Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834060

RESUMO

GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes-HEXA, HEXB, and GM2A-within the cell's lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a-/-). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a-/- mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2.


Assuntos
Gangliosidoses GM2 , Doença de Tay-Sachs , Humanos , Animais , Camundongos , Dependovirus/genética , Sorogrupo , Doença de Tay-Sachs/terapia , Gangliosidoses GM2/genética , Gangliosidoses GM2/terapia , Proteína Ativadora de G(M2)/genética , Terapia Genética
2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298170

RESUMO

GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a-/- mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS-the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research.


Assuntos
Gangliosídeo G(M2) , Gangliosidoses GM2 , Humanos , Animais , Camundongos , Gangliosídeo G(M2)/metabolismo , Mutação , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Proteína Ativadora de G(M2)/genética , Gangliosidoses GM2/genética
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867370

RESUMO

GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the ß-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.


Assuntos
Proteína Ativadora de G(M2)/genética , Gangliosidoses GM2/patologia , beta-N-Acetil-Hexosaminidases/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Barreira Hematoencefálica , Ensaios Clínicos como Assunto , Dieta Cetogênica , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Terapia Genética , Humanos , Mutação , Pirimetamina/uso terapêutico , Transplante de Células-Tronco
4.
Neurobiol Dis ; 134: 104667, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31682993

RESUMO

The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or ß-subunits of the lysosomal ß-Hexosaminidase enzyme. In physiological conditions, α- and ß-subunits combine to generate ß-Hexosaminidase A (HexA, αß) and ß-Hexosaminidase B (HexB, ßß). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and ß-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and ß-subunits, leading to supranormal levels of ß-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of ß-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or ß-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.


Assuntos
Gangliosidoses GM2/metabolismo , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Neurais/metabolismo , Cadeia alfa da beta-Hexosaminidase/metabolismo , Cadeia beta da beta-Hexosaminidase/metabolismo , Animais , Gangliosidoses GM2/genética , Vetores Genéticos , Humanos , Lentivirus , Camundongos , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/genética
5.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 225-239, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389374

RESUMO

GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear. In vitro experiments, using microsomes from Sandhoff mouse model brain, showed that increase of GM2 content negatively modulates sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Pelled et al., 2003). Furthermore, Ca2+ depletion in endoplasmic reticulum (ER) triggers Unfolded Protein Response (UPR), which tends to restore homeostasis in the ER; however, if cellular damage persists, an apoptotic response is initiated. We found that ER GM2 accumulation in cultured neurons induces luminal Ca2+ depletion, which in turn activates PERK (protein kinase RNA [PKR]-like ER kinase), one of three UPR sensors. PERK signaling displayed biphasic activation; i.e., early upregulation of cytoprotective calcineurin (CN) and, under prolonged ER stress, enhanced expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Moreover, GM2 accumulation in neuronal cells induced neurite atrophy and apoptosis. Both processes were effectively modulated by treatment with the selective PERK inhibitor GSK2606414, by CN knockdown, and by CHOP knockdown. Overall, our findings demonstrate the essential role of PERK signaling pathway contributing to neurodegeneration in a model of GM2-gangliosidosis.


Assuntos
Gangliosidoses GM2/metabolismo , Neuritos/fisiologia , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Atrofia/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M2)/fisiologia , Gangliosidoses GM2/genética , Indóis/farmacologia , Camundongos , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transdução de Sinais/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/fisiologia
6.
Hum Gene Ther ; 28(6): 510-522, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132521

RESUMO

GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in ß-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or ß-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and ß-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/ß developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/ß, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/ß intracranial injection among different species, despite encoding for self-proteins.


Assuntos
Dependovirus/genética , Discinesias/etiologia , Gangliosidoses GM2/terapia , Vetores Genéticos/efeitos adversos , Necrose/etiologia , Neurônios/metabolismo , beta-N-Acetil-Hexosaminidases/genética , Animais , Apatia , Dependovirus/metabolismo , Modelos Animais de Doenças , Discinesias/genética , Discinesias/metabolismo , Discinesias/patologia , Feminino , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/patologia , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Injeções Intraventriculares , Macaca fascicularis , Masculino , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Neurônios/patologia , Subunidades Proteicas/efeitos adversos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tálamo/metabolismo , Tálamo/patologia , Transgenes , Substância Branca/metabolismo , Substância Branca/patologia , beta-N-Acetil-Hexosaminidases/efeitos adversos , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Vet Pathol ; 52(3): 543-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25232033

RESUMO

Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 µm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 µm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies.


Assuntos
Antílopes , Gangliosidoses GM2/veterinária , Doenças Renais Policísticas/veterinária , Animais , Animais Recém-Nascidos , Animais de Zoológico , Grânulos Citoplasmáticos/patologia , Grânulos Citoplasmáticos/ultraestrutura , Feminino , Gangliosidoses GM2/genética , Gangliosidoses GM2/patologia , Rim/enzimologia , Rim/patologia , Rim/ultraestrutura , Fígado/enzimologia , Fígado/patologia , Lisossomos/enzimologia , Masculino , Microscopia Eletrônica de Transmissão/veterinária , Linhagem , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Glândula Tireoide/patologia
8.
Mol Ther ; 20(8): 1489-500, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22453766

RESUMO

The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of ß-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human ß-hexosaminidase α (HEXA) and ß (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of ß-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system.


Assuntos
Gangliosidoses GM2/enzimologia , Gangliosidoses GM2/terapia , Hexosaminidase A/metabolismo , Hexosaminidase B/metabolismo , Adenoviridae/genética , Animais , Gangliosidoses GM2/genética , Vetores Genéticos/genética , Hexosaminidase A/genética , Hexosaminidase B/genética , Humanos , Camundongos , Camundongos Knockout
9.
PLoS One ; 5(8)2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20856892

RESUMO

BACKGROUND: Sandhoff disease is a lysosomal storage disorder characterized by the absence of ß-hexosaminidase and storage of GM2 ganglioside and related glycolipids. We have previously found that the progressive neurologic disease induced in Hexb(-/-) mice, an animal model for Sandhoff disease, is associated with the production of pathogenic anti-glycolipid autoantibodies. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we report on the alterations in the thymus during the development of mild to severe progressive neurologic disease. The thymus from Hexb(-/-) mice of greater than 15 weeks of age showed a marked decrease in the percentage of immature CD4(+)/CD8(+) T cells and a significantly increased number of CD4(+)/CD8(-) T cells. During involution, the levels of both apoptotic thymic cells and IgG deposits to T cells were found to have increased, whilst swollen macrophages were prominently observed, particularly in the cortex. We employed cDNA microarray analysis to monitor gene expression during the involution process and found that genes associated with the immune responses were upregulated, particularly those expressed in macrophages. CXCL13 was one of these upregulated genes and is expressed specifically in the thymus. B1 cells were also found to have increased in the thy mus. It is significant that these alterations in the thymus were reduced in FcRγ additionally disrupted Hexb(-/-) mice. CONCLUSIONS/SIGNIFICANCE: These results suggest that the FcRγ chain may render the usually poorly immunogenic thymus into an organ prone to autoimmune responses, including the chemotaxis of B1 cells toward CXCL13.


Assuntos
Gangliosidoses GM2/imunologia , Gangliosidoses GM2/patologia , Timo/imunologia , Timo/patologia , Envelhecimento/patologia , Animais , Atrofia/metabolismo , Autoanticorpos/biossíntese , Autoimunidade/imunologia , Morte Celular/imunologia , Quimiocina CXCL13/genética , Modelos Animais de Doenças , Progressão da Doença , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Humanos , Lactente , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de IgG/deficiência , Receptores de IgG/metabolismo , Doença de Sandhoff/genética , Doença de Sandhoff/imunologia , Doença de Sandhoff/metabolismo , Doença de Sandhoff/patologia , Timo/metabolismo , Cadeia beta da beta-Hexosaminidase/metabolismo
10.
J Feline Med Surg ; 9(3): 232-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17198760

RESUMO

This case report documents clinical and molecular findings in two littermate kittens of the Japanese domestic cat with GM2 gangliosidosis variant 0. Analysis included detailed physical, magnetic resonance imaging, biochemical, pathological and genetic examinations. At first, these littermate kittens showed typical cerebellar signs at approximately 2 months of age. About 2 months later, they progressively showed other neurological signs and subsequently died at about 7 months of age. Magnetic resonance imaging just before the death showed an enlarged ventricular system, T1 hyperintensity in the internal capsule, and T2 hyperintensity in the white matter of the whole brain. Histological findings suggested a type of lysosomal storage disease. Biochemical studies demonstrated that the kittens were affected with GM2 gangliosidosis variant 0, and a DNA assay finally demonstrated that these animals were homozygous for the mutation, which the authors had identified in a different family of the Japanese domestic cat. The findings in the present cases provide useful information about GM2 gangliosidosis variant 0 in Japanese domestic cats.


Assuntos
Doenças do Gato/genética , Gangliosídeo G(M2)/líquido cefalorraquidiano , Gangliosidoses GM2/veterinária , Animais , Encéfalo/patologia , Química Encefálica , Doenças do Gato/metabolismo , Gatos , Análise Mutacional de DNA , Evolução Fatal , Feminino , Gangliosídeo G(M2)/análise , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Genótipo , Heterozigoto , Japão , Masculino , Mutação , Linhagem , Doença de Sandhoff/veterinária
11.
Int J Dev Neurosci ; 20(3-5): 373-89, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12175877

RESUMO

The neuronal storage diseases are a rare group of disorders with profound clinical consequences including severe mental retardation and death in early childhood. A subset of these disorders, those with elevated levels of GM2 ganglioside, are further characterized by the reinitiation of primary dendrites on mature cortical neurons. These ectopic dendrites are unusual as primary dendrite initiation is normally confined to a narrow developmental window. Thus, ectopic dendritogenesis appears to be a recapitulation of the normal developmental program temporally displaced. Consequently, understanding ectopic dendritogenesis should offer insights into both the pathogenesis of the neuronal storage diseases as well as mechanisms of normal CNS development. Using a feline model of GM2 gangliosidosis, we compared patterns of gene expression in normal newborn and mature diseased animals (both undergoing active primary dendritogenesis) with normal, mature controls (where primary dendritogenesis has ceased). From this work, we have identified two genes that appear to function in primary dendrite initiation. One, tomoregulin, is an integral membrane protein with both EGF- and follistatin-like motifs in its extracellular domain. The second, Tristanin, is a member of the positive regulatory domain (PRD) family of a zinc-finger transcription factors. Both genes are up regulated in the disease state, and both show a shift in their intracellular location to the nucleus in diseased animals that is not observed in age matched controls. In normal mouse brain, tomoregulin and Tristanin reveal developmental patterns consistent with a role in dendrite initiation and show changes in subcellular localization similar to that observed in the cat.


Assuntos
Diferenciação Celular/genética , Córtex Cerebral/anormalidades , Dendritos/patologia , Gangliosidoses GM2/genética , Gangliosidoses GM2/patologia , Proteínas de Neoplasias , Células Piramidais/anormalidades , Animais , Animais Recém-Nascidos , Gatos , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , DNA Complementar/análise , DNA Complementar/genética , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feto , Gangliosidoses GM2/fisiopatologia , Testes Genéticos , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Células Piramidais/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
13.
Hum Gene Ther ; 12(14): 1771-83, 2001 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-11560770

RESUMO

Mutations in the alpha-chain of lysosomal hexosaminidase (EC 3.2.1.52) underlie two distinct biochemical phenotypes known as variant B and variant B1 of G(M2) gangliosidosis. This paper shows that the transduction of human B1-type fibroblasts (producing catalytically inactive alpha-chains) with a retroviral vector encoding the human hexosaminidase alpha-chain leads to a complete correction of HexA (alpha beta dimer) activity with both synthetic and natural substrates. The alpha-subunit overexpression leads to a partial HexB (beta beta dimer) depletion corresponding to about 10% of control HexB activity. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. The high levels of recombinant enzyme correctly produced the metabolic defect, enabling the cells efficiently to degrade the accumulated storage product present in lysosomes. The transduced fibroblasts are also able to secrete HexA efficiently into the culture medium. Moreover, transfer of the human transgene product to B1-type deficient fibroblasts lead to an increase of activity against 4MUGS, the alpha-chain specific synthetic substrate, up to 30% of the control mean activity level. This level of activity might be sufficient to restore the normal ganglioside G(M2) metabolism in recipient cells. The data obtained demonstrate that B1-type phenotype can be efficiently corrected by retrovirus-mediated gene transfer.


Assuntos
DNA Complementar/metabolismo , Fibroblastos/metabolismo , Gangliosídeo G(M2)/genética , Gangliosidoses GM2/genética , Técnicas de Transferência de Genes , Retroviridae/genética , beta-N-Acetil-Hexosaminidases/genética , Células 3T3 , Animais , Linhagem Celular , Dimerização , Eletroforese em Gel de Poliacrilamida , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/metabolismo , Vetores Genéticos , Hexosaminidase A , Hexosaminidase B , Humanos , Imunoglobulina M/metabolismo , Lisossomos/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Fenótipo , Testes de Precipitina , Proteínas Recombinantes/metabolismo , Temperatura , Fatores de Tempo , Transdução Genética , Transgenes , beta-N-Acetil-Hexosaminidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA