially peptides were tightly involved in the pathophysiology process of RA preliminarily. Finally, we identified a peptide derived from the domain of galectin-1 could inhibit the abnormal proliferation induced by TNF-α and promoted apoptosis of MH7A. CONCLUSION: In summary, our study provided a better understanding of endogenous peptides in RA. We found a peptide that might be used in anti-RA treatment.


Assuntos
Artrite Reumatoide/metabolismo , Galectina 1/metabolismo , Peptídeos/metabolismo , Membrana Sinovial/metabolismo , Linhagem Celular , Feminino , Galectina 1/química , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Precursores de Proteínas/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
7.
Colloids Surf B Biointerfaces ; 185: 110588, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654887

RESUMO

Galectins (Gal) are a family of dimeric lectins, composed by two galactoside-binding sites implicated in the regulation of cancer progression and immune responses. In this study, we report for the first time the synthesis and the physical-chemical characterization of galectin-1-complex-gold COOH-terminated polyethlenglicole (PEG)-coated NPs (Gal-1 IN PEG-AuNPs) and their ability to recognize glucose in an aqueous solution with a concentration varying from 10 mM to 100 pM. The chemical protocol consistsof three steps: (i) complexation between galectin-1Gal-1 and tetrachloroauric acid (HAuCl4) to form gold-protein grains; (ii) staking process of COOH-terminated polyethlenglicole molecules (PEG) onto Gal-1-Au complex and (iii) reduction of hybrid metal ions to obtain a colloidal stable solution. During the complexation, the spectral signatures related to the Gal-1 orientation on the gold surface have been found to change due to its protonation state. The effective glucose monitoring was detected by UV-vis, Raman spectroscopy and Transmission Electron Microscopy (TEM). Overall, we observed that the interaction is strongly dependent on the Gal-1 conformation at the surface of gold nanoparticles.


Assuntos
Colorimetria/métodos , Galectina 1/química , Galectina 1/metabolismo , Glucose/análise , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Glucose/metabolismo , Humanos
8.
Brain Behav Immun ; 83: 214-225, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669519

RESUMO

The vicious cycle between the chronicactivationofmicroglia and dopamine neurons degeneration is linked with the progression of Parkinson's disease (PD). Targeting microglialactivationhas proven to be a viable option to develop a disease-modified therapy for PD. Galectin-1, which has been reported to have an anti-neuroinflammation effect was used in the present study to evaluate its therapeutic effects on microglia activation and neuronal degeneration in Parkinson's disease model. It was found that galectin-1 attenuated the inflammatory insult and the apoptosis of SK-N-SH human neuroblastoma cells from conditioned medium of activated microglia induced by Lipopolysaccharides (LPS). Nonetheless, galectin-1 administration (0.5 mg/kg) inhibited the microglia activation, improved the motor deficits in PD mice model induced by MPTP (25 mg/kg weight of mouse, i.p.) and prevented the degeneration of dopaminergic neurons in the substantia nigra. Administration of galectin-1 resulted in p38 and ERK1/2 dephosphorylation followed by IκB/NFκB signaling pathway inhibition. Galectin-1 significantly decreased the secretion of pro-inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The protective effects and modulation of the MAPK/IκB/NFκB signaling pathway were abolished with ß-D-galactose which blocked the carbohydrate-recognition domain of galectin-1. The present study demonstrated that galectin-1 inhibited microglia activation and ameliorated neurodegenerative process in PD model by modulating MAPK/IκB/NFκB axis through its carbohydrate-recognition domain.


Assuntos
Galectina 1/química , Galectina 1/uso terapêutico , Proteínas I-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Galectina 1/farmacologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Domínios Proteicos , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
9.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382488

RESUMO

Galectins are a family of galactoside-recognizing proteins involved in different galectin-subtype-specific inflammatory and tumor-promoting processes, which motivates the development of inhibitors that are more selective galectin inhibitors than natural ligand fragments. Here, we describe the synthesis and evaluation of 3-C-methyl-gulopyranoside derivatives and their evaluation as galectin inhibitors. Methyl 3-deoxy-3-C-(hydroxymethyl)-ß-d-gulopyranoside showed 7-fold better affinity for galectin-1 than the natural monosaccharide fragment analog methyl ß-d-galactopyranoside, as well as a high selectivity over galectin-2, 3, 4, 7, 8, and 9. Derivatization of the 3-C-hydroxymethyl into amides gave gulosides with improved selectivities and affinities; methyl 3-deoxy-3-C-(methyl-2,3,4,5,6-pentafluorobenzamide)-ß-d-gulopyranoside had Kd 700 µM for galectin-1, while not binding any other galectin.


Assuntos
Galectina 1/antagonistas & inibidores , Metilglicosídeos/química , Metilglicosídeos/farmacologia , Sítios de Ligação , Polarização de Fluorescência , Galectina 1/química , Galectina 1/metabolismo , Humanos , Ligantes , Ligação Proteica
10.
Nanotechnology ; 30(48): 485706, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31430735

RESUMO

In this work, a novel label-free electrochemical biosensor is developed for the detection of galectin-1 (Gal-1) based on gold nanoparticle (AuNP) loaded octahedral Cu2O (Cu2O@Au) nanocomposites. The AuNPs on the surface of the Cu2O nanocrystals not only enhance the electrochemical performance, but also serve as the binding sites for the lactose ligand which can specifically bind with Gal-1. The Cu2O@Au nanocomposites provide the synergic effect of electrochemical signal amplification and lactose-galectin reaction as the recognition strategy. Under optimal conditions, the proposed biosensor exhibits a variation of electrochemical responses to different concentrations of Gal-1 ranging from 0.1 pg ml-1 to 10 ng ml-1. This work presents an alternative electrochemical biosensor for the detection of tumor biomarkers based on a simple and economical lactose ligand incorporated Cu2O@Au biosensor platform.


Assuntos
Técnicas Biossensoriais/métodos , Cobre/química , Galectina 1/análise , Ouro/química , Nanocompostos/química , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Catálise , Técnicas Eletroquímicas/métodos , Eletrodos , Galectina 1/química , Lactose/química , Ligantes , Nanopartículas Metálicas/química
11.
Chem Biol Drug Des ; 94(5): 1919-1929, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31169963

RESUMO

A series of novel morpholines linked coumarin-triazole hybrids (6a-6v) has been synthesized and evaluated for their anti-proliferative potential on a panel of five human cancer cell lines, namely bone (MG-63), lung (A549), breast (MDA-MB-231), colon (HCT-15) and liver (HepG2), using MTT assay. Among all, the compound 6n {7-((1-(2,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl) methoxy)-4-((2,6-dimethylmorpholino) methyl)-2H-chromen-2-one} showed significant growth inhibition against MG-63 cells with an IC50 value of 0.80 ± 0.22 µM. Further, induction of apoptosis by 6n of MG-63 cells confirmed as a result of morphological changes, the sub-G1 phase arrest, increased percentage of apoptotic cells, and decrease in mitochondrial membrane potential and increase in reactive oxygen species levels. The in vitro Gal-1 expression in cell culture supernatant of MG-63 cells treated with compound 6n showed dose-dependent reduction. The binding constant (Ka ) of 6n with Gal-1 was calculated from the intercept value which was observed as 3.0 × 105  M-1 by fluorescence spectroscopy. Surface plasmon resonance showed that 6n binds to Gal-1 with binding constant (Ka ) of 1.29E+04 1/Ms and equilibrium constant KD value of 7.54E-07 M, respectively. Molecular docking studies revealed the binding interactions of 6n with Gal-1.


Assuntos
Antineoplásicos/síntese química , Cumarínicos/química , Morfolinas/síntese química , Triazóis/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Galectina 1/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Morfolinas/farmacologia , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 116(8): 2837-2842, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718416

RESUMO

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Assuntos
Galectina 1/química , Galectina 3/química , Glicoconjugados/química , Polissacarídeos/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Sítios de Ligação , Proteínas Sanguíneas , Adesão Celular/genética , Proliferação de Células/genética , Galectina 1/genética , Galectina 3/genética , Galectinas , Humanos , Lactose/química , Ligantes , Nanopartículas/química , Polissacarídeos/genética
13.
Carbohydr Res ; 472: 1-15, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30428394

RESUMO

Galectins are a family of carbohydrate-recognizing proteins that by interacting with specific glycoepitopes can mediate important biological processes, including immune cell homeostasis and activation of tolerogenic circuits. Among the different members of this family, Galectin 1 and 3 have shown pro-tumorigenic effects, being overexpressed in numerous neoplasic diseases, proving to be relevant in tumor immune escape, tumor progression and resistance to drug-induced apoptosis. Thus, generation of specific glycosides that could inhibit their pro-tumorigenic ability by blocking their carbohydrate recognition domain is one of the current major challenges in the field. Considering that galectin-ligand binding strength is closely related to the ligand structure, analysis of this relationship provides valuable information for rational design of high-affinity ligands that could work as effective galectin inhibitors. Taking profit of the ability of glycosidases to catalyze transglycosylation reactions we achieved the enzymatic synthesis of ß-d-Galp-(1 → 6)-ß-d-Galp-(1 → 4)-d-Glcp(2), a mixture of ß-d-Galp-(1 → 6)-ß-d-Glcp-(1 → 4)-d-Glcp(5) and ß-d-Galp-(1 → 3)-ß-d-Glcp-(1 → 4)-d-Glcp(6), and finally benzyl ß-d-galactopyranoside (9), with reaction yields between 16 and 27%. All the galactosides were purified, and characterized using 1H and 13C nuclear magnetic resonance spectroscopy. Docking results performed between the synthesized compounds and human Galectin 1 (hGal-1) and human Galectin 3 (hGal-3) showed that the replacement of a glucose moiety linked to the terminal galactose with a galactose moiety, decreases the affinity for these galectins. Moreover, regarding the interglycosidic bond the most favorable ß-Gal linkage seems to be ß(1 → 4) followed by ß(1 → 3) and ß(1 → 6) for hGal-1, and ß(1 → 4) followed by ß(1 → 6) and ß(1 → 3) for hGal-3. These results were in accordance with the IC50 values obtained with in vitro solid phase inhibition assays. Therefore, docking results obtained in this work proved to be a very good approximation for predicting binding affinity of novel galactosides.


Assuntos
Galactosídeos/biossíntese , Galectinas/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Trissacarídeos/biossíntese , Sítios de Ligação , Proteínas Sanguíneas , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Galactosídeos/química , Galactosídeos/farmacologia , Galectina 1/antagonistas & inibidores , Galectina 1/química , Galectina 3/antagonistas & inibidores , Galectina 3/química , Galectinas/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Trissacarídeos/química , Trissacarídeos/farmacologia
14.
Bioconjug Chem ; 29(10): 3352-3361, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30215508

RESUMO

Galectins (Gal) are a family of glycan-binding proteins characterized by their affinity for ß-galactosides. Galectin-1 (Gal-1), a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Coordination chemistry has been engaged to develop versatile multivalent neoglycoconjugates for binding Gal-1. In this study we report a fast and original method to synthesize hybrid gold nanoparticles in which a hydrochloride lactose-modified chitosan, named CTL, is mixed with dicarboxylic acid-terminated polyethylene glycol (PEG), leading to shell-like hybrid polymer-sugar-metal nanoparticles (CTL-PEG-AuNPs). The aim of this paper is to preliminarily study the interaction of the CTL-PEG-AuNPs with a target protein, namely, Gal-1, under specific conditions. The molecular interaction has been measured by Transmission Electron Microscopy (TEM), UV-vis, and Raman Spectroscopy on a large range of Gal-1 concentrations (from 0 to 10-12 M). We observed that the interaction was strongly dependent on the Gal-1 concentration at the surface of the gold nanoparticles.


Assuntos
Quitosana/química , Galectina 1/química , Ouro/química , Lactose/química , Polietilenoglicóis/química , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Análise Espectral Raman
15.
Bioconjug Chem ; 29(7): 2489-2496, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29920086

RESUMO

Galectin-1 is an immunomodulatory carbohydrate-binding protein with demonstrated efficacy in various preclinical models. However, its potential for clinical use is challenged by two features of the protein. First, galectin-1 (Gal-1) can be inactivated in oxidative environments, such as sites of inflammation, via covalent cross-linking of surface-exposed cysteine residues. Second, the active conformation of galectin-1 is a noncovalent homodimer with a micromolar dissociation constant. Together, these features necessitate frequent administration of high doses of galectin-1 for therapeutic efficacy. To address this challenge, we report an engineered dimeric variant of Gal-1 that is resistant to oxidative inactivation. Specifically, to prevent oxidative inactivation we mutated 3 of 4 surface cysteine residues to serine residues on Gal-1 ("Tri Gal-1"), and then cross-linked two Tri Gal-1 molecules with poly(ethylene glycol) diacrylate to create a stable homodimer ("Tri-PEG-Tri"). Our data demonstrate that cysteine-to-serine galectin-1 mutants retain the carbohydrate-binding properties and pro-apoptotic activity of wild-type Gal-1. Mutants lacking all surface cysteine residues are completely resistant to covalent cross-linking in oxidative environments. At sufficient polymer:protein ratios, poly(ethylene glycol) diacrylate reacts with the surface cysteine on two Tri Gal-1 molecules to form Tri-PEG-Tri. The effective dose of Tri-PEG-Tri is more than an order of magnitude lower than that of non-PEGylated Gal-1. Together, these data demonstrate reactive oxygen species (ROS)-resistant Tri-PEG-Tri dimers with enhanced lectin activity that may be broadly useful for improving the therapeutic efficacy of Gal-1 in immune modulation, transplant tolerance, and treatment of chronic inflammation.


Assuntos
Galectina 1/química , Lectinas/metabolismo , Multimerização Proteica , Substituição de Aminoácidos , Animais , Reagentes de Ligações Cruzadas , Resistência a Medicamentos , Humanos , Engenharia de Proteínas/métodos , Espécies Reativas de Oxigênio/farmacologia
16.
Int J Biol Macromol ; 115: 1183-1188, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29704605

RESUMO

Galectins are mammalian lectins characterized by affinity for ß-galactosides and the presence of a conserved carbohydrate recognition domain (CRD). Galectins play crucial role in the causation and progression of deadly human diseases like cancer, neurodegenerative disorders and cardiovascular disorders. Available literature reports relevant roles of galectins in innate as well as adaptive immune responses, along with the modulation of acute inflammatory response. In the current study, we purified the goat heart galectin-1 (GHG-1) and carried out its extensive immunological studies. Immunodiffusion studies revealed that anti-GHG-1 antibodies recognize the GHG-1 more readily as compared to the other galectins, suggesting its preferred utilization in various recognition studies. Antigenic cross-reactivity between galectins isolated from different tissues and species suggest their evolutionary preserved fundamental biological roles. A gradual increase in the lysozyme release was evident when the neutrophils were treated with various neutrophil activating agents. The findings of the present study confirm the increase in lysozyme production under the presence of various neutrophil activators, and thus add new information on GHG-1 induced degranulation.


Assuntos
Degranulação Celular/efeitos dos fármacos , Galectina 1/imunologia , Galectina 1/isolamento & purificação , Cabras , Miocárdio/química , Animais , Galectina 1/química , Galectina 1/farmacologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos
17.
Cell Death Dis ; 9(4): 416, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549328

RESUMO

FOXP3 is an important X-linked suppressor of breast cancer. It is reported that FOXP3 is usually mutant, absent, or cytoplasmic distribution in breast cancer cells, which increases the risk of breast cancer. However, in our study the full-length FOXP3 transcript can be detected in breast cancer cells and nuclear FOXP3 is expressed in some breast cancer samples. Therefore, an important question is how the tumor-suppressive function of wild-type FOXP3 is negated in these cancers. We found that Gal-1 is a novel interacting protein of FOXP3 in breast cancer. Furthermore, our results show that the FKH domain in FOXP3 is essential for its interaction with Gal-1. Through ChIP-seq assay, we found that the expression of Gal-1 could inhibit a variety of target genes which were directly regulated by FOXP3. More importantly, these FOXP3-bound genes are involved in the development and metastasis of cancer. Furthermore, functional studies revealed that blocking the FOXP3/Gal-1 interaction restores the tumor-suppressive properties of FOXP3 in breast cancer cells. Finally, we observed that the nuclear abundance of Gal-1 was significantly higher in breast cancer tissues than that in adjacent normal tissues. In addition, we identified that the acidic extracellular microenvironment in breast cancer tissues causes Gal-1 to accumulate in the nucleus. Altogether, nuclear Gal-1 interferes with the binding of FOXP3 to DNA by interacting with the FKH domain of FOXP3, and it indicates a possible mechanism for the loss of the tumor-suppressive properties of FOXP3 in wild-type FOXP3-positive breast cancer.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Galectina 1/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , DNA/química , DNA/metabolismo , Feminino , Fatores de Transcrição Forkhead/química , Galectina 1/antagonistas & inibidores , Galectina 1/química , Humanos , Microscopia Confocal , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Microambiente Tumoral
18.
Biochem J ; 475(5): 1003-1018, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29321242

RESUMO

The delineation of the physiological significance of protein (lectin)-glycan recognition and the structural analysis of individual lectins have directed our attention to studying them in combination. In this report, we tested the hypothesis of hybrid formation by using binary mixtures of homodimeric galectin-1 and -7 as well as a proteolytically truncated version of chimera-type galectin-3. Initial supportive evidence is provided by affinity chromatography using resin-presented galectin-7. Intriguingly, the extent of cell binding by cross-linking of surface counter-receptor increased significantly for monomeric galectin-3 form by the presence of galectin-1 or -7. Pulsed-field gradient NMR (nuclear magnetic resonance) diffusion measurements on these galectin mixtures indicated formation of heterodimers as opposed to larger oligomers. 15N-1H heteronuclear single quantum coherence NMR spectroscopy and molecular dynamics simulations allowed us to delineate how different galectins interact in the heterodimer. The possibility of domain exchange between galectins introduces a new concept for understanding the spectrum of their functionality, particularly when these effector molecules are spatially and temporally co-expressed as found in vivo.


Assuntos
Galectinas/metabolismo , Multimerização Proteica , Sítios de Ligação , Proteínas Sanguíneas , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Galectina 1/química , Galectina 1/metabolismo , Galectina 3/química , Galectina 3/metabolismo , Galectinas/química , Galectinas/fisiologia , Humanos , Multimerização Proteica/fisiologia , Proteínas/metabolismo , Células Tumorais Cultivadas
19.
J Biochem ; 163(1): 39-50, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992109

RESUMO

Interaction of sugar binding proteins-galectins, with glycoconjugates is considered relevant for various reproductive processes. Galectin-1 (gal-1) is a molecule involved in trophoblast cell invasion, which is accomplished through interaction with cell surface and/or extracellular matrix glycoproteins. A possibility of interaction of endogenous gal-1 and trophoblast ß1 integrins, both previously shown relevant for trophoblast invasion, was investigated. Confocal microscopy showed overlap in gal-1 and ß1 integrin localization at the plasma membrane of isolated cytotrophoblast, HTR-8/SVneo extravillous trophoblast cell line and JAr choriocarcinoma cells. Immunoprecipitation confirmed an interaction of gal-1 with integrin ß1, but not with α1 or α5 integrin subunits. Nondenaturing electrophoresis and subcellular fractionation suggested association of gal-1 with ß1 integrin in intracellular and plasma membrane compartments of HTR-8/SVneo cells. Gal-1/ß1 integrin complex was sensitive to chemical and enzyme treatments, indicating carbohydrate dependent interaction. Down-regulation of gal-1 by siRNA, however, had no effect on level or distribution of ß1 integrin, as determined by qPCR and flow cytometry. These results suggest complex lectin type interaction of gal-1 with ß1 integrin at the trophoblast cell membrane, which could influence trophoblast cell adhesion, migration and invasion.


Assuntos
Galectina 1/metabolismo , Integrina beta1/metabolismo , Trofoblastos/metabolismo , Células Cultivadas , Galectina 1/química , Galectina 1/genética , Humanos , Integrina beta1/química , Modelos Moleculares , Trofoblastos/citologia
20.
Med Oncol ; 34(11): 184, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986753

RESUMO

The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.


Assuntos
Carcinoma Papilar/metabolismo , Meios de Contraste/química , Galectina 1/metabolismo , Peptídeos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Ligação Competitiva , Carcinoma Papilar/diagnóstico por imagem , Caspase 3/metabolismo , Linhagem Celular Tumoral , Dextranos/química , Galectina 1/química , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/química , Conformação Proteica , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA