Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Microbiol ; 202(2): 329-342, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31664492

RESUMO

The aim of the present study was to reveal how different microbial communities evolve in diesel fuel/crude oil-contaminated environments under aerobic and microaerobic conditions. To investigate this question, aerobic and microaerobic bacterial enrichments amended with a diesel fuel/crude oil mixture were established and analysed. The representative aerobic enrichment community was dominated by Gammaproteobacteria (64.5%) with high an abundance of Betaproteobacteriales (36.5%), followed by Alphaproteobacteria (8.7%), Actinobacteria (5.6%), and Candidatus Saccharibacteria (4.5%). The most abundant alkane monooxygenase (alkB) genotypes in this enrichment could be linked to members of the genus Rhodococcus and to a novel Gammaproteobacterium, for which we generated a high-quality draft genome using genome-resolved metagenomics of the enrichment culture. Contrarily, in the microaerobic enrichment, Gammaproteobacteria (99%) overwhelmingly dominated the microbial community with a high abundance of the genera Acinetobacter (66.3%), Pseudomonas (11%) and Acidovorax (11%). Under microaerobic conditions, the vast majority of alkB gene sequences could be linked to Pseudomonas veronii. Consequently, results shed light on the fact that the excellent aliphatic hydrocarbon degrading Rhodococcus species favour clear aerobic conditions, while oxygen-limited conditions can facilitate the high abundance of Acinetobacter species in aliphatic hydrocarbon-contaminated subsurface environments.


Assuntos
Biodegradação Ambiental , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Acinetobacter/classificação , Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Citocromo P-450 CYP4A/genética , Genótipo , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rhodococcus/classificação , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo
2.
Appl Biochem Biotechnol ; 191(1): 313-330, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31853877

RESUMO

Oil pollution in marine environment caused by oil spillage has been a main threat to the ecosystem including the ocean life and to the human being. In this research, three indigenous purple photosynthetic strains Rhodopseudomonas sp. DD4, DQ41, and FO2 were isolated from oil-contaminated coastal zones in Vietnam. The cells of these strains were immobilized on different carriers including cinder beads (CB), coconut fiber (CF), and polyurethane foam (PUF) for diesel oil removal from artificial seawater. The mixed biofilm formed by using CB, CF, and PUF as immobilization supports degraded 90, 91, and 95% of diesel oil (DO) with the initial concentration of 17.2 g/L, respectively, after 14 days of incubation. The adsorption of DO on different systems was accountable for the removal of 12-16% hydrocarbons for different carriers. To the best of our knowledge, this is the first report on diesel oil degradation by purple photosynthetic bacterial biofilms on different carriers. Moreover, using carriers attaching purple photosynthetic bacteria to remove diesel oil in large scale is considered as an essential method for the improvement of a cost-effective and efficient bioremediation manner. This study can be a promising approach to eliminate DO from oil-contaminated seawater.


Assuntos
Biofilmes/crescimento & desenvolvimento , Células Imobilizadas/fisiologia , Gasolina/microbiologia , Rodopseudomonas/fisiologia , Biodegradação Ambiental , Vietnã
3.
Sci Rep ; 9(1): 4134, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858439

RESUMO

This study presents taxonomic description of two novel diesel-degrading, psychrophilic strains: Kopri-42T and Kopri-43, isolated during screening of oil-degrading psychrotrophs from oil-contaminated Arctic soil. A preliminary 16S rRNA gene sequence and phylogenetic tree analysis indicated that these Arctic strains belonged to the genus Flavobacterium, with the nearest relative being Flavobacterium psychrolimnae LMG 22018T (98.9% sequence similarity). The pairwise 16S rRNA gene sequence identity between strains Kopri-42T and Kopri-43 was 99.7%. The DNA-DNA hybridization value between strain Kopri-42T and Kopri-43 was 88.6 ± 2.1% indicating that Kopri-42T and Kopri-43 represents two strains of the same genomospecies. The average nucleotide identity and in silico DNA-DNA hybridization values between strain Kopri-42T and nearest relative F. psychrolimnae LMG 22018T were 92.4% and 47.9%, respectively. These values support the authenticity of the novel species and confirmed the strain Kopri-42T belonged to the genus Flavobacterium as a new member. The morphological, physiological, biochemical and chemotaxonomic data also distinguished strain Kopri-42T from its closest phylogenetic neighbors. Based on the polyphasic data, strains Kopri-42T and Kopri-43 represents a single novel species of the genus Flavobacterium, for which the name Flavobacterium petrolei sp. nov. is proposed. The type strain is Kopri-42T (=KEMB 9005-710T = KACC 19625T = NBRC 113374T).


Assuntos
Flavobacterium/genética , Gasolina/microbiologia , Filogenia , Poluentes do Solo/metabolismo , Regiões Árticas , Biotransformação , Flavobacterium/classificação , Flavobacterium/metabolismo , Genoma Bacteriano , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo
4.
Appl Microbiol Biotechnol ; 102(21): 9089-9103, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30203145

RESUMO

To reduce the harm caused to the environment by fuel combustion and meet the increasingly stringent emission standards, the sulfur content of fuels should be reduced. Dibenzothiophene, benzothiophene, and their derivatives are sulfur-containing components of fuels that are difficult to desulfurize and can therefore cause great environmental damage. Biodesulfurization is a desulfurization method that has the advantage of being able to remove dibenzothiophene and its derivatives removed easily under conditions that are relatively mild when compared with hydrodesulfurization. This paper introduces the advantages of thermophilic biodesulfurization compared with mesophilic biodesulfurization; analyzes the desulfurization mechanism, including the desulfurization pathways and enzymic systems of desulfurization bacteria; and discusses the application of biodesulfurization in oil desulfurization. The main problems existing in biodesulfurization and possible solutions are also analyzed in this paper. Biological desulfurization is a promising method for desulfurization; accordingly, more studies investigating biodesulfurization of actual oil are needed to enable the industrialized application of biodesulfurization.


Assuntos
Óleos/metabolismo , Enxofre/metabolismo , Tiofenos/metabolismo , Animais , Biodegradação Ambiental , Gasolina/microbiologia , Humanos
5.
J Microbiol ; 55(2): 104-111, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120192

RESUMO

Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.


Assuntos
Enterobacter cloacae/metabolismo , Gasolina/análise , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Microbiologia do Solo , Alcanos/metabolismo , Biodegradação Ambiental , Biofilmes , Reatores Biológicos/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Gasolina/microbiologia , Modelos Estatísticos , Petróleo/metabolismo
6.
Environ Sci Pollut Res Int ; 23(9): 9019-35, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825521

RESUMO

Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of ß-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.


Assuntos
Azoarcus/fisiologia , Gasolina/análise , Água Subterrânea/química , Leptothrix/fisiologia , Aço Inoxidável/química , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Carbono-Carbono Liases , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Filogenia
7.
Water Sci Technol ; 71(10): 1554-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442498

RESUMO

Isolating new diesel-oil-degrading microorganisms from crude-oil contaminated sites and evaluating their degradation capacities are vitally important in the remediation of oil-polluted environments and crude-oil exploitation. In this research, new hydrocarbon-degrading bacteria and fungi were isolated from the crude-oil contaminated soil of the oil-fields in the Amazon rainforest of north-east Ecuador by using a soil enrichment technique. Degradation analysis was tracked by gas chromatography and a flame ionization detector. Under laboratory conditions, maximum degradability of the total n-alkanes reached up to 77.34 and 62.62 removal ratios after 30 days of incubation for the evaporated diesel oil by fungi (isolate-1) and bacteria (isolate-1), respectively. The 16S/18S rDNA sequence analysis indicated that the microorganisms were most closely (99-100%) related to Bacillus cereus (isolate-1), Bacillus thuringiensis (isolate-2), Geomyces pannorum (isolate-1), and Geomyces sp. (isolate-2). Therefore, these strains enable the degradation of hydrocarbons as the sole carbon source, and these findings will benefit these strains in the remediation of oil-polluted environments and oil exploitation.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Gasolina/microbiologia , Petróleo/metabolismo , Microbiologia do Solo , Alcanos/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fungos/classificação , Fungos/isolamento & purificação , Gasolina/análise , Hidrocarbonetos/metabolismo , Floresta Úmida , Solo/química , Poluentes do Solo/metabolismo
8.
Braz. j. biol ; 75(3): 541-547, Aug. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-761593

RESUMO

AbstractThe introduction of biodiesel to diesel may allow the fuel to be more susceptible to microorganism growth, especially during incorrect storage. To evaluate the effect of adding biodiesel in pure diesel on the growth of Paecilomyces variotii, microcosms containing pure diesel (B0), blend diesel/biodiesel (B7) and pure biodiesel (B100) were used. In microcosm with minimal mineral medium and B0, B7 or B100, after 60 days, the biomass (dry weight) formed at interface oil-water in B7 and B100 was significantly higher when compared to that of B0. Infrared analysis showed reduction of the carbonile fraction in B7 and B100 suggesting formation of intermediate compounds in B7. To monitor possible contamination of fuel storage tank by P. variotii samples were collected and analysed by specific-PCR assay for detection of P. variotii spores in the aqueous phase. This method was able to detect a minimum of 103 spores ml–1, corresponding to 0.0144 ng µl–1 of DNA. Specificity was tested against Aspergillus fumigatus and Pseudallescheria boydii.


ResumoA introdução de biodiesel ao diesel pode permitir que o combustível se torne mais suscetível ao crescimento de microorganismos, especialmente durante o armazenamento incorreto. Para analisar o efeito da adição de biodiesel em diesel puro no crescimento de Paecilomyces variotii, avaliou-se seu desenvolvimento em microcosmos contendo diesel puro (B0), mistura diesel/biodiesel (B7) e biodiesel puro (B100). Em microcosmos com meio mineral mínimo e B0, B7 ou B100, após 60 dias, a biomassa (peso seco) formada na interface óleo-agua com B7 e B100 foi significativamente maior quando comparada com a de B0. A análise de infravermelho mostrou redução da fração carbonila em B7 e B100, sugerindo a formação de compostos intermediários em B7. Para monitorar uma possível contaminação de tanque de armazenamento de combustível por P. variotii, amostras foram colhidas e analisadas por um teste de PCR específico para detecção de esporos deste fungo em fase aquosa. Este método foi capaz de detectar um mínimo de 103 esporos ml–1, correspondente a 0.0144 ng µl–1 de DNA. Especificidade foi testada contra Aspergillus fumigatus e Pseudallescheria boydii.


Assuntos
Biocombustíveis/microbiologia , Gasolina/microbiologia , Paecilomyces/crescimento & desenvolvimento , Glycine max/química , Paecilomyces/efeitos dos fármacos
9.
Int J Syst Evol Microbiol ; 65(8): 2403-2409, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899504

RESUMO

A Gram-stain-negative, diesel-oil-degrading, rod-shaped bacterium (designated JC234T) was isolated from a water sample collected from diesel-oil-contaminated backwaters in Kerala, India. Strain JC234T was oxidase- and catalase-positive, and grew at 20-35 °C and at pH 7-9. Cells contained bacteriochlorophyll-a, hydroxydemethylspheroidene and three unidentified carotenoids. Growth occurred under aerobic, microaerobic and phototrophic anaerobic conditions. Strain JC234T could utilize diesel-oil as a sole source of carbon and energy. Based on the 16S rRNA gene sequence analysis, strain JC234T belonged to the genus Hoeflea within the family Phyllobacteriaceae, and was closely related to Hoeflea alexandrii AM1V30T (98.1% 16S rRNA gene sequence similarity), Hoeflea halophila JG120-1T (97.6%) and other members of the genus Hoeflea ( < 96.4 ). Strain JC234T showed 22 ± 2% and 28 ± 1.5 % DNA-DNA hybridization with Hoeflea alexandrii KCTC 22096T and Hoeflea halophila KCTC 23107T, respectively. The DNA G+C content of strain JC234T was 54.3 mol %. The major cellular fatty acids were C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and C16 : 1ω7c/C16 : 1ω6c. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylglycerol were the major polar lipids. Strain JC234T contained Q10 as the predominant ubiquinone. On the basis of morphological, physiological, genetic, phylogenetic and chemotaxonomical analyses, we conclude that strain JC234T represents a novel species of the genus Hoeflea, for which the name Hoefleaolei sp. nov. is proposed. The type strain is JC234T ( = KCTC 42071T = LMG 28200T). An emended description of the genus Hoeflea is also provided.


Assuntos
Gasolina/microbiologia , Phyllobacteriaceae/classificação , Filogenia , Poluentes Químicos da Água/química , Técnicas de Tipagem Bacteriana , Bacterioclorofila A/química , Composição de Bases , Carotenoides/química , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
10.
Int J Mol Sci ; 15(5): 9134-48, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24857922

RESUMO

Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 µg (TCE)/mg (biomass) and 5.1 µg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.


Assuntos
Gasolina/microbiologia , Fenóis/metabolismo , Pseudomonas fluorescens/metabolismo , Tricloroetileno/metabolismo , Biodegradação Ambiental , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Fenóis/química , Tricloroetileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA