Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Pediatr Hematol Oncol ; 46(7): e531-e533, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177945

RESUMO

Outcomes for high-risk neuroblastoma have improved with the addition of antidisialoganglioside (GD2) antibody-mediated immunotherapy to multimodality therapy. Urticaria is an expected side effect of anti-GD2 immunotherapy. Rarely, despite maximal use of antihistamines and H2 receptor antagonists, refractory urticaria can result in impaired quality of life, and delays or discontinuation of immunotherapy. The anti-IgE monoclonal antibody, omalizumab, is approved for the treatment of asthma and chronic spontaneous urticaria. We successfully managed grade 3, naxitamab-related urticaria refractory to standard management in 2 patients using omalizumab, allowing for continued anti-GD2 immunotherapy. Omalizumab did not impact antitumor activity or immunogenicity of naxitamab.


Assuntos
Omalizumab , Urticária , Humanos , Omalizumab/uso terapêutico , Urticária/tratamento farmacológico , Urticária/imunologia , Masculino , Gangliosídeos/imunologia , Gangliosídeos/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Feminino , Antialérgicos/uso terapêutico , Pré-Escolar
3.
Front Immunol ; 12: 668307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489927

RESUMO

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Citocinas/farmacologia , Gangliosídeos/antagonistas & inibidores , Efeito Enxerto vs Tumor , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/transplante , Ativação Linfocitária/efeitos dos fármacos , Neuroblastoma/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia
4.
Front Immunol ; 12: 690467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367149

RESUMO

Haploidentical stem cell transplantation (haplo SCT) in Stage IV neuroblastoma relapsed patients has been proven efficacious, while immunotherapy utilizing the anti-GD2 antibody dinutuximab beta has become a standard treatment for neuroblastoma. The combinatorial therapy of haplo SCT and dinutuximab may potentiate the efficacy of the immunotherapy. To gain further understanding of the synergistic effects, functional immunomonitoring was assessed during the clinical trial CH14.18 1021 Antibody and IL2 After haplo SCT in Children with Relapsed Neuroblastoma (NCT02258815). Rapid immune reconstitution of the lymphoid compartment was confirmed, with clinically relevant dinutuximab serum levels found in all patients over the course of treatment. Only one patient developed human anti-chimeric antibodies (HACAs). In-patient monitoring revealed highly functional NK cell posttransplant capable of antibody-dependent cellular cytotoxicity (ADCC). Degranulation of NK cell subsets revealed a significant response increased by dinutuximab. This was irrespective of the KIR receptor-ligand constellation within the NK subsets, defined by the major KIR receptors CD158a, CD158b, and CD158e. Moreover, complement-dependent cytotoxicity (CDC) was shown to be an extremely potent effector-cell independent mechanism of tumor cell lysis, with a clear positive correlation to GD2 expression on the cancer cells as well as to the dinutuximab concentrations. The ex vivo testing of patient-derived effector cells and the sera collected during dinutuximab therapy demonstrated both high functionality of the newly established lymphoid immune compartment and provided confidence that the antibody dosing regimen was sufficient over the duration of the dinutuximab therapy (up to nine cycles in a 9-month period). During the course of the dinutuximab therapy, proinflammatory cytokines and markers (sIL2R, TNFa, IL6, and C reactive protein) were significantly elevated indicating a strong anti-GD2 immune response. No impact of FcGR polymorphism on event-free and overall survival was found. Collectively, this study has shown that in-patient functional immunomonitoring is feasible and valuable in contributing to the understanding of anti-cancer combinatorial treatments such as haplo SCT and antibody immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Gangliosídeos/antagonistas & inibidores , Transplante de Células-Tronco Hematopoéticas , Monitorização Imunológica , Neuroblastoma/terapia , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Citocinas/sangue , Estudos de Viabilidade , Gangliosídeos/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Mediadores da Inflamação/sangue , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Neuroblastoma/sangue , Neuroblastoma/imunologia , Neuroblastoma/patologia , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Tempo , Transplante Haploidêntico , Resultado do Tratamento
5.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33722905

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no effective standard therapy. Breast cancer stem-like cells (BCSCs) in primary TNBCs are reported to be responsible for metastatic spread of the disease and resistance to chemotherapy, but no available therapeutic tools target BCSCs. We previously reported that the ganglioside GD2 is highly expressed on BCSCs and that inhibition of its expression hampers TNBC growth. We therefore hypothesized that the anti-GD2 antibody dinutuximab (ch14.18) targets GD2+ BCSCs and inhibits TNBC growth. METHOD: To test our hypothesis, we first determined GD2 expression via immunohistochemistry in frozen primary tumor samples from patients with TNBC (n=89). Then, we examined the effects of dinutuximab on TNBC cell adhesion, migration, and mammosphere formation in vitro and on tumor growth in vivo using TNBC cell-line and patient-derived xenograft (PDX) models. RESULTS: We found that GD2 was expressed in around 60% of primary TNBC tumors at variable levels and was associated with worse overall survival of patients with TNBC (p=0.002). GD2 was found to be expressed in tumors and stroma, but normal ducts and lobules in adjacent tissues have shown low or no GD2 staining, indicating that GD2 is potentially a novel biomarker for tumor and its microenvironment. Treatment with dinutuximab significantly decreased adhesion and migration of MDA-MB-231 and SUM159 TNBC cells. Moreover, dinutuximab treatment inhibited mTOR signaling, which has been shown to be regulated by GD2 in BCSCs. Dinutuximab also reduced tumor growth in nude mice bearing TNBC cell-line xenografts. Finally, dinutuximab in combination with activated natural killer cells inhibited tumor growth in a TNBC PDX model and improved overall survival of tumor-bearing mice. CONCLUSIONS: Dinutuximab successfully eliminated GD2+ cells and reduced tumor growth in both in vivo models. Our data provide proof-of-concept for the criticality of GD2 in BCSCs and demonstrate the potential of dinutuximab as a novel therapeutic approach for TNBC.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Gangliosídeos/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Gangliosídeos/metabolismo , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Camundongos Nus , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Hematol Oncol ; 13(1): 172, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303017

RESUMO

BACKGROUND: The cure rate for metastatic osteosarcoma has not substantially improved over the past decades. Clinical trials of anti-HER2 trastuzumab or anti-GD2 dinutuximab for metastatic or refractory osteosarcoma were not successful, and neither was immune checkpoint inhibitors (ICIs). METHODS: We tested various target antigen expressions on osteosarcoma cell lines using flow cytometry and analyzed in vitro T cell engaging BsAb (T-BsAb)-dependent T cell-mediated cytotoxicity using 4-h 51Cr release assay. We tested in vivo anti-tumor activities of T-BsAb targeting GD2 or HER2 in established osteosarcoma cell line or patient-derived xenograft (PDX) mouse models carried out in BALB-Rag2-/-IL-2R-γc-KO (BRG) mice. We also generated ex vivo BsAb-armed T cells (EATs) and studied their tumor-suppressive effect against osteosarcoma xenografts. In order to improve the anti-tumor response, ICIs, anti-human PD-1 (pembrolizumab) or anti-human PD-L1 (atezolizumab) antibodies were tested their synergy with GD2- or HER2-BsAb against osteosarcoma. RESULTS: GD2 and HER2 were chosen from a panel of surface markers on osteosarcoma cell lines and PDXs. Anti-GD2 BsAb or anti-HER2 BsAb exerted potent anti-tumor effect against osteosarcoma tumors in vitro and in vivo. T cells armed with anti-GD2-BsAb (GD2-EATs) or anti-HER2-BsAb (HER2-EATs) showed significant anti-tumor activities as well. Anti-PD-L1 combination treatment enhanced BsAb-armed T cell function in vivo and improved tumor control and survival of the mice, when given sequentially and continuously. CONCLUSION: Anti-GD2 and anti-HER2 BsAbs were effective in controlling osteosarcoma. These data support the clinical investigation of GD2 and HER2 targeted T-BsAb treatment in combination with immune checkpoint inhibitors, particularly anti-PD-L1, in patients with osteosarcoma to improve their treatment outcome.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Gangliosídeos/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Ósseas/imunologia , Linhagem Celular Tumoral , Gangliosídeos/imunologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Osteossarcoma/imunologia , Receptor ErbB-2/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
7.
Semin Immunol ; 47: 101390, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31982247

RESUMO

Tumor associated carbohydrate antigens (TACAs) are a class of attractive antigens for the development of anti-cancer immunotherapy. Besides monoclonal antibodies and vaccines, chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs) targeting TACA are exciting directions to harness the power of the immune system to fight cancer. In this review, we focus on two TACAs, i.e., the GD2 ganglioside and the mucin-1 (MUC1) protein. The latest advances in CAR T cells and bispecific antibodies targeting these two antigens are presented. The roles of co-stimulatory molecules, structures of the sequences for antigen binding, methods for CAR and antibody construction, as well as strategies to enhance solid tumor penetration and reduce T cell exhaustion and death are discussed. Furthermore, approaches to reduce "on target, off tumor" side effects are introduced. With further development, CAR T cells and BsAbs targeting GD2 and MUC1 can become powerful agents to effectively treat solid tumor.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Epitopos/genética , Epitopos/imunologia , Gangliosídeos/antagonistas & inibidores , Gangliosídeos/química , Gangliosídeos/imunologia , Humanos , Mucina-1/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética
8.
Int J Cancer ; 146(2): 424-438, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241171

RESUMO

Stem cell chemoresistance remains challenging the efficacy of the front-line temozolomide against glioblastoma. Novel therapies are urgently needed to fight those cells in order to control tumor relapse. Here, we report that anti-O-acetyl-GD2 adjuvant immunotherapy controls glioma stem-like cell-driven chemoresistance. Using patient-derived glioblastoma cells, we found that glioma stem-like cells overexpressed O-acetyl-GD2. As a result, monoclonal antibody 8B6 immunotherapy significantly increased temozolomide genotoxicity and tumor cell death in vitro by enhancing temozolomide tumor uptake. Furthermore, the combination therapy decreased the expression of the glioma stem-like cell markers CD133 and Nestin and compromised glioma stem-like cell self-renewal capabilities. When tested in vivo, adjuvant 8B6 immunotherapy prevented the extension of the temozolomide-resistant glioma stem-like cell pool within the tumor bulk in vivo and was more effective than the single agent therapies. This is the first report demonstrating that anti-O-acetyl-GD2 monoclonal antibody 8B6 targets glioblastoma in a manner that control temozolomide-resistance driven by glioma stem-like cells. Together our results offer a proof of concept for using anti-O-acetyl GD2 reagents in glioblastoma to develop more efficient combination therapies for malignant gliomas.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Gangliosídeos/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Sinergismo Farmacológico , Gangliosídeos/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/imunologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Curr Top Med Chem ; 19(30): 2766-2781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31721713

RESUMO

BACKGROUND: Originating from the abnormal growth of neuroblasts, pediatric neuroblastoma affects the age group below 15 years. It is an aggressive heterogenous cancer with a high morbidity rate. Biological marker GD2 synthesised by the GD2 gene acts as a powerful predictor of neuroblastoma cells. GD2 gangliosides are sialic acid-containing glycosphingolipids. Differential expression during brain development governs the function of the GD2. The present study explains the interaction of the GD2 with its established inhibitors and discovers the compound having a high binding affinity against the target protein. Technically, during the development of new compounds through docking studies, the best drug among all pre-exist inhibitors was filtered. Hence in reference to the best docked compound, the study proceeded further. METHODOLOGY: The In silico approach provides a platform to determine and establish potential inhibitor against GD2 in Pediatric neuroblastoma. The 3D structure of GD2 protein was modelled by homology base fold methods using Smith-Watermans' Local alignment. A total of 18 established potent compounds were subjected to molecular docking and Etoposide (CID: 36462) manifested the highest affinity. The similarity search presented 336 compounds similar to Etoposide. RESULTS: Through virtual screening, the compound having PubChem ID 10254934 showed a better affinity towards GD2 than the established inhibitor. The comparative profiling of the two compounds based on various interactions such as H-bond interaction, aromatic interactions, electrostatic interactions and ADMET profiling and toxicity studies were performed using various computational tools. CONCLUSION: The docking separated the virtual screened drug (PubChemID: 10254934) from the established inhibitor with a better re-rank score of -136.33. The toxicity profile of the virtual screened drug was also lesser (less lethal) than the established drug. The virtual screened drug was observed to be bioavailable as it does not cross the blood-brain barrier. Conclusively, the virtual screened compound obtained in the present investigation is better than the established inhibitor and can be further augmented by In vitro analysis, pharmacodynamics and pharmacokinetic studies.


Assuntos
Antineoplásicos/uso terapêutico , Gangliosídeos/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Adolescente , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Criança , Pré-Escolar , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Gangliosídeos/química , Humanos , Lactente , Simulação de Acoplamento Molecular , Neuroblastoma/metabolismo , Homologia de Sequência de Aminoácidos
10.
Molecules ; 24(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653037

RESUMO

Antigen-binding fragments of antibodies specific to the tumor-associated ganglioside GD2 are well poised to play a substantial role in modern GD2-targeted cancer therapies, however, rapid elimination from the body and reduced affinity compared to full-length antibodies limit their therapeutic potential. In this study, scFv fragments of GD2-specific antibodies 14.18 were produced in a mammalian expression system that specifically bind to ganglioside GD2, followed by site-directed pegylation to generate mono-, di-, and tetra-scFv fragments. Fractionated pegylated dimers and tetramers of scFv fragments showed significant increase of the binding to GD2 which was not accompanied by cross-reactivity with other gangliosides. Pegylated multimeric di-scFvs and tetra-scFvs exhibited cytotoxic effects in GD2-positive tumor cells, while their circulation time in blood significantly increased compared with monomeric antibody fragments. We also demonstrated a more efficient tumor uptake of the multimers in a syngeneic GD2-positive mouse cancer model. The findings of this study provide the rationale for improving therapeutic characteristics of GD2-specific antibody fragments by multimerization and propose a strategy to generate such molecules. On the basis of multimeric antibody fragments, bispecific antibodies and conjugates with cytotoxic drugs or radioactive isotopes may be developed that will possess improved pharmacokinetic and pharmacodynamic properties.


Assuntos
Antineoplásicos Imunológicos , Gangliosídeos/antagonistas & inibidores , Neoplasias Experimentais , Polietilenoglicóis/química , Anticorpos de Cadeia Única , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/sangue , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacocinética , Anticorpos de Cadeia Única/farmacologia
11.
Immunotherapy ; 11(9): 831-850, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094257

RESUMO

Neuroblastoma (NB) is a common and deadly malignancy mostly observed in children. Evolution of therapeutic options for NB led to the addition of immunotherapeutic modalities to the previously recruited chemotherapeutic options. Molecular studies of the NB cells resulted in the discovery of many tumor-associated genes and antigens such as MYCN gene and GD2. MYCN gene and GD2 surface antigen are two of the most practical discoveries regarding immunotherapy of neuroblastoma. The GD2 antigen has been targeted in many animal and human studies including Phase III clinical trials. Even though these antigens have changed the face of pediatric neuroblastoma, they do not take as much credit in immunotherapy of adult-onset neuroblastoma. Monoclonal antibodies have been designed to detect this antigen on the surface of NB tumor cells. Despite bettering the outcomes for NB patients, current therapies still fail in many cases. Studies are underway to discover more specific tumor-associated antigens and more effective treatment options. In the current narrative, immunotherapy of NB - from emerging of this therapeutic backbone in NB to the latest discoveries regarding this malignancy - has been reviewed.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos , Terapia de Alvo Molecular/métodos , Neuroblastoma/terapia , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Criança , Ensaios Clínicos como Assunto , Gangliosídeos/antagonistas & inibidores , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/imunologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/imunologia , Resultado do Tratamento
12.
Clin Cancer Res ; 25(15): 4761-4774, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31068371

RESUMO

PURPOSE: We determined whether elimination of CD105+ cells in the tumor microenvironment (TME) with anti-CD105 antibodies enhanced anti-disialoganglioside (GD2) antibody dinutuximab therapy of neuroblastoma when combined with activated natural killer (aNK) cells. EXPERIMENTAL DESIGN: The effect of MSCs and monocytes on antibody-dependent cellular cytotoxicity (ADCC) mediated by dinutuximab with aNK cells against neuroblastoma cells was determined in vitro. ADCC with anti-CD105 mAb TRC105 and aNK cells against MSCs, monocytes, and endothelial cells, which express CD105, was evaluated. Anti-neuroblastoma activity in immunodeficient NSG mice of dinutuximab with aNK cells without or with anti-CD105 mAbs was determined using neuroblastoma cell lines and a patient-derived xenograft. RESULTS: ADCC mediated by dinutuximab with aNK cells against neuroblastoma cells in vitro was suppressed by addition of MSCs and monocytes, and dinutuximab with aNK cells was less effective against neuroblastomas formed with coinjected MSCs and monocytes in NSG mice than against those formed by tumor cells alone. Anti-CD105 antibody TRC105 with aNK cells mediated ADCC against MSCs, monocytes, and endothelial cells. Neuroblastomas formed in NSG mice by two neuroblastoma cell lines or a patient-derived xenograft coinjected with MSCs and monocytes were most effectively treated with dinutuximab and aNK cells when anti-human (TRC105) and anti-mouse (M1043) CD105 antibodies were added, which depleted human MSCs and murine endothelial cells and macrophages from the TME. CONCLUSIONS: Immunotherapy of neuroblastoma with anti-GD2 antibody dinutuximab and aNK cells is suppressed by CD105+ cells in the TME, but suppression is overcome by adding anti-CD105 antibodies to eliminate CD105+ cells.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/farmacologia , Endoglina/antagonistas & inibidores , Gangliosídeos/antagonistas & inibidores , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neuroblastoma/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Endoglina/imunologia , Gangliosídeos/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Res ; 79(12): 3112-3124, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31015228

RESUMO

The cell membrane glycolipid GD2 is expressed by multiple solid tumors, including 88% of osteosarcomas and 98% of neuroblastomas. However, osteosarcomas are highly heterogeneous, with many tumors exhibiting GD2 expression on <50% of the individual cells, while some tumors are essentially GD2-negative. Anti-GD2 immunotherapy is the current standard of care for high-risk neuroblastoma, but its application to recurrent osteosarcomas, for which no effective therapies exist, has been extremely limited. This is, in part, because the standard assays to measure GD2 expression in these heterogeneous tumors are not quantitative and are subject to tissue availability and sampling bias. To address these limitations, we evaluated a novel, sensitive radiotracer [64Cu]Cu-Bn-NOTA-hu14.18K322A to detect GD2 expression in osteosarcomas (six patient-derived xenografts and one cell line) in vivo using positron emission tomography (PET). Tumor uptake of the radiolabeled, humanized anti-GD2 antibody [64Cu]Cu-Bn-NOTA-hu14.18K322A was 7-fold higher in modestly GD2-expressing osteosarcomas (32% GD2-positive cells) than in a GD2-negative tumor (9.8% vs. 1.3% of the injected dose per cc, respectively). This radiotracer also identified lesions as small as 29 mm3 in a 34% GD2-positive model of metastatic osteosarcoma of the lung. Radiolabeled antibody accumulation in patient-derived xenografts correlated with GD2 expression as measured by flow cytometry (Pearson r = 0.88, P = 0.01), distinguishing moderately GD2-expressing osteosarcomas (32%-69% GD2-positive cells) from high GD2 expressors (>99%, P < 0.05). These results support the utility of GD2 imaging with PET to measure GD2 expression in osteosarcoma and thus maximize the clinical impact of anti-GD2 immunotherapy. SIGNIFICANCE: In situ assessment of all GD2-positive osteosarcoma sites with a novel PET radiotracer could significantly impact anti-GD2 immunotherapy patient selection and enable noninvasive probing of correlations between target expression and therapeutic response.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Ósseas/patologia , Gangliosídeos/antagonistas & inibidores , Neoplasias Pulmonares/secundário , Recidiva Local de Neoplasia/patologia , Osteossarcoma/patologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/metabolismo , Proliferação de Células , Gangliosídeos/imunologia , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/imunologia , Osteossarcoma/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Bull Exp Biol Med ; 166(4): 541-547, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783840

RESUMO

Induction of direct cell death is one of the mechanisms of the antitumor effect of GD2-specific antibodies used for the therapy of high-risk neuroblastoma. The mechanisms of the cytotoxic signal triggered by antibody binding to GD2 ganglioside on the surface of the tumor cell remain insufficiently studied. Using inhibitor analysis we demonstrated that actin microfilaments are involved in the cell death induced by GD2-specific antibodies. Specifically, a strong antagonistic influence of cytochalasin D on the cytotoxic effect induced by GD2-specific antibodies was demonstrated in GD2+ tumor cell lines, which was expressed in at least 20% increase in cell survival and a significant decrease of the fraction of cells with fragmented DNA.


Assuntos
Citoesqueleto de Actina/metabolismo , Anticorpos/farmacologia , Gangliosídeos/imunologia , Animais , Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Gangliosídeos/antagonistas & inibidores , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
15.
Scand J Immunol ; 89(3): e12741, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30549299

RESUMO

Novel therapies to treat patients with solid cancers that have developed resistance to chemotherapy represent unmet needs of considerable dimensions. In the present review, we will address the attempts to develop chimeric antigen receptor (CAR) targeted immunotherapy against osteosarcoma (OS). This aggressive cancer displays its peak incidence in children and young adults. The main cause of patient death is lung metastases with a 5-year survival as low as 5%-10% in the primary metastatic setting and 30% in the relapse situation, respectively. Effective adjuvant combination chemotherapy introduced more than 40 years ago improved the survival rates from below 20% to around 60% in patients; however, since then, no major breakthroughs have been made. The use of immune checkpoint inhibitors has been disappointing in OS, while other types of immunotherapies such as CAR T cells remain largely unexplored. Indeed, for CAR T-cell therapy to be efficacious, two main criteria need to be fulfilled: (a) CAR T cells should target an epitope selectively expressed on the cell surface of OS in order to prevent toxicities in normal tissues and (b) the target should also be widely expressed on OS metastases. These challenges have already been undertaken in OS and illustrate the difficulties in developing tomorrow's CAR-T treatment in a solid tumour. We will discuss the experiences with CAR-T therapy development and efficacy to combat the clinical challenges in OS.


Assuntos
Neoplasias Ósseas/terapia , Imunoterapia Adotiva/métodos , Osteossarcoma/terapia , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/mortalidade , Fibroblastos Associados a Câncer/fisiologia , Endopeptidases , Gangliosídeos/antagonistas & inibidores , Gelatinases/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Receptor ErbB-2/análise , Receptor IGF Tipo 1/fisiologia , Receptores de Interleucina-11/antagonistas & inibidores , Serina Endopeptidases/fisiologia , Microambiente Tumoral
16.
Apoptosis ; 23(9-10): 492-511, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30027525

RESUMO

The process of autophagy and its role in survival of human neuroblastoma cell cultures was studied upon addition of an anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (14G2a mAb) and an aurora A kinase specific inhibitor, MK-5108. It was recently shown that combination of these agents significantly potentiates cytotoxicity against IMR-32 and CHP-134 neuroblastoma cells in vitro, as compared to the inhibitor used alone. In this study we gained mechanistic insights on autophagy in the observed cytotoxic effects exerted by both agents using cytotoxicity assays, RT-qPCR, immunoblotting, and autophagy detection methods. Enhancement of the autophagy process in the 14G2a mAb- and MK-5108-treated IMR-32 cells was documented by assessing autophagic flux. Application of a lysosomotropic agent-chloroquine (CQ) affected the 14G2a mAb- and MK-5108-stimulated autophagic flux. It is our conclusion that the 14G2a mAb (40 µg/ml) and MK-5108 inhibitor (0.1 µM) induce autophagy in IMR-32 cells. Moreover, the combinatorial treatment of IMR-32 cells with the 14G2a mAb and CQ significantly potentiates cytotoxic effect, as compared to CQ used alone. Most importantly, we showed that interfering with autophagy at its early and late step augments the 14G2a mAb-induced apoptosis, therefore we can conclude that inhibition of autophagy is the primary mechanism of the CQ-mediated sensitization to the 14G2a mAb-induced apoptosis. Although, there was no virtual stimulation of autophagy in the 14G2a mAb-treated CHP-134 neuroblastoma cells, we were able to show that PHLDA1 protein positively regulates autophagy and this process exists in a mutually exclusive manner with apoptosis in PHLDA1-silenced CHP-134 cells.


Assuntos
Apoptose/genética , Aurora Quinase A/genética , Autofagia/genética , Neuroblastoma/genética , Fatores de Transcrição/genética , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Aurora Quinase A/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácidos Cicloexanocarboxílicos/farmacologia , Gangliosídeos/antagonistas & inibidores , Gangliosídeos/genética , Humanos , Camundongos , Neuroblastoma/patologia , Tiazóis/farmacologia , Fatores de Transcrição/antagonistas & inibidores
17.
Pediatr Blood Cancer ; 65(6): e26967, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29350486

RESUMO

BACKGROUND: The monoclonal anti-GD2 antibody ch14.18/CHO in combination with IL-2 is active and effective in high-risk neuroblastoma (NB) patients. Here, we investigated the inflammatory response and treatment tolerance of long-term infusion (LTI) of ch14.18/CHO (10 × 10 mg/m2 ; 24 hr) in combination with subcutaneous (s.c.) IL-2 in a single center program. METHODS: Fifty-three NB patients received up to six cycles of 100 mg/m2 ch14.18/CHO (d8-18, where d represents day(s)) as LTI combined with 6 × 106 IU/m2 s.c. IL-2 (d1-5; 8-12) and 160 mg/m2 oral 13-cis retinoic acid (RA) (d19-32). Side effects of ch14.18/CHO and IL-2 treatment require hospitalization of patients on d8. Treatment tolerance was evaluated daily with clinical parameters (body temperature, vital signs, Lansky performance status, requirement of i.v. concomitant medication) to define an outpatient candidate status. sIL-2-R and C-reactive protein values were determined to assess the inflammatory response. RESULTS: LTI of ch14.18/CHO (d8-18) in combination with s.c.IL-2 (d8-12) showed an acceptable treatment tolerance that allowed all patients to receive part of the treatment as an outpatient (median time point of discharge: d15 for all cycles). The treatment tolerance improved from cycle to cycle and the time to become an outpatient candidate decreased from d15 to d13 in subsequent cycles. Clinical and laboratory parameters indicate a maximum inflammatory response at d11 of each cycle. Interestingly, the soluble IL-2 receptor remained increased at baseline of the next cycle indicating immune activation over the entire treatment period of 6 months. CONCLUSIONS: LTI of ch14.18/CHO combined with s.c.IL-2 shows an improved tolerance in subsequent cycles allowing outpatient treatment.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Gangliosídeos/antagonistas & inibidores , Imunoterapia/efeitos adversos , Inflamação/patologia , Interleucina-2/efeitos adversos , Neuroblastoma/terapia , Adolescente , Adulto , Anticorpos Monoclonais/administração & dosagem , Criança , Pré-Escolar , Quimioterapia Combinada , Feminino , Seguimentos , Gangliosídeos/imunologia , Humanos , Tolerância Imunológica , Lactente , Inflamação/induzido quimicamente , Infusões Intravenosas , Interleucina-2/administração & dosagem , Masculino , Neuroblastoma/imunologia , Neuroblastoma/patologia , Prognóstico , Adulto Jovem
18.
J Cell Physiol ; 233(2): 866-879, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28145567

RESUMO

Neuroblastoma (NB) with various clinical presentation is a known childhood malignancy. Despite significant progress in treatment of NB afflicted patients, high risk disease is usually associated with poor outcome, resulting in long-term survival of less that 50%. Known as a disease most commonly originated form the nerve roots, the variants involved in NB imitation and progression remain to be elucidated. The outcome of low to intermediate risk disease is favorable whereas the high risk NB disease with dismal prognosis, positing the necessity of novel approaches for early detection and prognostication of advanced disease. Tailored immunotherapy approaches have shown significant improvement in high-risk NB patients. It has found a link between Gangliosides and progression of NB. The vast majority of neuroblastoma tumors express elevated levels of GD2, opening new insight into using anti-GD2 drugs as potential treatments for NBs. Implication of anti-GD2 monoclonal antibodies for treatment of high risk NBs triggers further investigation to unearth novel biomarkers as prognostic and response biomarker to guide additional multimodal tailored treatment approaches. A growing body of evidence supports the usefulness of miRNAs to evaluate high risk NBs response to anti-GD2 drugs and further prevent drug-related toxicities in refractory or recurrent NBs. miRNAs and circulating proteins in body fluids (plasma and serum) present as potential biomarkers in early detection of NBs. Here, we summarize various biomarkers involved in diagnosis, prognosis and response to treatment in patients with NB. We further attempted to overview prognostic biomarkers in response to treatment with anti-GD2 drugs.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/tratamento farmacológico , Gangliosídeos/antagonistas & inibidores , Imunoterapia/métodos , MicroRNAs/sangue , Neuroblastoma/sangue , Neuroblastoma/tratamento farmacológico , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Gangliosídeos/imunologia , Humanos , MicroRNAs/genética , Técnicas de Diagnóstico Molecular , Neuroblastoma/genética , Neuroblastoma/imunologia , Valor Preditivo dos Testes , Resultado do Tratamento
19.
Pediatr Dev Pathol ; 21(4): 355-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29067879

RESUMO

Neuroblastoma, a malignant neoplasm of the sympathetic nervous system, is one of the most aggressive pediatric cancers. Patients with stage IV high-risk neuroblastoma receive an intensive multimodal therapy ending with an immunotherapy based on a chimeric monoclonal antibody ch14.18. Although the use of ch14.18 monoclonal antibody has significantly increased the survival rate of high-risk neuroblastoma patients, about 33% of these patients still relapse and die from their disease. Ch14.18 targets the disialoganglioside, GD2, expressed on neuroblastic tumor (NT) cells. To better understand the causes of tumor relapse following ch14.18 immunotherapy, we have analyzed the expression of GD2 in 152 tumor samples from patients with NTs using immunohistochemical stainings. We observed GD2 expression in 146 of 152 samples (96%); however, the proportion of GD2-positive cells varied among samples. Interestingly, low percentage of GD2-positive cells before immunotherapy was associated with relapse in patients receiving ch14.18 immunotherapy. In addition, we demonstrated in vitro that the sensitivity of neuroblastoma cell lines to natural killer-mediated lysis was dependent on the proportion of GD2-positive cells, in the presence of ch14.18 antibody. In conclusion, our results indicate that the proportion of tumor cells expressing GD2 in NTs should be taken in consideration, as a prognostic marker, for high-risk neuroblastoma patients receiving anti-GD2 immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Gangliosídeos/metabolismo , Neuroblastoma/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Gangliosídeos/antagonistas & inibidores , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Masculino , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/etiologia , Neuroblastoma/diagnóstico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/mortalidade , Prognóstico , Resultado do Tratamento
20.
Clin Cancer Res ; 23(21): 6441-6449, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939747

RESUMO

Purpose: Anti-GD2 mAbs, acting via antibody-dependent cell-mediated cytotoxicity, may enhance the effects of chemotherapy. This pilot trial investigated a fixed dose of a unique anti-GD2 mAb, hu14.18K322A, combined with chemotherapy, cytokines, and haploidentical natural killer (NK) cells.Experimental Design: Children with recurrent/refractory neuroblastoma received up to six courses of hu14.18K322A (40 mg/m2/dose, days 2-5), GM-CSF, and IL2 with chemotherapy: cyclophosphamide/topotecan (courses 1,2), irinotecan/temozolomide (courses 3,4), and ifosfamide/carboplatin/etoposide (courses 5,6). Parentally derived NK cells were administered with courses 2, 4, and 6. Serum for pharmacokinetic studies of hu14.18K322A, soluble IL2 receptor alpha (sIL2Rα) levels, and human antihuman antibodies (HAHA) were obtained.Results: Thirteen heavily pretreated patients (9 with prior anti-GD2 therapy) completed 65 courses. One patient developed an unacceptable toxicity (grade 4 thrombocytopenia >35 days). Four patients discontinued treatment for adverse events (hu14.18K322A allergic reaction, viral infection, surgical death, second malignancy). Common toxicities included grade 3/4 myelosuppression (13/13 patients) and grade 1/2 pain (13/13 patients). Eleven patients received 29 NK-cell infusions. The response rate was 61.5% (4 complete responses, 1 very good partial response, 3 partial responses) and five had stable disease. The median time to progression was 274 days (range, 239-568 days); 10 of 13 patients (77%) survived 1 year. Hu14.18K322A pharmacokinetics was not affected by chemotherapy or HAHA. All patients had increased sIL2Rα levels, indicating immune activation.Conclusions: Chemotherapy plus hu14.18K322A, cytokines, and NK cells is feasible and resulted in clinically meaningful responses in patients with refractory/recurrent neuroblastoma. Further studies of this approach are warranted in patients with relapsed and newly diagnosed neuroblastoma. Clin Cancer Res; 23(21); 6441-9. ©2017 AACR.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Terapia Baseada em Transplante de Células e Tecidos , Gangliosídeos/antagonistas & inibidores , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Adolescente , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Carboplatina/administração & dosagem , Criança , Pré-Escolar , Terapia Combinada , Ciclofosfamida/administração & dosagem , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Intervalo Livre de Doença , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Etoposídeo/administração & dosagem , Feminino , Gangliosídeos/imunologia , Humanos , Ifosfamida/administração & dosagem , Lactente , Interleucina-2/sangue , Subunidade alfa de Receptor de Interleucina-2/sangue , Irinotecano , Células Matadoras Naturais/imunologia , Masculino , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/patologia , Neuroblastoma/sangue , Neuroblastoma/patologia , Temozolomida , Topotecan/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA