Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Kaohsiung J Med Sci ; 40(10): 916-925, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39230472

RESUMO

This study aims to investigate the effects of the Galectin-3 (Gal-3) inhibitor TD139 on inflammation and the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 pathway in gestational diabetes mellitus (GDM). Human placental tissues were treated with TD139 and TNF-α, assessing Gal-3, ERK/JNK/p38 activation, and inflammatory cytokines. GDM was induced in mice via subcutaneous injections of streptozotocin (STZ). After confirming GDM, mice were treated with 15 mg/kg TD139 on GD 10.5 12.5, 14.5, 16.5, and 18.5. Serum inflammatory cytokines were measured on GD 20.5, and post-delivery placental tissues were analyzed. Data were analyzed using one-way or two-way repeated measures ANOVA with post hoc tests. TD139 suppressed TNF-α-induced increases in Gal-3, IL-1ß, IL-6, MCP-1, and ERK/JNK/p38 activation in placental tissues. In STZ-induced GDM mice, TD139 reduced glucose levels, weight loss, and food and water intake. TD139 significantly lowered TNF-α, IL-1ß, IL-6, and MCP-1 in serum and placental tissues and inhibited the ERK/JNK/p38 pathway. TD139 improved pup numbers in GDM mice compared to untreated ones. TD139 reduces inflammation and inhibits the ERK/JNK/p38 pathway in TNF-α stimulated placental tissues and STZ-induced GDM mice, suggesting its therapeutic potential for managing GDM-related placental inflammation and improving pregnancy outcomes. The study used TNF-α to mimic GDM in placental tissues and an STZ-induced GDM mouse model, which may not fully represent human GDM complexity. Future research should explore alternative models, and broader signaling pathways, and thoroughly evaluate TD139's safety in pregnancy.


Assuntos
Diabetes Gestacional , Galectina 3 , Sistema de Sinalização das MAP Quinases , Placenta , Gravidez , Animais , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Feminino , Camundongos , Humanos , Placenta/metabolismo , Placenta/efeitos dos fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Estreptozocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
2.
Lung ; 202(4): 385-403, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850292

RESUMO

Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.


Assuntos
Galectina 3 , Pneumopatias , Humanos , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Animais , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/patologia , Proteínas Sanguíneas , Galectinas
3.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928462

RESUMO

Galectins are a family of beta-galactoside-binding proteins that are characterised by their carbohydrate recognition domain (CRD) and include galectin-1 and galectin-3. These galectins have been implicated in numerous diseases due to their pleiotropic nature, including cancer and fibrosis, with therapeutic inhibitors being clinically developed to block the CRD. One of the early methods developed to characterise these galectins was the hemagglutination of red blood cells. Although it is insightful, this approach has been hampered by a lack of sensitivity and accurate quantification of the agglutination observed. In this study, we aimed to validate a more precise and quantitative method to enable the further investigation of differences between galectins in respect to agglutination induction in different blood groups, as well as the characterisation of small molecule inhibitors. Quantification of hemagglutination was shown to be optimal using U-bottom plates imaged and analysed with FIJI ImageJ rather than flat-bottom plates read for absorbance on an optical density plate reader. Galectin-3-induced red blood cell agglutination efficacy increased significantly from blood group O to A to B. However, for both the galectin-1 monomer and concatemer, a more comparable effect was observed between blood group B and O, but with more potent effects than in blood group A. Inhibition assays for both galectin-3 and galectin-1 induced-hemagglutination were able to demonstrate clear concentration responses and expected selectivity profiles for a set of small-molecule glycomimetics, confirming the historical profiles obtained in biochemical binding and functional cellular assays.


Assuntos
Eritrócitos , Galectina 1 , Galectinas , Hemaglutinação , Humanos , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Galectinas/antagonistas & inibidores , Galectinas/metabolismo , Galectina 1/antagonistas & inibidores , Galectina 1/metabolismo , Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Testes de Aglutinação/métodos , Testes de Hemaglutinação , Aglutinação/efeitos dos fármacos
4.
Glycoconj J ; 41(2): 93-118, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38630380

RESUMO

Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.


Assuntos
Galectina 3 , Pectinas , Animais , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Proteínas Sanguíneas , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Galectinas/metabolismo , Galectinas/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Pectinas/farmacologia , Pectinas/química
5.
Gastroenterology ; 167(2): 298-314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467382

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS: We generated a novel transgenic mouse model (LSL-KrasG12D/+;Trp53loxP/loxP;Pdx1-Cre;Lgals3-/- [KPPC;Lgals3-/-]) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS: Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the antitumor myeloid cell subpopulation with high major histocompatibility complex class II expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism on GAL3 deficiency. Combined inhibition of the CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS: GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Progressão da Doença , Galectina 3 , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Microambiente Tumoral/imunologia , Camundongos , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral , Deleção de Genes , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Camundongos Knockout , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Transdução de Sinais , Galectinas/genética , Galectinas/metabolismo
6.
Toxicology ; 504: 153786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522819

RESUMO

This study evaluated the effect of pharmacological inhibition of galectin 3 (Gal-3) with modified citrus pectin (MCP) on the heart and kidney in a model of cisplatin-induced acute toxicity. Male Wistar rats were divided into four groups (n = 6/group): SHAM, which received sterile saline intraperitoneally (i.p.) for three days; CIS, which received cisplatin i.p. (10 mg/kg/day) for three days; MCP, which received MCP orally (100 mg/kg/day) for seven days, followed by sterile saline i.p. for three days; MCP+CIS, which received MCP orally for seven days followed by cisplatin i.p. for three days. The blood, heart, and kidneys were collected six hours after the last treatment. MCP treatment did not change Gal-3 protein levels in the blood and heart, but it did reduce them in the kidneys of the MCP groups compared to the SHAM group. While no morphological changes were evident in the cardiac tissue, increased malondialdehyde (MDA) levels and deregulation of the mitochondrial oxidative phosphorylation system were observed in the heart homogenates of the MCP+CIS group. Cisplatin administration caused acute tubular degeneration in the kidneys; the MCP+CIS group also showed increased MDA levels. In conclusion, MCP therapy in the acute model of cisplatin-induced toxicity increases oxidative stress in cardiac and renal tissues. Further investigations are needed to determine the beneficial and harmful roles of Gal-3 in the cardiorenal system since it can act differently in acute and chronic diseases/conditions.


Assuntos
Antineoplásicos , Cisplatino , Galectina 3 , Rim , Pectinas , Ratos Wistar , Animais , Cisplatino/toxicidade , Pectinas/farmacologia , Masculino , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Antineoplásicos/toxicidade , Ratos , Cardiotoxicidade , Miocárdio/metabolismo , Miocárdio/patologia , Malondialdeído/metabolismo , Coração/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Galectinas/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/prevenção & controle
7.
Cancer Chemother Pharmacol ; 91(3): 267-280, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914828

RESUMO

PURPOSE: Galectin-3, a ß-galactoside-binding lectin, plays a key role in several cellular pathways involved in chronic inflammation, heart disease and cancer. GB1211 is an orally bioavailable galectin-3 inhibitor, developed to be systemically active. We report safety and pharmacokinetics (PK) of GB1211 in healthy participants. METHODS: This phase 1, double-blind, placebo-controlled, first-in-human study (NCT03809052) included a single ascending-dose phase (with a food-effect cohort) where participants across seven sequential cohorts were randomized 3:1 to receive oral GB1211 (5, 20, 50, 100, 200 or 400 mg) or placebo. In the multiple ascending-dose phase, participants received 50 or 100 mg GB1211 or placebo twice daily for 10 days. All doses were administered in the fasted state except in the food-effect cohort where doses were given 30 min after a high-fat meal. RESULTS: All 78 participants received at least one GB1211 dose (n = 58) or placebo (n = 20) and completed the study. No safety concerns were identified. Following single and multiple oral doses under fasted conditions, maximum GB1211 plasma concentrations were reached at 1.75-4 h (median) post-dose; mean half-life was 11-16 h. There was a ~ twofold GB1211 accumulation in plasma with multiple dosing, with steady-state reached within 3 days; 30% of the administered dose was excreted in urine as unchanged drug. Absorption in the fed state was delayed by 2 h but systemic exposure was unaffected. CONCLUSION: GB1211 was well tolerated, rapidly absorbed, and displayed favorable PK, indicating a potential to treat multiple disease types. These findings support further clinical development of GB1211. CLINICAL TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov (identifier: NCT03809052).


Assuntos
Galectina 3 , Humanos , Administração Oral , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Galectina 3/antagonistas & inibidores , Voluntários Saudáveis
8.
J Med Chem ; 65(8): 5975-5989, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35427125

RESUMO

Galectin-3 is a ß-galactoside-specific, carbohydrate-recognizing protein (lectin) that is strongly implicated in cancer development, metastasis, and drug resistance. Galectin-3 promotes migration and ability to withstand drug treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Due to high amino acid conservation among galectins and the shallow nature of their glycan-binding site, the design of selective potent antagonists targeting galectin-3 is challenging. Herein, we report the design and synthesis of novel taloside-based antagonists of galectin-3 with enhanced affinity and selectivity. The molecules were optimized by in silico docking, selectivity was established against four galectins, and the binding modes were confirmed by elucidation of X-ray crystal structures. Critically, the specific inhibition of galectin-3-induced BCP-ALL cell agglutination was demonstrated. The compounds decreased the viability of ALL cells even when grown in the presence of protective stromal cells. We conclude that these compounds are promising leads for therapeutics, targeting the tumor-supportive activities of galectin-3 in cancer.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Desenho de Fármacos , Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Humanos , Polissacarídeos/síntese química , Polissacarídeos/química , Polissacarídeos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
9.
Carbohydr Polym ; 277: 118864, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893269

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the colon and rectum. Although galectin-3 (Gal-3) has been reported to play a proinflammatory role in UC, it is unknown whether pectic polysaccharide, a Gal-3 inhibitor in tumor metastasis, can alleviate UC by inhibiting Gal-3. The aim of this study was to investigate the anti-inflammatory effects and underlying mechanisms of SCLP, a pectic polysaccharide purified from Smilax china L. in our previous work, on dextran sulfate sodium-induced UC in BALB/c mice. The results showed that SCLP could significantly improve symptoms, alleviate histopathological damage and reduce the secretion of inflammatory mediators in mice with UC. Analysis of the anti-colitis mechanisms indicated that SCLP could inhibit the Gal-3/NLRP3 inflammasome/IL-1ß pathway by suppressing the expression of Gal-3 and the interaction of Gal-3 and NLRP3. Our results suggested that SCLP could be a promising candidate for prevention and treatment of UC.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Colite Ulcerativa/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Pectinas/farmacologia , Polissacarídeos/farmacologia , Smilax/química , Animais , Anti-Inflamatórios não Esteroides/química , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana , Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pectinas/química , Polissacarídeos/química
10.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830047

RESUMO

Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.


Assuntos
Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Células-Tronco Mesenquimais/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Galectina 3/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Vincristina/farmacologia
11.
J Med Chem ; 64(10): 6634-6655, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33988358

RESUMO

Galectin-3 is a member of a family of ß-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents. In our efforts to identify novel galectin-3 disaccharide mimics to improve drug-like properties, we found that one of the monosaccharide subunits can be replaced with a suitably functionalized tetrahydropyran ring. Optimization of the structure-activity relationships around the tetrahydropyran-based scaffold led to the discovery of potent galectin-3 inhibitors. Compounds 36, 40, and 45 were selected for further in vivo evaluation. The synthesis, structure-activity relationships, and in vivo evaluation of novel tetrahydropyran-based galectin-3 inhibitors are described.


Assuntos
Dissacarídeos/química , Galectina 3/antagonistas & inibidores , Piranos/química , Animais , Sítios de Ligação , Quimiotaxia/efeitos dos fármacos , Cristalografia por Raios X , Dissacarídeos/síntese química , Dissacarídeos/metabolismo , Dissacarídeos/farmacologia , Galectina 3/metabolismo , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/química
12.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760180

RESUMO

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma originating from the nasopharyngeal mucosal tissue and is highly prevalent in southeast Asia. Galectin­3 (gal­3) serves crucial roles in many cancers but its role in NPC remains to be elucidated. The aim of the present study was to investigate the role of gal­3 in NPC. Immunohistochemistry and ELISA were used to determine the expression level of gal­3 in patients with NPC or chronic rhinitis (CR). Gal­3 short hairpin (sh)RNA was established to knockdown gal­3 in 5­8F and 6­10B cells, allowing for the evaluation of the roles of gal­3 in proliferation, migration and apoptosis in NPC cell lines. Immunohistochemistry staining of IL­6 and IL­8 was applied to access the inflammatory state of tumor tissues, and the correlation between the inflammatory state and gal­3 was analyzed. The results demonstrated that gal­3 was upregulated in patients with NPC compared with patients with CR. Knockdown of gal­3 inhibited proliferation and migration in 5­8F and 6­10B cells, as well as promoted apoptosis in these cells. The expression levels of MMP­9 and IL­8 were also decreased in 5­8F and 6­10B cells after transfection with gal­3 shRNA. A positive correlation was identified between the expression level of gal­3 and the inflammatory state of NPC. The phosphorylation levels of ERK1/2 and Akt were downregulated after knockdown of gal­3 in 5­8F and 6­10B cells. In conclusion, the expression level of gal­3 was upregulated in patients with NPC and was positively correlated with the inflammatory state of NPC. The results suggested that gal­3 promoted the proliferation and migration of 5­8F and 6­10B cells, while inhibiting the apoptosis of these cells. Moreover, activation of ERK1/2 and Akt may be the underlying mechanism of the effects of gal­3 on NPC.


Assuntos
Galectina 3/genética , Inflamação/genética , Interleucina-8/genética , Metaloproteinase 9 da Matriz/genética , Carcinoma Nasofaríngeo/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Galectina 3/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/terapia , Proteína Oncogênica v-akt/genética , RNA Interferente Pequeno/farmacologia
13.
FEBS Open Bio ; 11(3): 911-920, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33455075

RESUMO

Multiple clinical trials have shown that monoclonal antibodies (mAbs) against programmed death-ligand 1 (PD-1/PD-L1) can benefit patients with lung cancer by increasing their progression-free survival and overall survival. However, a significant proportion of patients do not respond to anti-PD-1/PD-L1 mAbs. In the present study, we investigated whether galectin (Gal)-3 inhibitors can enhance the antitumor effect of PD-L1 blockade. Using the NSCLC-derived cell line A549, we examined the expression of Gal-3 in lung cancer cells under hypoxic conditions and investigated the regulatory effect of Gal-3 on PD-L1 expression, which is mediated by the STAT3 pathway. We also explored whether Gal-3 inhibition can facilitate the cytotoxic effect of T cells induced by PD-L1 blockade. The effects of combined use of a Gal-3 inhibitor and PD-L1 blockade on tumor growth and T-cell function were also investigated, and we found that hypoxia increased the expression and secretion of Gal-3 by lung cancer cells. Gal-3 increased PD-L1 expression via the upregulation of STAT3 phosphorylation, and administration of a Gal-3 inhibitor enhanced the effect of PD-L1 blockade on the cytotoxic activity of T cells against cancer cells in vitro. In a mouse xenograft model, the combination of a Gal-3 inhibitor and PD-L1 blockade synergistically suppressed tumor growth. Furthermore, the administration of a Gal-3 inhibitor enhanced T-cell infiltration and granzyme B release in tumors. Collectively, our results show that Gal-3 increases PD-L1 expression in lung cancer cells and that the administration of a Gal-3 inhibitor as an adjuvant enhanced the antitumor activity of PD-L1 blockade.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Galectina 3/metabolismo , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galectina 3/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/metabolismo , Camundongos , Fosforilação , Bibliotecas de Moléculas Pequenas/farmacologia , Hipóxia Tumoral , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Am J Physiol Heart Circ Physiol ; 320(1): H364-H380, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275526

RESUMO

Pathological cardiac remodeling is a leading cause of mortality in patients with diabetes. Given the glucose and lipid metabolism disorders (GLDs) in patients with diabetes, it is urgent to conduct a comprehensive study of the myocardial damage under GLDs and find key mechanisms. Apolipoprotein E knockout (ApoE-/-) mice, low-density lipoprotein receptor heterozygote (Ldlr+/-) Syrian golden hamsters, or H9C2 cells were used to construct GLDs models. GLDs significantly promoted cardiomyocyte fibrosis, apoptosis, and hypertrophy in vivo and in vitro, but inhibition of galectin-3 (Gal-3) could significantly reverse this process. Then, the signal transmission pathways were determined. It was found that GLDs considerably inhibited the phosphorylation of Akt at Thr308/Ser473, whereas the silencing of Gal-3 could reverse the inhibition of Akt activity through phosphoinositide 3-kinase-AktThr308 (PI3K-AktThr308) and AMP-activated protein kinase-mammalian target of rapamycin complex 2-AktSer473 (AMPK-mTOR2-AktSer473) pathways. Finally, the PI3K, mTOR, AMPK inhibitor, and Akt activator were used to investigate the role of pathways in regulating cardiac remodeling. Phospho-AktThr308 could mediate myocardial fibrosis, whereas myocardial apoptosis and hypertrophy were regulated by both phospho-AktThr308 and phospho-AktSer473. In conclusion, Gal-3 was an important regulatory factor in GLDs-induced cardiac remodeling, and Gal-3 could suppress the phosphorylation of Akt at different sites in mediating cardiomyocyte fibrosis, apoptosis, and hypertrophy.NEW & NOTEWORTHY Studies on the pathogenesis of diabetic cardiac remodeling are highly desired. Glucose and lipid metabolism are both disordered in diabetes. Glucose and lipid metabolism disturbances promote myocardial fibrosis, apoptosis, and hypertrophy through galectin-3. Galectin-3 promotes cardiac remodeling by inhibiting phosphorylation of AktThr308 or AktSer473. The present study finds that glucose and lipid metabolism disorders are important causes for myocardial damage and provides novel ideas for the prevention and treatment of diabetic cardiac remodeling.


Assuntos
Cardiomegalia/enzimologia , Galectina 3/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular , Amino Açúcares/farmacologia , Animais , Apoptose , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Fibrose , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Mesocricetus/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Ratos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Remodelação Ventricular/efeitos dos fármacos
15.
J Immunother Cancer ; 8(2)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33293356

RESUMO

BACKGROUND: Prostate cancer (PCa) is a major health problem worldwide. Taxol derivatives-based chemotherapies or immunotherapies are usually proposed depending on the symptomatic status of the patient. In the case of immunotherapy, tumors develop robust immune escape mechanisms that abolish any protective response, and to date why prostate cancer is one of the most resistant diseases remains unresolved. METHODS: By using a combination of clinical data to study the transcriptome of metastasis samples from patients with castration-refractory prostate cancer, and state of the art cellular and molecular biology assays in samples from tumor-bearing mice that have been submitted to surgical resection of the tumor before receiving a vaccination, we answered several essential questions in the field of immunotherapy for prostate cancer. We also used two different methods to inhibit the expression of galectin-3 (Gal-3) in tumor cells: a stable RNA interference method to control the expression of this galectin efficiently only in tumor cells, and low and non-cytotoxic doses of docetaxel to easily transfer our findings to clinical settings. RESULTS: Herein, we show for the first time that Gal-3 expressed by prostate tumor cells is the main immune checkpoint responsible for the failure of vaccine-based immunotherapy. Our results show that low and non-cytotoxic doses of docetaxel lead to the inhibition of Gal-3 expression in PCa cells as well as in clinical samples of patients with metastatic and castration-resistant PCa promoting a Th1 response. We thus optimized a prostate cancer animal model that undergoes surgical resection of the tumor to mimic prostatectomy usually performed in patients. Importantly, using Gal-3-knocked down-PCa cells or low and non-cytotoxic doses of taxane before vaccination, we were able to highly control tumor recurrence through a direct impact on the proliferation and infiltration of CD8+ cytotoxic T. CONCLUSIONS: Thus, Gal-3 expression by PCa cells is a crucial inhibitor for the success of immunotherapy, and low doses of docetaxel with non-cytotoxic effect on leukocyte survival could be used before immunotherapy for all patients with PCa to reduce the expression of this critical negative immune checkpoint, pre-conditioning the tumor-microenvironment to activate an antitumor immune response and promote tumor-free outcome.


Assuntos
Galectina 3/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias da Próstata/tratamento farmacológico , Vacinação/métodos , Animais , Galectina 3/farmacologia , Galectina 3/uso terapêutico , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia , Resultado do Tratamento
16.
Food Res Int ; 137: 109747, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233311

RESUMO

Fruits are a prime source of nutrients, bioactive compounds, and dietary fibers. Some products available on the Brazilian market use fruit by-products and claim to have useful effects on human health due to their dietary fiber content. The study aimed to extract and purify the total (28-47 w/w yield) and soluble dietary fiber (4-7 w/w yield) from jaboticaba, papaya, and plum commercial flours sold in Brazil and to study the in vitro biological effects of the fractions. The purified water-soluble fractions consisted mainly of pectin-derived oligosaccharides (5-15 KDa molecular weight) with a negligible content of polyphenols, protein, ashes, and starch. Jaboticaba sample was 95% galacturonic acid while plum and papaya samples were 40% galacturonic acid and 40% galactose (mol%), approximately. The samples were tested for recombinant human galectin-3 inhibition and changes in the cell viability of human colorectal cancer cells. Only the jaboticaba sample inhibited galectin-3 and decreased HCT116 cell viability after 48 h of treatment (p ≤ 0.01) while the plum sample decreased the cell viability after 24 h treatment (p ≤ 0.05). The results obtained in this study demonstrate the relationship between the structure of the soluble fibers extracted from jaboticaba flour and the possible beneficial effects of their consumption.


Assuntos
Neoplasias do Colo/patologia , Frutas , Galectina 3/antagonistas & inibidores , Pectinas/farmacologia , Brasil , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Farinha , Frutas/química , Humanos
17.
Oncol Rep ; 44(5): 1799-1809, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000284

RESUMO

Galectin­3 is expressed in various tissues and plays an important role in the tumor microenvironment (TME). Galectin­3 has been found to be overexpressed in a variety of cancers and is associated with tumor progression and metastasis. Over the past decades, emerging evidence has suggested that the TME may induce galectin­3 expression to maintain cellular homeostasis and promote cell survival. Furthermore, galectin­3 regulates immune cell function to promote tumor­driven immunosuppression through several mechanisms. In the TME, intracellular and extracellular galectin­3 has different functions. In addition, it has been reported that galectin­3 is associated with glycolysis and mitochondrial metabolism in tumors, and it is involved in the regulation of relevant signaling pathways, thus promoting cancer cell survival via adapting to the TME. The aim of the present review was to summarize the current knowledge on galectin­3 production and its function in the TME, its effect on TME immunosuppression, its association with tumor metabolism and relevant signaling pathways, and to report common types of cancer in which galectin­3 is highly expressed, in order to ensure a comprehensive understanding of the critical effects of galectin­3 on tumor progression and metastasis.


Assuntos
Galectina 3/metabolismo , Tolerância Imunológica/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Galectina 3/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Metástase Neoplásica/imunologia , Metástase Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pectinas/farmacologia , Pectinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Microambiente Tumoral/efeitos dos fármacos
18.
J Biol Chem ; 295(49): 16852-16862, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32989051

RESUMO

Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function.


Assuntos
Dexametasona/farmacologia , Galectina 3/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Antígeno AC133/química , Antígeno AC133/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cefalosporinas/farmacologia , Inibidor p16 de Quinase Dependente de Ciclina/antagonistas & inibidores , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Glicopeptídeos/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo
19.
Biochem Pharmacol ; 178: 114113, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579956

RESUMO

Tumor-associated macrophages (TAMs) have been shown to be associated with poor prognosis of cancer and are predominately localized in the hypoxia regions of tumor. We demonstrated in this study that hypoxia increases the synthesis and secretion of galectin-3 by TAMs. The increased expression of galectin-3 in TAMs was seen to be associated with nucleation of transcription factor NF-κB through generation and activation of ROS and promoted tumor growth and metastasis in vitro and in mice through multiple molecular mechanisms. It was found that the TAMs-mediated promotion of tumor growth and metastasis in hypoxia was inhibited by administration of macrophage-depletion agent clodronate liposomal (CL) or galectin-3 inhibitor modified citric pectin (MCP) in orthotopic syngeneic mammary adenocarcinoma model and metastasis model. Co-administration of anti-angiogenesis agent sorafenib or bevacizumab with CL and MCP showed to cause stronger inhibition of tumor growth and metastasis than administration of each agent alone. These results indicate that hypoxia-induced galectin-3 expression and secretion from TAMs promotes tumor growth and metastasis. Targeting the actions of galectin-3 in hypoxia may be a potential therapeutic strategy for cancer treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Bevacizumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Galectina 3/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Hipóxia/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Técnicas de Cocultura , Progressão da Doença , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Metástase Linfática , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Neovascularização Patológica , Pectinas/farmacologia , Transdução de Sinais , Sorafenibe/farmacologia
20.
Respir Res ; 21(1): 62, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111211

RESUMO

BACKGROUND: This study was to investigate of the mechanism by which histone deacetylase (HDAC) 8 inhibitor ameliorated airway hyperresponsiveness (AHR) and allergic airway inflammation. METHODS: Mice were sensitized and then treated with budesonide (BUD) or PCI-34051 (PCI) prior to exposing to normal saline (NS) or ovalbumin (OVA). The raw264.7 cells were treated with interleukin (IL)-4 and PCI or shRNA alone. Repetitive measurements of enhanced pause (Penh) were executed by increasing concentrations of acetyl-ß-methacholine chloride (0 - 50 mg/ml). Cells in bronchoalveolar lavage fluid (BALF) and pathological changes of lungs were examined, respectively. The expression levels of HDAC8, Galecitn (Gal)-3, CD68, CD86, CD163, Arg1 and NOS2 in lungs were measured. Co-regulation of HDAC8 and Gal-3 proteins was observed by immunofluorescence staining and co-immunoprecipitation assay (Co-IP). RESULTS: Significant increases in Penh and IL-4 level were detected with a large inflammatory infiltrate, comprised predominantly of macrophages and eosinophils, into the BALF in OVA-exposed lungs. HDAC8, Gal-3, CD68, CD86, CD163, Arg1 and NOS2 proteins were over-expressed with the significant changes in the Arg1 and NOS2 mRNA levels in the lungs and the IL-4-treated cells. PCI intervention obviously reduced the counts of CD163+ cells. Furthermore, Gal-3 knockdown suppressed Arg1 expression in the cells. Immunofluorescence staining displayed simultaneous changes in HDAC8 and Gal-3 expression in the investigated samples. Treatment with PCI resulted in synchronous reduction of HDAC8 and Gal-3 expression in the Co-IP complexes. CONCLUSIONS: The HDAC8 inhibitor ameliorates AHR and airway inflammation in animal model of allergic asthma through reducing HDAC8-Gal-3 interaction and M2 macrophage polarization.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Polaridade Celular/fisiologia , Galectina 3/biossíntese , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Macrófagos/metabolismo , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Polaridade Celular/efeitos dos fármacos , Feminino , Galectina 3/antagonistas & inibidores , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Células RAW 264.7 , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA